
SWE 621:
Software Modeling and Architectural Design

Lecture Notes on Software Design

Lecture 12 - Software Design Patterns

Hassan Gomaa

Dept of Computer Science
G M U i it

1Copyright © 2011 Hassan Gomaa

George Mason University
Fairfax, VA

Copyright © 2011 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form or by any means,
without the prior written permission of the author.

This electronic course material may not be distributed by e-mail or posted on any other World
Wide Web site without the prior written permission of the author.

Introduction to
Architecture and Design Patterns

Hassan Gomaa

Reference: H. Gomaa, Chapters12, 15,16 - Software Modeling and
Design, Cambridge University Press, February 2011

2Copyright © 2011 Hassan Gomaa

g g y y

Copyright © 2011 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form or by any
means, without the prior written permission of the author.

What is a Pattern?

• Pattern

– Describes a recurring design problem

– Arises in specific design contexts (I e situations)– Arises in specific design contexts (I.e., situations)

– Presents a well proven approach for its solution

• Micro-architecture (Gamma et al.)

– Small number of collaborating objects that may be
reused

• Design New Software Architectures using existing patterns

3Copyright © 2011 Hassan Gomaa 3

Pattern Categories

• Design Patterns

– Small group of collaborating objectsSmall group of collaborating objects

– Gang of Four (Gamma, Helms, Johnson, Vlissides)

• Architecture Patterns

– Address the structure of major subsystems of a system

– Buschmann, etc. at Siemens

• Analysis Patterns

4Copyright © 2011 Hassan Gomaa 4

– Recurring patterns found in Analysis

– Fowler

• Domain Specific Patterns

– Used in a specific application area (e.g., factory
automation, Internet terminal)

Software Architectural Patterns

• Architectural Structure PatternsArchitectural Structure Patterns

– Address static structure of software architecture

– E.g., layers of abstraction, client/service

• Architectural Communication Patterns

– Address dynamic communication between software
components of architecture

5Copyright © 2011 Hassan Gomaa 5

– E.g., asynchronous message communication, broker
forwarding

Software Architectural Patterns

• Also called Software Architectural Styles

– Recurring architectures used in various software applications

• Client/Server Architecture pattern (Fig. 15.1, 15.4)

– Client requests services

– Server is provider of services

• Layers of Abstraction pattern (Fig. 12.4)

– Hierarchical architecture

– Each layer provides services for layers above it

6Copyright © 2011 Hassan Gomaa

– Operating systems, network communications software

• Centralized Control Pattern (Fig. 18.2)

– One control component executes statechart

– Receives sensor input from input components

– Controls external environment via output components

Figure 15.1 Multiple Client / Single Service Pattern

Client/Service (Figs. 15.1)
Client requests services
Service is provider of services

7Copyright © 2011 Hassan Gomaa 7

Figure 15.4 Multiple-client /multiple-server pattern

8Copyright © 2011 Hassan Gomaa 8

Figure 12.4 Example of layered pattern - Five layers of Internet (TCP/IP)
reference model

9Copyright © 2011 Hassan Gomaa 9

Example of hierarchical architecture -
Cruise Control and Monitoring System

«subsystem»

AutoControl
Subsystem

Maintenance
Subsystem

«subsystem»«subsystem»

TripAverages
Subsystem

Distance&Speed
Subsystem

«subsystem»

Calibration

«subsystem»

10Copyright © 2011 Hassan Gomaa

Shaft
Subsystem

«subsystem»

Subsystem

Figure 18.2 Example of
centralized control architectural pattern

11Copyright © 2011 Hassan Gomaa

Documenting a Design Pattern

• What a pattern must include (Buschmann)What a pattern must include (Buschmann)

– Context

• Situation leading to problem

– Problem

• Problem that often occurs in this context

– Solution

12Copyright © 2011 Hassan Gomaa

• Proven resolution to Problem

What Does a Pattern Include?

• Pattern describes
– Pattern Name
– AliasAlias
– Context

• When should pattern be used
– Problem
– Summary of Solution
– Strengths of solution
– Weaknesses of solution

Applicability

13Copyright © 2011 Hassan Gomaa

– Applicability
• When can you use the pattern

– Related Patterns

FIFO Queue Pattern -
Alias: Loosely Coupled Message Communication

Alias: Asynchronous Communication
• Producer sends message and continues
• Consumer receives message

• Suspended if no message is present
• Activated when message arrives

• Message queue may build up at Consumer

14Copyright © 2011 Hassan Gomaa

Asynchronous Message Communication Pattern

 Pattern Name: Asynchronous message communication.
Alias: Loosely coupled message communication FIFO Queue Alias: Loosely coupled message communication, FIFO Queue.

 Context: Concurrent systems.
 Problem: Concurrent application with concurrent tasks that need to

communicate with each other. Producer does not need to wait for consumer.
Producer does not need reply.

 Summary of solution: Use message queue between producer task and
consumer task. Producer sends message to Consumer and continues.
Consumer receives message. Messages may be queued FIFO (first-in-first-
out) if Consumer is busy. Consumer is suspended if no message is available.

15Copyright © 2011 Hassan Gomaa

 Strengths: Consumer does not hold up Producer.
 Weaknesses: If Producer produces messages more quickly than Consumer

can consume them, the message queue will eventually overflow.
 Applicability: Centralized and distributed environments: Real-time systems,

client/server and distribution applications.
 Related Patterns: Tightly coupled message communication with/without

reply.

Figure 13.5 Object broker architecture
(White pages - forwarding design)

Object Broker Architecture - Forwarding Design
• Client queries Broker for services provided

Client sends message to Server via Broker
• Identifies Server name and service requiredq
• Object Broker

• Receives client request
• Determines location of Server
• Forwards message to Server
• Forward response to Client

16Copyright © 2011 Hassan Gomaa

Broker Forwarding Pattern

 Pattern Name: Broker Forwarding
 Alias: Object Broker with Forwarding

i ib d Context: Distributed Systems
 Problem: Distributed application with multiple clients communicating with

multiple servers. Clients do not know location of servers.
 Summary of solution: Use Object Broker. Servers register their services

with the Object Broker. Clients send service request to Broker. Broker
forwards request to Server. Server services request and sends reply to Broker.
Broker forwards reply to Client.

 Strengths: Location transparency - Servers may relocate easily. Clients do
not need to know location of Servers.

17Copyright © 2011 Hassan Gomaa

not need to know location of Servers.
 Weaknesses: Additional overhead because Object Broker is involved in all

message communication. Broker can become a bottleneck if there is a heavy
load at the Broker.

 Applicability: Distributed environments: Client/server and distribution
applications with multiple servers.

 Related Patterns: Broker Handle.

Review of Design Patterns

• Pattern

– Describes a recurring design problem

– Arises in specific design contexts (I e situations)– Arises in specific design contexts (I.e., situations)

– Presents a well proven approach for its solution

• Micro-architecture (Gamma et al.)

– Small number of collaborating objects that may be
reused

• Design New Software Architectures using existing patterns

18Copyright © 2011 Hassan Gomaa 18

