
SWE 621:
Software Modeling and Architectural Design

Lecture Notes on Software Design

Lecture 9 – Task Structuring

Hassan Gomaa

Dept of Computer Science
G M U i it

Copyright 2011 H. Gomaa

George Mason University
Fairfax, VA

Copyright © 2011 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form or by any means,
without the prior written permission of the author.

This electronic course material may not be distributed by e-mail or posted on any other World
Wide Web site without the prior written permission of the author.

SWE 621:
Software Modeling and Architectural Design

Lecture 9: Task Structuring

Hassan Gomaa

Reference: H. Gomaa, Chapters 18 - Software Modeling and
Design, Cambridge University Press, February 2011

Reference: H. Gomaa, Chapter 14 - Designing Concurrent,

Copyright 2011 H. Gomaa 2

Distributed, and Real-Time Applications with UML, Addison
Wesley Object Technology Series, July, 2000

Copyright © 2011 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form or
by any means, without the prior written permission of the author.

Steps in Using COMET/UML
1 Develop Software Requirements Model

2 Develop Software Analysis Model

3 Develop Software Design Model

Design Overall Software Architecture (Chapter 12 13)– Design Overall Software Architecture (Chapter 12, 13)

– Design Distributed Component-based Subsystems (Chapter 12-13,15)

– Structure Subsystems into Concurrent Tasks (Chapter 18)

– Design Information Hiding Classes (Chapter 14)

– Develop Detailed Software Design

Figure 6.1 COMET object-oriented software life cycle model

R i t

User

1

Copyright 2011 H. Gomaa 3
15

Copyright 2006 H. Gomaa

Requirements
Modeling

Analysis
Modeling

Incremental
Software

Construction
Incremental

Software
Integration

Incremental
Prototyping

System
Testing

Throwaway
Prototyping

Design
Modeling

Customer

1
2

34 5

6

7

8

14
9

15

10
11
12
13

Structure System into Tasks

• Concurrent Design with UML

• Concurrent task structuring criteriaConcurrent task structuring criteria

– Structure analysis model into concurrent tasks

– Task is an active object

– Task has thread of control

– Consider concurrent nature of system activities

– Determine concurrent tasks

Copyright 2011 H. Gomaa 4

• Define task interfaces

• Support for concurrent tasks

• Operating system services: multi-tasking kernel

Active and Passive Objects

• Objects may be active or passive
• Active object

Concurrent Task– Concurrent Task
– Has thread of control

• Passive object
– a.ka. Information Hiding Object
– Has no thread of control
– Operations of passive object are executed

by task
Operations execute in task’s thread of

Copyright 2011 H. Gomaa
5

– Operations execute in task s thread of
control

• Directly or indirectly
• Software Design terminology

– Task refers to active object
– Object refers to passive object

Copyright 2011 H. Gomaa 6

Task Structuring Criteria

• Event driven taskEvent driven task

– Activated by external event (e.g., interrupt)

• Periodic task

– Activated by timer

• Demand driven task

– Activated by arrival of internal message

Copyright 2011 H. Gomaa

y g

7

I/O Task Structuring Criteria

• Event driven I/O task
– Task for each event (interrupt) driven I/O device
– Event driven device generates interrupt

• Periodic I/O task
– Task for each polled I/O device
– I/O device (usually input) sampled at regular intervals

• Demand driven I/O task
– Task for each passive I/O device (usually output)

Copyright 2011 H. Gomaa 8

p (y p)
– Computation overlapped with output

Event Driven I/O Task

Device Driver

One task for each event driven I/O device

Activated by device I/O interrupt

Reads input

Converts to internal format

Disposes of input

Copyright 2011 H. Gomaa 9

Sends message containing data

Signals event (message with no data)

Writes to data store

Figure 18.5 Example of event driven I/O task

«external input
device»

D S

«input»
: DoorSensor

I t f

: Microwave
Control

1: Door Input 2: Door Request

Figure 18.5a Analysis model – communication diagram

: DoorSensor Interface
Control

Hardware / software boundary

Figure 18.5b Design model – concurrent communication diagram

Copyright 2011 H. Gomaa 10

«event driven»
«external input

device»
: DoorSensor

1: doorInterrupt
(doorInput) 2: doorRequest

Hardware / software boundary

«event driven»
«input»

: DoorSensorInterface

«demand»
«state dependent

control»
: Microwave

Control

Periodic I/O Task

Task for each polled I/O devicep

Activation of task is periodic

Samples I/O device

Periodic I/O task

Activated by timer event

Performs I/O operation

Copyright 2011 H. Gomaa 11

p

Waits for next timer event

Figure 18.6 Example of a periodic I/O task

«external input
device»

: Temperature
Sensor

«input»
: Temperature

Sensor
Interface

: Temperature
Data

1: Temperature
Input

2: Current
Temperature

Figure 18.6a Analysis model – communication diagram

Sensor Interface

Hardware / software boundary

Figure 18.6b Design model – concurrent communication diagram

«external timer»
: DigitalClock

Copyright 2011 H. Gomaa 12

«passive»
«external input

device»
: Temperature

Sensor

1: read
(out temperatureInput)

2: update(in current
Temperature)

0: timerEvent

: Temperature
Data

«periodic»
«input»

: Temperature
SensorInterface

Demand Driven I/O Task

• Task for each passive I/O device (usually output)Task for each passive I/O device (usually output)

– Passive I/O device does not need to be polled

– Computation overlapped with output

• Task output to device overlapped with

• Computational task that produces data

• Usually for passive output device

Copyright 2011 H. Gomaa 13

y p p

– Demand driven I/O task

• Passive input devices more likely to be polled

– Periodic input task

Figure 18.7 Example of a Demand Driven Output Task

«entity»
: SensorData

«algorithm»
: Sensor

«output»
: SensorStatistics

1: Sensor
Request

2: Temperature and
Pressure Statistics

Figure 18.7a Analysis model – communication diagram

«external
output

3: Sensor
Statistics

: SensorData
Repository

Statistics
Algorithm

: SensorStatistics
DisplayInterface

Hardware / software boundary

Figure 18.7b Design model – concurrent communication diagram

p
device»
: Display

1 d (t
2: temperature

Copyright 2011 H. Gomaa 14

«entity»
: SensorData
Repository

1: read (out
sensorData)

andPressure
Statistics

Hardware / software boundary

«passive»
«external

output
device»
: Display

3: sensor
Statistics

«demand»
«algorithm»

: Sensor
Statistics
Algorithm

«demand»
«output»

: SensorStatistics
DisplayInterface

Internal Task Structuring Criteria

• Periodic taskPeriodic task

– Task for each periodic activity

• Demand task

– Task for each demand driven internal activity

• Control task

– Task executes state machine

Copyright 2011 H. Gomaa 15

• User interaction task

– Task for each sequential user activity

Periodic Task

Task for each periodic activityp y

Task activated periodically

Activated by timer event

Performs activity

Waits for next timer event

Copyright 2011 H. Gomaa 16

Figure 18.8 Example of periodic task
Figure 18.8a Analysis model – communication diagram

«external timer»
: DigitalClock

«timer»
: Microwave

Timer

«state dependent
control»

: Microwave
Control

1: Timer Event
3: Timer
Expired

2: Decrement 2 1: Time

Figure 18.8b Design model – concurrent communication diagram

«entity»
: OvenData

2: Decrement
Time

2.1: Time
Left

3: timer

Copyright 2011 H. Gomaa 17

«periodic»
«timer»

: Microwave
Timer

«external timer»
: DigitalClock

«entity»
: OvenData

1: timerEvent
3: timer
Expired

2: decrementTime
(out timeLeft)

: Microwave
Control

Demand Task

Activity executed on demandy

Activated by internal event or message

Map to Demand Task

Demand task

Activated on demand by event or message sent by
different task

Copyright 2011 H. Gomaa 18

Performs demanded action

Waits for next event or message

Figure 18.9 Example of demand task

Figure 18.9a Analysis model – communication diagram

«state dependent «algorithm»

«entity»
: GasPrice

«entity»
: GasFlow

1: Pump
Command

2: Read 2.1: Gas Price

3: Read

Copyright 2011 H. Gomaa 19

«state dependent
control»

: PumpControl

«algorithm»
: GasFlow
Algorithm

«output»
: PumpDisplay

Interface

3.1: Current Gas Flow

4: Display Total Gallons,
Price

Figure 18.9 Example of demand task

Copyright 2011 H. Gomaa 20

Control Task

Task executes statechartTask executes statechart

State dependent control object executes statechart

Execution of statechart is sequential

One task for each control object

Can have multiple tasks of same type

Copyright 2011 H. Gomaa 21

Figure 18.10 Example of control task

«input»
«state dependent

control»
1: Door Request

Figure 18.10a Analysis model – communication diagram

: Heating

2: Microwave
Command

p
: DoorSensor

Interface

control»
: Microwave

Control

g
Element
Interface

Copyright 2011 H. Gomaa 22

1: doorRequest

Figure 18.10b Design model – concurrent communication diagram

: Heating
Element
Interface

2: microwave
Command«event driven»

«input»
: DoorSensor

Interface

«demand»
«state dependent

control»
: Microwave

Control

User Interaction Task

One task for each sequential user activityOne task for each sequential user activity

Multi-user system

One task per user

User may also spawn background tasks

Windowing system

User engaged in multiple activities

Copyright 2011 H. Gomaa 23

User engaged in multiple activities

Each window executes sequential activity

One task for each window

Figure 18.12 Example of user interaction task

Copyright 2011 H. Gomaa 24

Figure 18.12 Example of user interaction task

Figure 18.12c Design model – concurrent communication diagram

2: read(out

: Operator

«entity»
: FactoryStatus

Repository

2: read(out
factoryStatus)

2A d(t

1: factoryStatusQuery

1A: alarmQuery

3: statusDisplayData

«event driven»
«user

interaction»
: FactoryStatus

Window

Copyright 2011 H. Gomaa 25

: Operator

«entity»
: FactoryAlarm

Repository

2A: read(out
alarmStatus)

3A: alarmDisplayData

«event driven»
«user

interaction»
: FactoryAlarm

Window

Figure 21.25 Integrated communication diagram for ATM Client subsystem
(before task structuring)

Copyright 2011 H. Gomaa 26

Figure 18.13 Task architecture – initial concurrent communication diagram for
ATM Client (after task structuring)

Copyright 2011 H. Gomaa 27

Banking System Case Study -
Task Structuring Criteria

• Event driven I/O task

– Card Reader Interface

D d d i t t t k• Demand driven output task

– Cash Dispenser Interface

– Receipt Printer Interface

• Event driven user interaction Task

– Customer Interaction

– Operator Interaction

Copyright 2011 H. Gomaa 28

Operator Interaction

• Demand driven state dependent control task

– ATM Control

• Service task

– Bank Service

Define Task Interfaces

• Map Analysis Model simple message interfaces to task
interfaces

– Need to determine type of message communicationNeed to determine type of message communication
• Loosely coupled (asynchronous) message communication
• Tightly coupled (synchronous) message communication

– With reply
– Without reply

• Event synchronization

• External event (interrupt)

Copyright 2011 H. Gomaa 29

External event (interrupt)

• Timer event

• Passive objects

– Task interfaces to information hiding object

• Update task architecture

Asynchronous Message Communication
(Loosely Coupled)

• Producer sends message and continues
• Consumer receives messageConsumer receives message

• Suspended if no message is present
• Activated when message arrives

• Message queue may build up at Consumer

Copyright 2011 H. Gomaa 30

• Producer task sends message and waits for reply
• Consumer receives message

Synchronous (Tightly Coupled) Message
Communication With Reply

g
• Suspended if no message is present
• Activated when message arrives
• Generates and sends reply

• Producer and Consumer continue

Copyright 2011 H. Gomaa 31

Synchronous (Tightly Coupled) Message
Communication Without Reply

• Producer task sends message and waits for acceptance
• Consumer receives message

• Suspended if no message is present
• Activated when message arrives
• Accepts message, Releases producer

• Producer and Consumer continue

Copyright 2011 H. Gomaa 32

Information Hiding Object
• Passive object

– Encapsulates data

– Hides contents of data structure

– Data accessed indirectly via operations

• Passive object accessed by two or more tasks

– Operations must synchronize access to data

– Use semaphore or monitor object
– Design of class operations is described in Class Design

Copyright 2011 H. Gomaa 33

Task Interface Specifications (TIS)

Developed during Task Structuring

Expanded during Detailed Software Design

Describes concurrent task's

- Information hidden

St t i it i

Copyright 2011 H. Gomaa 34

- Structuring criteria
- Anticipated changes

- Task inputs and outputs

- Event sequencing logic

Task Interface Specification

Task interface

- Message communication

- Type of interfaceType of interface

- Message names and parameters

- Events signaled

- Name and Type of event

- External inputs or outputs

Task structure information

Copyright 2011 H. Gomaa

Task structure information

- Task structuring criterion used to design task
Task Behavior spec (event sequencing logic)

- Response to each message or event input

- Described informally in Pseudocode

Example of Task Interface Specification

Name: Card Reader Interface

Information hidden: Details of processing input from and output to card reader.

Structuring criteria: role criterion: input/output; concurrency criterion: event driven

Assumptions: only one ATM card input and output is handled at one time.

Anticipated Changes: Possible additional information will need to be read from ATM cardAnticipated Changes: Possible additional information will need to be read from ATM card.

Task interface:

Task inputs:

Event input: Card reader external interrupt to indicate that a card has been input.

External input: cardReaderInput.

Synchronous message communication without reply:
- eject
- confiscate

Task outputs:

External output: cardReaderOutput

Asynchronous message communication:

Copyright 2011 H. Gomaa 36

 - cardInserted.
 - cardEjected
 - cardConfiscated.

Passive objects accessed: ATMCard

Errors detected: Unrecognized card, Card reader malfunction.

Steps in Using COMET/UML
1 Develop Software Requirements Model

2 Develop Software Analysis Model

3 Develop Software Design Model

Design Overall Software Architecture (Chapter 12 13)– Design Overall Software Architecture (Chapter 12, 13)

– Design Distributed Component-based Subsystems (Chapter 12-13,15)

– Structure Subsystems into Concurrent Tasks (Chapter 18)

– Design Information Hiding Classes (Chapter 14)

– Develop Detailed Software Design

Figure 6.1 COMET object-oriented software life cycle model

R i t

User

1

Copyright 2011 H. Gomaa 37
15

Copyright 2006 H. Gomaa

Requirements
Modeling

Analysis
Modeling

Incremental
Software

Construction
Incremental

Software
Integration

Incremental
Prototyping

System
Testing

Throwaway
Prototyping

Design
Modeling

Customer

1
2

34 5

6

7

8

14
9

15

10
11
12
13

