
A-1

SWE 621:
Software Modeling and Architectural

Design

Lecture 2Lecture 2
OO Software Life Cycle

Use Case Modeling

Hassan Gomaa

Dept of Computer Science

Copyright 2011 H. Gomaa

George Mason University
Fairfax, VA

Copyright © 2011 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form or by any means,
without the prior written permission of the author.

This electronic course material may not be distributed by e-mail or posted on any other World
Wide Web site without the prior written permission of the author.

Overview

• Collaborative Object Modeling and architectural design
mEThod (COMET)
– Object Oriented Analysis and Design Method
– Uses UML (Unified Modeling Language) notation

• Standard approach for describing a software design
– COMET = UML + Method

• Provides steps and guidelines for
– Software Modeling and Design
– From Use Case Models to Software Architecture

Copyright 2011 H. Gomaa
2

From Use Case Models to Software Architecture
• H. Gomaa, Software Modeling and Design:

UML, Use Cases, Patterns, and Software Architectures,
Cambridge University Press, February 2011

A-2

Model Driven Architecture

• Promoted by Object Management Group (OMG)

• Model Driven Architecture

– Develop UML models of software architecture before eve op U ode s o so w e c ec u e be o e
implementation

• Platform Independent Model (PIM)

– Precise model of software architecture before commitment to
specific platform

• Platform Specific Model (PSM)

M PIM UML d l ifi iddl h l

Copyright 2011 H. Gomaa

– Map PIM UML model to a specific middleware technology

• CORBA, .NET, J2EE, Web Services

– Tool support for mapping from PIM to PSM

Unified Modeling Language (UML)

• UML

– A standardized notation for object-orientedA standardized notation for object oriented
development

– Combines notations of OMT, Booch, and use cases

– A graphical language for describing the products of OO
requirements, analysis, and design

– Approved as a standard by Object Management Group
(OMG)

Copyright 2011 H. Gomaa
4

(OMG)

– Methodology independent

• Needs to be used with an analysis and design method

A-3

SWE 621:
Lecture 2:

Object-Oriented Software Life Cycle with UMLj y

Hassan Gomaa

Reference: H. Gomaa, “Chapters 5 - “Software Modeling and
Design”, Cambridge University Press, February 2011

H G “Ch 6 D i i C Di ib d d R l

Copyright 2011 H. Gomaa
5

H. Gomaa, “Chapter 6 - Designing Concurrent, Distributed, and Real-
Time Applications with UML”, Addison Wesley Object Technology

Series, July, 2000

Copyright © 2011 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form or by any means,
without the prior written permission of the author.

This electronic course material may not be distributed by e-mail or posted on any other World
Wide Web site without the prior written permission of the author.

Figure 6.1 COMET object-oriented software life cycle model

Requirements
Modeling

User

1
2

Analysis
Modeling

Incremental
Software

Construction
Incremental

Software

Throwaway
Prototyping

Design
Modeling

34 5

6

7

Copyright 2011 H. Gomaa
6

Integration

Incrementa
l

Prototyping

System
Testing

Customer
8

14
9

15

10
11
12
13

A-4

Object-Oriented Software Life Cycle
Requirements Modeling

• Requirements Modeling

• Use Case Modeling

D fi ft f ti l i t i t f– Define software functional requirements in terms of
use cases and actors

Use Case

Actor

Use Case A

«extend»Figure 2 1 UML notation
«extend»

Copyright 2011 H. Gomaa
7

Use Case CUse Case B

Use Case X

Use Case ZUse Case Y

«include»

Figure 2.1 UML notation
for use case diagram

«include»

Object-Oriented Software Life Cycle
Analysis Modeling

• Analysis Modeling consists of

• Static Modeling

D i M d li• Dynamic Modeling

• State Machine modeling using statecharts

• Object interaction modeling

Figure 6.1 COMET object-oriented software life cycle model

Requirements
Modeling

User

1
2

Copyright 2011 H. Gomaa
8

15
Copyright 2006 H. Gomaa

Analysis
Modeling

Incremental
Software

Construction
Incremental

Software
Integration

Incremental
Prototyping

System
Testing

Throwaway
Prototyping

Design
Modeling

Customer

34 5

6

7

8

14
9

15

10
11
12
13

A-5

Object-Oriented Software Life Cycle
Analysis Modeling

• Static Modeling

– Define structural relationships between classes

D i t l d th i l ti hi l di– Depict classes and their relationships on class diagrams

Cl

Class Class

Copyright 2011 H. Gomaa
9

Class
attributes

Class Class with attributes

attributes

operations

Class with attributes and operations

Figure 2.2 UML notation for classes

Object-Oriented Software Life Cycle
Analysis Modeling

• Dynamic Modeling

– Define statecharts for state dependent control objects

Initial State

Event

Superstate A

Figure 2.7 UML notation for statechart:
superstate with sequential substates

Copyright 2011 H. Gomaa
10

Substate A1

Entry / Action
Do / Activity
Exit / Action

Substate A2

Event [condition] /
Action

Final State

A-6

Object-Oriented Software Life Cycle
Analysis Modeling

• Dynamic Modeling

– Defines how objects participate in use cases using
communication diagrams or sequence diagrams

«external input
device»

Sh ft communication diagrams or sequence diagrams

«input device
interface»

:ShaftInterface

Sh1: Shaft Input

Sh1 1:

:Shaft

Figure 11.1 Communication diagram for
Update Shaft Rotation Count use case

Copyright 2011 H. Gomaa
11

Sh1.1:
Update

«entity»
:ShaftRotation

Count

Object-Oriented Software Life Cycle
Design Modeling

• Develop overall software architecture
– Structure system into subsystems

D i ft hit t• Design software architecture

– Design object-oriented software
architectures

– Design client/server software
architectures

– Design service-oriented
architectures

Figure 6.1 COMET object-oriented software life cycle model

Requirements
Modeling

Analysis
Modeling

User

1
2

34

Copyright 2011 H. Gomaa
12

– Design component-based software
architectures.

– Design concurrent and real-time
software architectures

– Design software product line
architectures

15
Copyright 2006 H. Gomaa

Incremental
Software

Construction
Incremental

Software
Integration

Incremental
Prototyping

System
Testing

Throwaway
Prototyping

Design
Modeling

Customer

34 5

6

7

8

14
9

15

10
11
12
13

A-7

Object-Oriented Software Life Cycle
• Incremental Software Construction

– Select subset of system based on y
use cases

– Detailed design, code, unit test
of classes in subset

• Incremental Software Integration

– Integration testing of each
system increment

– Integration test based on use

Figure 6.1 COMET object-oriented software life cycle model

Requirements
Modeling

Analysis
Modeling

Incremental
Software

Construction
Incremental

Software
Integration

Throwaway
Prototyping

Design
Modeling

User

1
2

34 5

6

7

Copyright 2011 H. Gomaa
13

– Integration test based on use
cases

• System Testing

– Testing of software functional
requirements

– Based on use cases

15
Copyright 2006 H. Gomaa

Integration

Incremental
Prototyping

System
Testing

Customer
8

14
9

15

10
11
12
13

Steps in Using COMET/UML
1 Develop Software Requirements Model

– Develop Use Case Model (Chapter 6)

2 Develop Software Analysis Model

Develop static model of problem domain (Chapter 7)– Develop static model of problem domain (Chapter 7)

– Structure system into objects (Chapter 8)

– Develop statecharts for state dependent objects (Chapter 10)

– Develop object interaction diagrams for each use case (Chapter 9, 11)

3 Develop Software Design Model

Copyright 2011 H. Gomaa
14

A-8

Lecture 2:
Requirements Modeling

Hassan Gomaa

Reference: H. Gomaa, “Chapters 5, 7 - Designing
Concurrent, Distributed, and Real-Time Applications with

Copyright 2011 H. Gomaa
15

UML”, Addison Wesley Object Technology Series, July,
2000

Copyright © 2011 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form or
by any means, without the prior written permission of the author.

Objectives of Software Requirements
Specification

• Communication vehicle among multiple audiences
– Customers
– Users
– Analysts
– Designers

• Basis for Software Design
– Provide precise statement of requirements to designers

• Basis for Software Validation

Copyright 2011 H. Gomaa

– Basis for system acceptance criteria
• Basis for controlling evolution of system

– Changes to existing requirements
– Addition of new requirements

A-9

Components of Software Requirements
Specification

• Functional RequirementsFunctional Requirements
• Behavioral Requirements
• Information Requirements
• External Interface Requirements
• Non-Functional Requirements
• Design Constraints

Copyright 2011 H. Gomaa

Components of Software Requirements
Specification

• Functional Requirements
– Inputs to software systemInputs to software system
– Outputs from software system
– Processing to be performed

• Behavioral Requirements
– Externally observable states
– Transitions between states

I f i R i

Copyright 2011 H. Gomaa

• Information Requirements
– Entities (classes), Attributes, Relationships
– Data Dictionary

A-10

Components of Software Requirements
Specification

• External Interface Requirements
– User InterfacesUser Interfaces

• Specify characteristics of user interface
– E.g., Windows, WWW

• Can be detailed
– Specify individual screens

– Hardware Interfaces
• Very important for embedded systems

Copyright 2011 H. Gomaa

y p y
– Software Interfaces

• Interfaces to other software systems
• System context model

– Depict boundary of system

Non-Functional Requirements

• User interface characteristicsUser interface characteristics

• Reliability

• Security

• Availability

• Performance

• Modifiability

Copyright 2011 H. Gomaa

y

• Portability

• Cost

A-11

Examples of Design Constraints

• Hardware to be supportedHardware to be supported

• System configuration

– Centralized v. Distributed

– Windows v. Unix

• Existing software to be utilized

• Portability requirements

Copyright 2011 H. Gomaa

y q

• Anticipated changes to be accommodated

Attributes of Well-Written
Software Requirements Specification

• Correct
– Each requirement is accurate interpretation of user needsq p

• Complete
– Includes every significant requirement
– Defines system responses to every realizable input
– No "TBD"s

• Unambiguous
– Every stated requirement has only one interpretation

Copyright 2011 H. Gomaa

• Consistent
– Individual requirements do not conflict

• Conflicting Terms
• Conflicting characteristics
• Temporal inconsistency

A-12

Attributes of Well-Written
Software Requirements Specification

• VerifiableVerifiable
– Every requirement can be tested to determine that

system meets requirement
• Understandable by non-computer specialists

– Formal vs informal notations (Consistent/unambiguous
vs Understandability dilemma)

• Modifiable

Copyright 2011 H. Gomaa

• Modifiable
– Need Table of Contents, Index, Cross-references
– Redundancy

• Modifiability vs Understandability dilemma

Attributes of Well-Written
Software Requirements Specification

• TraceableTraceable
– Backwards:

• To System Level Requirements
• To User Needs

– Forwards:
• To design component(s) that satisfy requirement

T d t th t ti f i t

Copyright 2011 H. Gomaa

• To code components that satisfy requirement

A-13

Approaches to Developing Software
Requirements Specification

• Black Box Requirements SpecificationBlack Box Requirements Specification
– System considered as black box
– Specify

• External inputs and outputs
• Externally visible states and transitions
• Functions that produce outputs

M th d f R i t A l i d S ifi ti

Copyright 2011 H. Gomaa

• Methods for Requirements Analysis and Specification
– Structured Analysis
– Object-Oriented Analysis
– Use Case Modeling

Use Case Modeling

Section 3

Hassan Gomaa

Reference: H. Gomaa, Chapter 6 - Software Modeling and

Copyright 2011 H. Gomaa
26

Reference: H. Gomaa, Chapter 6 Software Modeling and
Design, Cambridge University Press, February 2011

Copyright © 2011 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form or
by any means, without the prior written permission of the author.

A-14

Steps in Using COMET/UML
1 Develop Software Requirements Model

– Develop Use Case Model (Chapter 7)

2 Develop Software Analysis Model

3 Develop Software Design Model3 Develop Software Design Model

Figure 6.1 COMET object-oriented software life cycle model

Requirements
Modeling

Analysis
Modeling

I t l

Design
Modeling

User

1
2

34 5

6

Copyright 2011 H. Gomaa
27

15
Copyright 2006 H. Gomaa

Incremental
Software

Construction
Incremental

Software
Integration

Incremental
Prototyping

System
Testing

Throwaway
Prototyping

Customer

7

8

14
9

15

10
11
12
13

Use Case Modeling

• Use Case

Describes sequence of interactions between user– Describes sequence of interactions between user
(actor) and system

– Narrative description

• Use Case model

– Define system functional requirements in terms of
Actors and Use cases

Copyright 2011 H. Gomaa
28

• Use case relationships

– include

– extend

A-15

Use Case

Actor

Figure 2.1 UML notation for use case diagram

Use Case A

Use Case CUse Case B

«extend» «extend»

Copyright 2011 H. Gomaa
29

Use Case X

Use Case ZUse Case Y

«include» «include»

Actors

• Actor models external entities of system
• Actors interact directly with systemActors interact directly with system

– Human user
– External I/O device
– External system
– Timer

• Actor initiates actions by system
M I/O d i t l t t h i ll

Copyright 2011 H. Gomaa
30

– May use I/O devices or external system to physically
interact with system

– Actor initiates use cases

A-16

Figure 6.1 Example of actor and use case

ATM
Customer

Withdraw Funds

Copyright 2011 H. Gomaa
31

Figure 6.4 Example of input device actor

Arrival

Sensor

Stop Elevator
at Floor

Copyright 2011 H. Gomaa
32

A-17

Actors

• Primary Actor a y cto
– Starts the use case by providing input to the system

• Secondary Actor
– Participates in use case
– Can be Primary Actor of a different use case

• Actor
Represents all users who use system in the same way

Copyright 2011 H. Gomaa
33

– Represents all users who use system in the same way
• A user is an instance of an actor

– Represents a role played by all users of the same type
• Human user may play more than one role

Figure 6.3 Example of external system actor

Factory Robot
Generate Alarm

& Notify

Factory

(external system
actor - primary
actor)

Copyright 2011 H. Gomaa
34

y
Operator

(secondary actor)

A-18

Figure 6.5 Example of timer actor

Timer

Calculate
Trip Speed

(Primary actor) Driver
(Secondary actor)

Copyright 2011 H. Gomaa
35

(Secondary actor)

Use Cases

• Identifying use cases
– Consider each major function an actor needs to perform
– Provides value to actorProvides value to actor
– Use case is a complete sequence of events initiated by

an actor
• Specifies interaction between actor and system

– Use case starts with input from an actor
– Basic path

• Most common sequence

Copyright 2011 H. Gomaa
36

• Most common sequence
– Alternative branches

• Variants of basic path
– E.g., for error handling

A-19

Figure 6.7 Banking system actor & use cases

Wi hd F d

ATM
Customer

Withdraw Funds

Query Account

Transfer Funds

Copyright 2011 H. Gomaa
37

Documenting Use Cases
• Name
• Summary

– Short description of use case
• Dependenc (on other se cases)• Dependency (on other use cases)
• Actors
• Preconditions

– Conditions that are true at start of use case
• Description

– Narrative description of basic path

Copyright 2011 H. Gomaa
38

• Alternatives
– Narrative description of alternative paths

• Postcondition
– Condition that is true at end of use case

A-20

Use Case Name: Withdraw Funds

Summary: Customer withdraws a specific amount of funds from a valid bank account.

Actor: ATM Customer

Precondition: ATM is idle, displaying a Welcome message.

Description:

1. Customer inserts the ATM Card into the Card Reader.

2. If the system recognizes the card, it reads the card number.

Example of Use Case

3. System prompts customer for PIN number.

4. Customer enters PIN.

5. System checks the expiration date and whether the card is lost or stolen.

6. If card is valid, the system then checks whether the user-entered PIN matches the card
PIN maintained by the system.

7. If PIN numbers match, the system checks what accounts are accessible with the ATM
Card.

8. System displays customer accounts and prompts customer for transaction type:
Withdrawal, Query, or Transfer.

9. Customer selects Withdrawal, enters the amount, and selects the account number.

Copyright 2011 H. Gomaa
39

10. System checks whether customer has enough funds in the account and whether daily
limit has been exceeded.

11. If all checks are successful, system authorizes dispensing of cash.

12. System dispenses the cash amount.

13. System prints a receipt showing transaction number, transaction type, amount
withdrawn, and account balance.

14. System ejects card.

15. System displays Welcome message.

Alternatives:

 If the system does not recognize the card, the card is ejected.

 If the system determines that the card date has expired, the card is confiscated.

 If the system determines that the card has been reported lost or stolen, the card is
confiscated.

Example of Use Case (continued)

 If the customer entered PIN does not match the PIN number for this card, then the
system re-prompts for the PIN.

 If the customer enters the incorrect PIN three times, then the system confiscates
the card.

 If the system determines that the account number is invalid, then it displays an
error message and ejects the card.

 If the system determines that there are insufficient funds in the customer’s
account, then it displays an apology and ejects the card.

 If the system determines that the maximum allowable daily withdrawal amount
has been exceeded, then it displays an apology and ejects the card.

Copyright 2011 H. Gomaa
40

 If the ATM is out of funds, then the system displays an apology, ejects the card,
and shuts down the ATM.

 If the customer enters Cancel, the system cancels the transaction and ejects the
card.

Postcondition: Customer funds have been withdrawn.

A-21

Use Case Relationships

• Include relationship
– Identify common sequences of interactions in several y q

use cases
• Extract common sequence into inclusion use case
• Base use cases includes abstract use case

• Example
– Withdraw Funds use case includes Validate PIN use

case

Copyright 2011 H. Gomaa
41

Figure 6.9 Example of inclusion use case and include relationships

Validate PIN

Withdraw
Funds

Query Account
Transfer

Funds

«include» «include» «include»

Copyright 2011 H. Gomaa

ATM Customer

A-22

Use Case Name: Validate PIN

Summary: System validates customer PIN.

Actor: ATM Customer

Precondition: ATM is idle, displaying a Welcome message.

Description:

1. Customer inserts the ATM Card into the Card Reader.

2. If the system recognizes the card, it reads the card number.

3. System prompts customer for PIN number.

Example of Inclusion Use Case

y p p

4. Customer enters PIN.

5. System checks the expiration date and whether the card is lost or stolen.

6. If card is valid, the system then checks whether the user-entered PIN matches the card
PIN maintained by the system.

7. If PIN numbers match, the system checks what accounts are accessible with the ATM
Card.

8. System displays customer accounts and prompts customer for transaction type:
Withdrawal, Query, or Transfer.

Alternatives:

 If the system does not recognize the card, the card is ejected.

Copyright 2011 H. Gomaa
43

 If the system determines that the card date has expired, the card is confiscated.

 If the system determines that the card has been reported lost or stolen, the card is
confiscated.

 If the customer-entered PIN does not match the PIN number for this card, the system
re-prompts for the PIN.

 If the customer enters the incorrect PIN three times, the system confiscates the card.

 If the customer enters Cancel, the system cancels the transaction and ejects the card.

Postcondition: Customer PIN has been validated.

Use Case Name: Withdraw Funds

Summary: Customer withdraws a specific amount of funds from a valid bank account.

Actor: ATM Customer

Dependency: Include Validate PIN abstract use case.

Precondition: ATM is idle, displaying a Welcome message.

Description:

1. Include Validate PIN abstract use case.

2 Customer selects Withdrawal enters the amount and selects the account number

Example of Base Use Case

2. Customer selects Withdrawal, enters the amount, and selects the account number.

3. System checks whether customer has enough funds in the account and whether the
daily limit will not be exceeded.

4. If all checks are successful, system authorizes dispensing of cash.

5. System dispenses the cash amount.

6. System prints a receipt showing transaction number, transaction type, amount
withdrawn, and account balance.

7. System ejects card.

8. System displays Welcome message.

Alternatives:

 If the s stem determines that the acco nt n mber is in alid it displa s an error

Copyright 2011 H. Gomaa
44

 If the system determines that the account number is invalid, it displays an error
message and ejects the card.

 If the system determines that there are insufficient funds in the customer’s account, it
displays an apology and ejects the card.

 If the system determines that the maximum allowable daily withdrawal amount has
been exceeded, it displays an apology and ejects the card.

 If the ATM is out of funds, the system displays an apology, ejects the card, and shuts
down the ATM.

Postcondition: Customer funds have been withdrawn.

A-23

Use Case Relationships

• Extend relationship
– Use case A is an extension of use case BUse case A is an extension of use case B
– Under certain conditions use case B will be extended by

description given in use case A
– Same use case can be extended in different ways

• When to use extend
– Show conditional parts of use case
– Model complex or alternative paths

Copyright 2011 H. Gomaa
45

– Model complex or alternative paths
• Example

– Pay by Cash extends Checkout Customer

Figure 6.11 Example of extend relationship

Copyright 2011 H. Gomaa
46

A-24

Case Study: Banking System

• Multiple Automated Teller Machines (ATM)
– Customer inserts ATM Card

Enters Personal Identification Number (PIN)– Enters Personal Identification Number (PIN)
– ATM Transactions

• PIN Validation
• Withdraw Funds from Checking or Savings Account
• Query Account
• Transfer funds between accounts

Copyright 2011 H. Gomaa
47

• Banking System maintains information about
– Customers
– Debit cards
– Checking and Savings Accounts

Figure 21.1 Banking System use case model

Withdraw
Funds

«include»

ATM
Customer

Query
Account

Transfer
Funds

Add Cash

Validate
PIN

«include»

«include»

Copyright 2011 H. Gomaa
48

Startup

Shutdown
Operator

A-25

Steps in Using COMET/UML
1 Develop Software Requirements Model

– Develop Use Case Model (Chapter 7)

2 Develop Software Analysis Model

3 Develop Software Design Model3 Develop Software Design Model

Figure 6.1 COMET object-oriented software life cycle model

Requirements
Modeling

Analysis
Modeling

I t l

Design
Modeling

User

1
2

34 5

6

Copyright 2011 H. Gomaa
49

15
Copyright 2006 H. Gomaa

Incremental
Software

Construction
Incremental

Software
Integration

Incremental
Prototyping

System
Testing

Throwaway
Prototyping

Customer

7

8

14
9

15

10
11
12
13

