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Overview

• Collaborative Object Modeling and architectural design 
mEThod (COMET)
– Object Oriented Analysis and Design Method
– Uses UML (Unified Modeling Language) notation

• Standard approach for describing a software design
– COMET = UML + Method

• Provides steps and guidelines for 
– Software Modeling and Design
– From Use Case Models to Software Architecture
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From Use Case Models to Software Architecture
• H. Gomaa, Software Modeling and Design:

UML, Use Cases, Patterns, and Software Architectures, 
Cambridge University Press, February 2011



Overview of Software Architecture
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Reference: H. Gomaa, Chapters 12 - Software Modeling and 
Design Cambridge University Press February 2011
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Design, Cambridge University Press, February 2011
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Figure 6.1 COMET object-oriented software life cycle model
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Steps in Using COMET/UML 
1 Develop Software Requirements Model 

2  Develop Software Analysis Model

3  Develop Software Design Model

Design Overall Software Architecture (Chapter 12 13)– Design Overall Software Architecture (Chapter 12, 13)

– Design Distributed Component-based Subsystems (Chapter 13,15)

– Structure Subsystems into Concurrent Tasks (Chapter 18)

– Design Information Hiding Classes (Chapter 14)

– Develop Detailed Software Design 

Figure 6.1 COMET object-oriented software life cycle model
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Design of Software Architecture
• Software Architecture 

– Structure of software system
– Software elements

• Externally visible properties of elements
• Relationships among elements

• Develop initial software architecture
– Synthesize from communication diagrams
– Structure system into subsystems

• Subsystems determined using subsystem structuring criteria
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• Subsystems determined using subsystem structuring criteria 
– Use stereotypes for subsystem structuring criteria 

• E.g., <<client>>, <<service>>
– Depict subsystems on subsystem communication 

diagrams



Active and Passive Objects

• Objects may be active or passive
• Active object

Concurrent task or component– Concurrent task or component
– Has thread of control

• Passive object
– a.k.a. Information Hiding Object
– Has no thread of control
– Operations of passive object are executed 

by task
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Multiple Views of Software Architecture 

• Structural view

– Subsystem class diagram
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Multiple Views of Software Architecture 

• Dynamic view

– Subsystem communication diagram

«software system»
: BankingSystem

«service» 
«subsystem»

: Banking 
Service

«external I/O 
device»

: CardReader

cardReaderOutputcardReaderInput

customerInput

display
Information

«external 
user»

: 
ATMCustomer
KeypadDisplay

«client» 
«subsystem»
: ATMClient

ATMTransaction

bankRespons
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«external 
output device»

: 
ReceiptPrinter

«external 
output device»

: 
CardDispenser

operator
Input

operator
Information

printer
Output

dispenser
Output

«external 
user»

: Operator

e

Multiple Views of Software Architecture 

• Deployment view

– Physical configuration on deployment diagram
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Transition from Analysis to Design:
Integration of Communication Diagrams

• Used to determine overall structure of system

M f i ti di• Merger of communication diagrams 

– Start with first communication diagram 

– Superimpose other communication diagrams 

• Add new objects and new message interactions from 
each subsequent diagram 

• Objects and interactions that appear on multiple
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Objects and interactions that appear on multiple 
diagrams are only shown once

• Consider alternative scenarios for each use case

• Integrated communication diagram

– Shows all objects and their interactions

Figure 11.1 Communication diagram: ATM Client – Validate PIN use case –
Valid Pin
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Figure 21.16 Communication diagram: ATM Client – Withdraw Funds use case
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Figure 13.2 Integrated communication diagram for ATM Client subsystem
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Integration of Communication Diagrams

• Subsystem communication diagramSubsystem communication diagram

– High-level communication diagram

– Shows subsystems and their interactions

• Integrated communication diagram

– If there are too many objects for one integrated 
communication diagram
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– Develop subsystem communication diagram

– Develop integrated communication diagram for each 
subsystem

Design of Software Architecture

• Software Architecture 

– Define overall structure of system

• Component interfaces and interconnections

– Separately from component internals

• Each subsystem performs major service 

– Contains highly coupled objects

– Relatively independent of other subsystems 

May be decomposed further into smaller subsystems
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– May be decomposed further into smaller subsystems

– Subsystem is aggregate or composite object 

• Candidates for subsystem

– Objects that participate in same use case



Separation of Subsystem Concerns
• Aggregate/composite object. 

– Objects that are part of aggregate/composite object 
– Structure in same subsystem (e.g., Fig. 13.3)

• Interface to external objects• Interface to external objects
– External real-world object should interface to 1 subsystem 
(e.g., Fig. 13.7)

• Scope of Control
– Control object & objects it controls are in same subsystem 

(e.g., Fig. 13.2)
• Geographical location
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– Objects at different locations are in separate subsystems 
(e.g., Fig. 13.5)

• Clients and Services
– Place in separate subsystems (e.g., Fig. 13.5, 13.7)

• User Interaction 
– Separate client subsystem (e.g., Fig. 13.5, 13.6)

Figure 13.3 Example of composite class
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Figure 13.7 Interface to external classes – Banking System
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Figure 13.5: Example of geographical distribution: 
Emergency Monitoring System
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Figure 13.6 Example of user interaction subsystem: Operator 
Presentation component
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Subsystem Structuring Criteria

• Client

– Requester of one or more services (e.g., Fig. 13.7)

• User Interaction

– Collection of objects supporting needs of user (e.g., Fig. 13.6, 13.10)

• Service

– Provides service for client subsystems (e.g., Fig. 13.5, 13.7)

• Control  

– Subsystem controls given aspect of system  (e.g., Fig. 13.10)

• Coordinator   

C di l l b ( Fi 13 10)
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– Coordinates several control subsystems (e.g., Fig. 13.10)

• Input / Output

– Performs I/O operations for other subsystems (e.g., Fig. 13.5)



Figure 13.10 Example of coordinator and control subsystems - Factory 
Automation System

Vehicle AckMove Command

«coordinator» 
«subsystem»

: SupervisorySystem
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Vehicle Status

«user interaction» 
«subsystem»

: DisplaySystem

«control»
«subsystem»

:AutomatedGuidedVehicle System 


