
SWE 760
Lecture 1:

Introduction to Analysis & Design of
Real-Time Embedded Systems

Hassan Gomaa

References:

H. Gomaa, Chapters 1, 2, 3 - Real-Time Software Design for
Embedded Systems, Cambridge University Press, 2016

Copyright © 2016 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form or
by any means, without the prior written permission of the author.

Software Modeling and Design
for Real-Time Embedded Systems

• COMET/RTE method
– Software Design for RT embedded systems
– From Use Case Models to Software Architecture

• Uses UML, SysML and MARTE notations
– Requirements and Analysis Modeling

• Use case modeling
• Static and Dynamic modeling

– Design modeling
• Concurrent, distributed,

real-time embedded systems
– H. Gomaa, Real-Time Software Design

for Embedded Systems,
Cambridge University Press, 2016

Software Modeling and Design
for Single Systems

• COMET: General software modeling and design method
• Requirements and Analysis Modeling
• Software design modeling

– Develop software architecture using architectural design
patterns

• Object-Oriented Software Architectures

• Client/Server Software Architectures

• Service-Oriented Architectures

• Component-Based Software Architectures

• Concurrent and Real-Time Software Architectures

• Software Product Line Architectures
– H. Gomaa, Software Modeling and Design:

UML, Use Cases, Patterns, and Software Architectures, Cambridge
University Press, 2011

Software Modeling and Design for
Software Product Lines

• Software Product Line (SPL)

– Family of products / systems (Parnas, Weiss, SEI)

• Software Modeling and Design for SPL

– Model commonality and variability among members of
SPL

– PLUS method for SPL

• Extends COMET, other methods for single systems
• Integrate Feature Modeling with UML
• Unifying View of Multiple-View Modeling Approach

• Apply standard UML extension mechanisms
• H. Gomaa, “Designing Software Product Lines with UML”, Addison

Wesley, 2005

Comparison of COMET and COMET/RTE
COMET COMET/RTE

General design method on software modeling
and design

Focused design method on real-time
software design

Has one chapter on each kind of software
architecture. Real-time software architectures
covered in one chapter.

Focus entirely on the design of real-time
embedded systems, including real-time
design patterns.

Main in-class case study is client/server
system: Banking System.

Focus on real-time embedded system case
studies.

Does not address issues specific to RT systems Addresses issues specific to RT systems:
- Address systems engineering issues.
- Design of hardware/software

interface
- More details on state machine

modeling
- Component-based RT software

design
- Real-Time scheduling and

performance analysis
- Quality of Service
- Dynamic RT software adaptation

Unified Modeling Language (UML)

• A standardized notation for object-oriented
development

• A graphical language for describing the products of
OO requirements, analysis, and design

• Approved as a standard by Object Management Group
(OMG)

• Methodology independent

• Needs to be used with an analysis and design method

MARTE

• Modeling and Analysis of Real-Time Embedded systems

• UML profile

– Extension of UML for a specific application domain

• MARTE

– Profile supports concepts for real-time embedded
systems

SysML
• Systems Modeling Language

– Standardized notation for modeling system requirements

– Approved as a standard by Object Management Group
(OMG)

– Methodology independent

• General-purpose graphical modeling language

– specifying, analyzing, designing, and verifying complex
systems

• Hardware

• software

• information

• personnel

• Procedures

Model Driven Architecture

• Promoted by Object Management Group (OMG)

• Model Driven Architecture

– Develop UML models of software architecture before
implementation

• Platform Independent Model (PIM)

– Precise model of software architecture before commitment to
specific platform

• Platform Specific Model (PSM)

– Map PIM UML model to a specific hardware/middleware
platform

• E.g., .NET, J2EE, Web Services, Real-Time platforms

• Real-time systems need to be mapped to PSM for performance
analysis

Real-Time Systems
• Hard real-time systems

– Time-critical deadlines

– System failure could be catastrophic

– Safety critical systems

• Soft real-time systems

– Interactive systems

– Missing deadlines is undesirable but not catastrophic

• Real-Time Embedded System

– Component of larger hardware/software system

– Has mechanical or electrical parts

• E.g., aircraft, automobile, train

Real-Time Embedded Systems and Applications

• Real-Time Embedded System

• Real -Time Embedded Application
+ Real-Time Operating System
+ Computer Hardware

Real-Time Embedded Application

Real-Time Operating System

Computer Hardware

Figure 1.2: Layered architecture of real-time embedded system

Characteristics of
Real-Time Embedded Systems

• Interaction with external environment
– Input from sensors

– Output to actuators

• Timing constraints

– Must process input event within given time

• Real-time control
– Make control decision based on input data

– Without human intervention

• Reactive systems
– System responds to external events

– Response is often state dependent

• Concurrency

– Many events happening in parallel

Measuring Time

• Event

– Occurs at an instant of time

• Duration

– Interval of time between

• starting event

• terminating event

• Period

– Measurement of recurring intervals of same duration

• Execution time

– CPU time taken to execute a given task

• Elapsed time

– Total time to execute a task from start to finish

Measuring Time

• Elapsed time = Execution time + Blocked time

• Blocked time

– Waiting time when the task is not using the CPU

• Waiting for I/O operations to complete

• Waiting for messages or responses to arrive

• Waiting to be assigned the CPU

• Waiting for entry into critical sections

• Physical time (or real-world time)

– Total time for a real-time command to be completed

– E.g., to stop a train

– Physical time = Elapsed time + time to physically
stop train

Real-Time Control

• Consider as a process control problem

• Speed control algorithm of automated train

– Set point: target cruising speed

– Controlled variable: current speed of train

• Speed control algorithm

– Compares set point with controlled variable

– Increasing or decreases the current speed of train

– Goal: current speed = cruising speed +/- delta

• Adjustments to speed converted to voltage applied to
electric motor

• Speed sensor measures current speed of train

Real-Time Control

Characteristics of Distributed RT
Applications

• Distributed processing environment

– Multiple computers communicating over network

• Typical applications

– Distributed real-time data collection

– Distributed real-time control

– RT Client / server applications

Figure 1.4 Example of Distributed Real-Time Embedded System

RT Embedded
Subsystem -

Node 1

«local area network»

RT Embedded
Subsystem -

Node 5

RT Embedded
Subsystem -

Node 4

RT Embedded
Subsystem -

Node 3

RT Embedded
Subsystem -

Node 2

UML Deployment Diagram

Distributed RT Embedded Systems

• Distributed RT Embedded System

• Distributed RT Embedded Application
+ Middleware
+ RT Operating System
+ Communication Software
+ Computer & Network Hardware

• Communication Software = Network protocol software

• Middleware

• Software layer provides uniform platform

– Distributed OS often integrates middleware with OS

Figure 1.5: Layered Architecture for Distributed RT Embedded System

RT Embedded Application Software

Middleware

RT Operating System
Communication Software

RT Embedded Application Software

Middleware

RT Operating System
Communication Software

Distributed RT node Distributed RT node

«local area network»

Computer + Network Hardware Computer + Network Hardware

UML Deployment Diagram

Advantages of Distributed RT Processing
• Distributed Control

– Control distributed among multiple nodes

– Hierarchical control

– Peer-to-peer control

• More localized control and management

– Design distributed subsystem to be autonomous

– Subsystem on node

• Relatively independent of other subsystems on other
nodes

• More flexible configuration

– A given application can be configured in different ways

Advantages of Distributed RT Processing

• Improved availability

– Operation is feasible in a reduced configuration

– There is no single point of failure

• Incremental system expansion

– System can be expanded by adding more nodes

• Load balancing

– Overall system load can be shared among several nodes

Internet of Things (IoT)

• Interconnect physical “things” to the Internet

• Connect remote sensors and actuators to the Internet

• Remote access to sensor data

– RFID technology

– Electronic RFID tag is attached to a physical product

– Product + RFID

• Smart object uniquely identified over Internet

• IoT

– Integrate real-time embedded systems with the Internet

Cyber-Physical Systems
• Smart networked systems with embedded sensors,

processors and actuators

• Designed to sense and interact with the physical world

• Support real-time, guaranteed performance in safety-
critical applications

• Joint behavior of “cyber” and “physical” elements

• Embedded cyber system

– Monitors and controls physical processes

• E.g., automated train

– Cyber subsystem: Real-time automated control

– Physical subsystems: electric motor, braking system,
transmission, smart sensors and actuators

Software Design Concepts for
Real-Time Systems

• Concurrent tasks

– For structuring system into components that execute in
parallel

– Key concept for designing concurrent, real-time, and
distributed systems

• Finite state machines

– Key concept for defining control aspects of real-time
systems

• Information hiding

– For structuring system into modifiable components

– Key concept for object-oriented design

Sequential & Concurrent Problems

Sequential problems

Activities happen in strict sequence

E.g., compiler, payroll

Sequential solution = program

Concurrent problems

Many activities happen in parallel

E.g., multi-user interactive system, air traffic
control system

Sequential solution to concurrent problem increases
design complexity

Concurrency

• Characteristics of concurrent task
– A.k.a. (lightweight) process, thread

• Active object, concurrent object
– One sequential thread of execution
– Represents execution of

• Sequential program
• Sequential part of concurrent program

– Concurrent system
• Many tasks execute in parallel
• Tasks need to interact with each other

Active and Passive Objects

• Objects may be active or passive
• Active object

– Concurrent Task
– Has thread of control

• Passive object
– a.ka. Information Hiding Object
– Has no thread of control
– Operations of passive object are executed

by task
– Operations execute in task’s thread of

control
• Directly or indirectly

• Software Design terminology
– Task refers to active object
– Object refers to passive object

29

Examples of Concurrent Processing

Figure 3.8 Synchronous message communication with reply

Figure 3.7 Asynchronous message communication

Task Communication via
Information Hiding Object

• Passive object

– Encapsulates data

– Hides contents of data structure

– Data accessed indirectly via operations

• Passive object accessed by two or more tasks

– Operations must synchronize access to data

– Use semaphore or monitor object

Interaction Between Concurrent Tasks
• Mutual exclusion

– Two or more tasks need to access shared data

– Access must be mutually exclusive

• Binary semaphore

– Boolean variable that is only accessed by means of two
atomic (indivisible) operations

– acquire (semaphore)
• if the resource is available, then get the resource

• if resource is unavailable, wait for resource to become
available

– release (semaphore)
• signals that resource is now available

• if another task is waiting for the resource, it will now acquire
the resource

Run-Time Support for Concurrent Tasks

• Operating System Services
– Multi-tasking Kernel

• Task creation and deletion
• Priority pre-emption task scheduling
• Mutual exclusion using semaphores
• Inter-task synchronization using events
• Inter-task communication using messages

• Language Support for Concurrent Tasks, e.g., Java
– Concurrent tasking constructs
– Task creation and deletion
– Support for inter-task communication and

synchronization

Task Scheduling Algorithms

• Round-robin scheduling

– Tasks have same priority

– FIFO queuing and CPU allocation of tasks on Ready List

– Task executes for time slice or blocks

– NOT satisfactory for Real-Time System

• Priority pre-emption task scheduling

– Each task is assigned a priority

– Task(s) with highest priority assigned to CPU

– Task executes until

• it blocks or

• is pre-empted by higher priority task

State Machine
Execution Cycle of Concurrent Task

• Ready State

– Task on Ready List

• Executing State

– Task is removed from Ready List and assigned CPU

• Blocking States – Task blocks and is

– Waiting for I/O

– Waiting for Event

– Waiting for Message

– Waiting to Enter Critical Section

Figure 3.9 State machine for concurrent task

Waiting to
Enter

Critical
Section

Waiting for
Message

Executing

Waiting
for I/O

Allocated CPU

Pre-empted

Block for
Message

Message
Arrived

Block for
Semaphore

Initial

Request
I/O

I/O
Completed

Created

Waiting
for

Event

Ready

Event
Occured

Block for
Timer or

Internal Event

Terminate
Terminated

Semaphore
Acquired

Finite State Machines
• Many information and real-time systems are state

dependent
– Action depends not only on input event
– Also depends on state of system

• Finite State Machine
– Finite number of states
– Only in one state at a time

• State
– A recognizable situation
– Exists over an interval of time

• Event
– A discrete signal that happens at a point in time
– Causes change of state

Information Hiding

Each object hides design decision

E.g., data structure

interface to I/O device

Information hiding object

Hides (encapsulates) information

Accessed by operations

Basis for Object-Oriented Design

Advantage

Objects are more self-contained

Results in more modifiable -> maintainable system

Example of Information Hiding

• Example of Analog Sensor Repository class

• Information hiding solution

– Hide internal data structure and internal linkage

– Specify operations on data structure

– Access to class only via operations

– readAnalogSensor

– updateAnalogSensor

Example of Information Hiding

Goals of Real-Time Design Method

• Capability of structuring system into concurrent components

– Concurrent task structuring

• Development of maintainable and reusable software

– Information hiding

– Inheritance

• Definition of system control and sequencing

– Finite state machines

– Event sequence scenarios

• Component-based software architecture

– Concurrent OO components and connectors

• Capability to analyze performance of design

– Real-Time scheduling

Requirements for Real-Time Software
Design Method

• Structural modeling

– Model problem domain, system (hardware and
software) boundary, software system boundary

• Dynamic (behavioral) modeling

– Model interaction sequences between system and
software artifacts

• State machines

– React to external events given current state of system

• Concurrency

– Model activities that execute in parallel with each other

Requirements for Real-Time Software
Design Method

• Component-based software architecture

– concurrent object-oriented components and connectors,

– components deployed to different nodes in distributed
environment

• Performance analysis of real-time designs

– Analyze the performance of the real-time system before
implementation

– Determine whether the system will meet its
performance goals.

Characteristics of RT Embedded Systems

Reactive systems

• Control decisions are often state dependent
– Finite state machines

Concurrent inputs from many sources

• Concurrent Processing

Real-time requirements

• Need to analyze performance of design
– Real-Time scheduling

Develop maintainable and reusable software

• Need to integrate RT technology with modern software
engineering concepts and methods

– RT Software Engineering

Figure 4.1 COMET/RTE life cycle model

Requirements
Modeling

Analysis
Modeling

Incremental
Software

Construction

Incremental
Software

Integration

System
Testing

Incremental
Prototyping

Customer

User

Design
Modeling

System
Structural
Modeling

