
SWE 621:
Software Modeling and Architectural Design

Lecture Notes on Software Design

Lecture 7 – Software Architecture

Hassan Gomaa

Dept of Computer Science
G M U i it

Copyright 2011 H. Gomaa

George Mason University
Fairfax, VA

Copyright © 2011 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form or by any means,
without the prior written permission of the author.

This electronic course material may not be distributed by e-mail or posted on any other World
Wide Web site without the prior written permission of the author.

Overview

• Collaborative Object Modeling and architectural design
mEThod (COMET)
– Object Oriented Analysis and Design Method
– Uses UML (Unified Modeling Language) notation

• Standard approach for describing a software design
– COMET = UML + Method

• Provides steps and guidelines for
– Software Modeling and Design
– From Use Case Models to Software Architecture

Copyright 2011 H. Gomaa 2

From Use Case Models to Software Architecture
• H. Gomaa, Software Modeling and Design:

UML, Use Cases, Patterns, and Software Architectures,
Cambridge University Press, February 2011

Overview of Software Architecture

Lecture 7

Hassan Gomaa

Reference: H. Gomaa, Chapters 12 - Software Modeling and
Design Cambridge University Press February 2011

Copyright 2011 H. Gomaa 3

Design, Cambridge University Press, February 2011

Copyright © 2011 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form or
by any means, without the prior written permission of the author.

Figure 6.1 COMET object-oriented software life cycle model

Requirements
Modeling

User

1
2

Analysis
Modeling

Incremental
Software

Construction
Incremental

Software

Throwaway
Prototyping

Design
Modeling

34 5

6

7

Copyright 2011 H. Gomaa 4

Integration

Incremental
Prototyping

System
Testing

Customer
8

14
9

15

10
11
12
13

Steps in Using COMET/UML
1 Develop Software Requirements Model

2 Develop Software Analysis Model

3 Develop Software Design Model

Design Overall Software Architecture (Chapter 12 13)– Design Overall Software Architecture (Chapter 12, 13)

– Design Distributed Component-based Subsystems (Chapter 13,15)

– Structure Subsystems into Concurrent Tasks (Chapter 18)

– Design Information Hiding Classes (Chapter 14)

– Develop Detailed Software Design

Figure 6.1 COMET object-oriented software life cycle model

R i t

User

1

Copyright 2011 H. Gomaa 5
15

Copyright 2006 H. Gomaa

Requirements
Modeling

Analysis
Modeling

Incremental
Software

Construction
Incremental

Software
Integration

Incremental
Prototyping

System
Testing

Throwaway
Prototyping

Design
Modeling

Customer

1
2

34 5

6

7

8

14
9

15

10
11
12
13

Design of Software Architecture
• Software Architecture

– Structure of software system
– Software elements

• Externally visible properties of elements
• Relationships among elements

• Develop initial software architecture
– Synthesize from communication diagrams
– Structure system into subsystems

• Subsystems determined using subsystem structuring criteria

Copyright 2011 H. Gomaa 6

• Subsystems determined using subsystem structuring criteria
– Use stereotypes for subsystem structuring criteria

• E.g., <<client>>, <<service>>
– Depict subsystems on subsystem communication

diagrams

Active and Passive Objects

• Objects may be active or passive
• Active object

Concurrent task or component– Concurrent task or component
– Has thread of control

• Passive object
– a.k.a. Information Hiding Object
– Has no thread of control
– Operations of passive object are executed

by task

Copyright 2011 H. Gomaa
7

Multiple Views of Software Architecture

• Structural view

– Subsystem class diagram

Copyright 2011 H. Gomaa 8

Multiple Views of Software Architecture

• Dynamic view

– Subsystem communication diagram

«software system»
: BankingSystem

«service»
«subsystem»

: Banking
Service

«external I/O
device»

: CardReader

cardReaderOutputcardReaderInput

customerInput

display
Information

«external
user»

:
ATMCustomer
KeypadDisplay

«client»
«subsystem»
: ATMClient

ATMTransaction

bankRespons

Copyright 2011 H. Gomaa 9

«external
output device»

:
ReceiptPrinter

«external
output device»

:
CardDispenser

operator
Input

operator
Information

printer
Output

dispenser
Output

«external
user»

: Operator

e

Multiple Views of Software Architecture

• Deployment view

– Physical configuration on deployment diagram

Copyright 2011 H. Gomaa 10

Transition from Analysis to Design:
Integration of Communication Diagrams

• Used to determine overall structure of system

M f i ti di• Merger of communication diagrams

– Start with first communication diagram

– Superimpose other communication diagrams

• Add new objects and new message interactions from
each subsequent diagram

• Objects and interactions that appear on multiple

Copyright 2011 H. Gomaa 11

Objects and interactions that appear on multiple
diagrams are only shown once

• Consider alternative scenarios for each use case

• Integrated communication diagram

– Shows all objects and their interactions

Figure 11.1 Communication diagram: ATM Client – Validate PIN use case –
Valid Pin

Copyright 2011 H. Gomaa 12

Figure 21.16 Communication diagram: ATM Client – Withdraw Funds use case

Copyright 2011 H. Gomaa 13

Figure 13.2 Integrated communication diagram for ATM Client subsystem

Copyright 2011 H. Gomaa 14

Integration of Communication Diagrams

• Subsystem communication diagramSubsystem communication diagram

– High-level communication diagram

– Shows subsystems and their interactions

• Integrated communication diagram

– If there are too many objects for one integrated
communication diagram

Copyright 2011 H. Gomaa 15

– Develop subsystem communication diagram

– Develop integrated communication diagram for each
subsystem

Design of Software Architecture

• Software Architecture

– Define overall structure of system

• Component interfaces and interconnections

– Separately from component internals

• Each subsystem performs major service

– Contains highly coupled objects

– Relatively independent of other subsystems

May be decomposed further into smaller subsystems

Copyright 2011 H. Gomaa sa-16

– May be decomposed further into smaller subsystems

– Subsystem is aggregate or composite object

• Candidates for subsystem

– Objects that participate in same use case

Separation of Subsystem Concerns
• Aggregate/composite object.

– Objects that are part of aggregate/composite object
– Structure in same subsystem (e.g., Fig. 13.3)

• Interface to external objects• Interface to external objects
– External real-world object should interface to 1 subsystem
(e.g., Fig. 13.7)

• Scope of Control
– Control object & objects it controls are in same subsystem

(e.g., Fig. 13.2)
• Geographical location

Copyright 2011 H. Gomaa 17

– Objects at different locations are in separate subsystems
(e.g., Fig. 13.5)

• Clients and Services
– Place in separate subsystems (e.g., Fig. 13.5, 13.7)

• User Interaction
– Separate client subsystem (e.g., Fig. 13.5, 13.6)

Figure 13.3 Example of composite class

Copyright 2011 H. Gomaa 18

Figure 13.7 Interface to external classes – Banking System

Copyright 2011 H. Gomaa 19

Figure 13.5: Example of geographical distribution:
Emergency Monitoring System

Copyright 2011 H. Gomaa 20

Figure 13.6 Example of user interaction subsystem: Operator
Presentation component

Copyright 2011 H. Gomaa 21

Subsystem Structuring Criteria

• Client

– Requester of one or more services (e.g., Fig. 13.7)

• User Interaction

– Collection of objects supporting needs of user (e.g., Fig. 13.6, 13.10)

• Service

– Provides service for client subsystems (e.g., Fig. 13.5, 13.7)

• Control

– Subsystem controls given aspect of system (e.g., Fig. 13.10)

• Coordinator

C di l l b (Fi 13 10)

Copyright 2011 H. Gomaa 22

– Coordinates several control subsystems (e.g., Fig. 13.10)

• Input / Output

– Performs I/O operations for other subsystems (e.g., Fig. 13.5)

Figure 13.10 Example of coordinator and control subsystems - Factory
Automation System

Vehicle AckMove Command

«coordinator»
«subsystem»

: SupervisorySystem

Copyright 2011 H. Gomaa 23

Vehicle Status

«user interaction»
«subsystem»

: DisplaySystem

«control»
«subsystem»

:AutomatedGuidedVehicle System

