
SWE 621:
Software Modeling and Architectural Design

Lecture Notes on Software Design
Lecture 1 - Introduction to Software Design

Hassan Gomaa

Dept of Computer Science
George Mason University

1Copyright © 2011 Hassan Gomaa

Fairfax, VA

Copyright © 2011 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form or
by any means, without the prior written permission of the author.

This electronic course material may not be distributed by e-mail or posted on any
other World Wide Web site without the prior written permission of the author.

Introduction to Software Design

1. Section I

Hassan Gomaa

References: H. Gomaa, “Chapters 1,2-5 - Designing Concurrent,
Distributed, and Real-Time Applications with UML”, Addison

Wesley Object Technology Series, 2000.

2Copyright © 2011 Hassan Gomaa

y j gy ,
H. Gomaa, “Chapters 1-5 - H. Gomaa, “Software Modeling and

Design: UML, Use Cases, Patterns, and Software Architectures”,
Cambridge University Press, February 2011

Copyright © 2011 Hassan Gomaa
All rights reserved. No part of this document may be reproduced in any form or by any means,

without the prior written permission of the author.

Overview

• Follows general guidelines of Software Engineering Body
of Knowledge (SWEBOK) – Chapter 3 Software Design

• Published by IEEE – 2004 Versiony
– Fundamentals of Software Design
– Software Design Process
– Software Design Concepts
– Software Design Notations and Methods

3Copyright © 2011 Hassan Gomaa

Software Design

What is design?
t l l li i k t h tlinoun: mental plan, preliminary sketch or outline

verb: to conceive in the mind; to invent
What is software design?

As a product
Output of design process

As a process

4Copyright © 2011 Hassan Gomaa

Approach to doing design

Nature of Design

• DesignDesign

– Form of problem solving

• Design as “wicked problem”

– Unlike an algorithm

• There is no one “correct” solution

• Tradeoffs in design

5Copyright © 2011 Hassan Gomaa

g

– E.g., Structure vs. performance

– Centralized vs. distributed

– Sequential vs. concurrent

Software Design Activities

• Architectural DesignArchitectural Design

– Structure system into components
– Define the interfaces between components

• Detailed Design

– Define internal logic
– Define internal data structures

6Copyright © 2011 Hassan Gomaa

Context of Software Design

Software Requirements Specification
Environmental Constraints
Design Constraints

Architectural Design
Detailed Design
Design Decisions
Traces to Requirements

Software
Design
Process

7Copyright © 2011 Hassan Gomaa

Software requirements specification

Inputs To Software Design

Describes WHAT system shall do not HOW
External view of system to be developed

Environmental constraints
Hardware, language, system usage

Design constraints
Design method

8Copyright © 2011 Hassan Gomaa

g
Design notation

Outputs From Software Design

Architectural Design
Overall description of software structureOverall description of software structure

Textual and Graphical
Specification of software components and their interfaces

Modules, classes

Detailed Design of each component
Internal logic
I l d

9Copyright © 2011 Hassan Gomaa

Internal data structures
Design decisions made

Design rationale
Traces to requirements

Software Design Process

Software life cycle (a.k.a. software process)So twa e e cyc e (a. .a. so twa e p ocess)

Phased approach to software development

Software life cycle (a.k.a. process) models

Waterfall – limitations of Waterfall Model

Incremental - evolutionary prototyping

Exploratory - throwaway prototyping

10Copyright © 2011 Hassan Gomaa

Exploratory - throwaway prototyping

Spiral model – risk driven process model

Software Life Cycle

Waterfall Model

Requirements
Analysis &
Specification

Architectural
Design

Detailed
Design

Coding

U it

11Copyright © 2011 Hassan Gomaa

Unit
Testing

Integration
Testing

System &
Acceptance

Testing

Software Life Cycle Model
Software Definition

Requirements Analysis and Specification

Analysis of user's problem

Specification of "what" system shall provide user

Architectural Design

Specification of "how" system shall be structured into
components

12Copyright © 2011 Hassan Gomaa

components

Specification of interfaces between components

Software Life Cycle Model
Software Construction

Detailed Design

Internal design of individual components

Design of logic and data structures

Coding

Map component design to code

13Copyright © 2011 Hassan Gomaa

Unit Testing

Test individual components

Software Life Cycle Model

Software Integration and Test

Integration Testing

Gradually combine components and test combinations

System Testing

Test of entire system against software requirements

Acceptance Test

14Copyright © 2011 Hassan Gomaa

Acceptance Test

Test of entire system by user prior to acceptance

Software Life Cycle Model

Software Maintenance

Modification of software system after installation
and acceptance

Fix software errors

Improve performance

Address changes in user requirements

15Copyright © 2011 Hassan Gomaa

g q

Often implies significant software redesign

Limitations of Waterfall Model

Does not show iteration in software life cycleDoes not show iteration in software life cycle

Does not show overlap between phases

Software requirements are tested late in life cycle

Operational system available late in life cycle

16Copyright © 2011 Hassan Gomaa

Prototyping During Requirements Phase

Problem

Software requirements are tested late in life cycle

Solution

Use throw-away prototyping

Help ensure requirements are understood

Also first attempt at designing system

17Copyright © 2011 Hassan Gomaa

Design of key file and data structures

Design of user interface

Early design tradeoffs

Impact of Throwaway Prototyping on Software Life Cycle

Requirements
Analysis &
Specification

Architectural
Design

Detailed
Design

Coding

U it

Throwaway
Prototype

18Copyright © 2011 Hassan Gomaa

Unit
Testing

Integration
Testing

System
Testing

Throw-away Prototyping in Design

Objectives

T d i lTest design early

Experiment with alternative design decisions

Examples of prototyping in design

Algorithm design

Experiment with - speed, accuracy

19Copyright © 2011 Hassan Gomaa

Early performance analysis

Measure timing parameters

User interface

Impact of Throwaway Prototyping on Architectural Design Phase

Requirements
Analysis &
Specification

Architectural
Design

Detailed
Design

Coding

U it

20Copyright © 2011 Hassan Gomaa

Unit
Testing

Integration
Testing

System
Testing

Throwaway
Prototype

Incremental Development

Problem

O ti l t il bl l t i lif lOperational system available late in life cycle

Solution

Use incremental development

Also known as evolutionary prototyping

Objective

21Copyright © 2011 Hassan Gomaa

Subset of system working early

Gradually build on

Prototype evolves into production system

Incremental Development Software Life Cycle

Requirements
Analysis &
Specificationp

Architectural
Design

Incremental
Component
Construction

Incremental
System

22Copyright © 2011 Hassan Gomaa

y
Integration

Evolutionary
Prototype

System &
Acceptance

Testing

Should Prototype Evolve into
Production System?

Tradeoff

Rapid development

Quality of product

Throw-away prototype

Speed, not quality is goal

Must not evolve into production system

23Copyright © 2011 Hassan Gomaa

Evolutionary prototype

Must emphasize quality

Maintainability is key issue

Combined Throwaway Prototyping / Incremental Development
Software Life Cycle Model

Requirements
Analysis &
Specificationp

Architectural
Design

Incremental
Component
Construction

Incremental
System

Throwaway
Prototype

24Copyright © 2011 Hassan Gomaa

y
Integration

Evolutionary
Prototype

System &
Acceptance

Testing

Spiral Process Model (SPM)

• SPM consists of four main activities that are repeated forSPM consists of four main activities that are repeated for
each cycle (Fig. 5.6):

– Defining objectives, alternatives and constraints

– Analyzing risks

– Developing and verifying product

– Spiral planning

25Copyright © 2011 Hassan Gomaa

• Number of cycles is project specific

• Risk driven process

– Analyze risks in second quadrant

Figure 5.6 The spiral process model

1. Define objectives,1. Define objectives,
alternatives, and constraints 2. Analyze risks

26Copyright © 2011 Hassan Gomaa

3. Develop product 4. Plan next cycle

NB: This diagram does not use the UML notation

Unified Software Development Process

• Risk driven iterative process
– Also known as Rational Unified Process

• Workflow
– Sequence of activities that produces a result of observable value

• Workflows in Unified Process
– Requirements

• Product: Use case model.
– Analysis

• Product: Analysis model.
– Design

• Products: design model and deployment model

27Copyright © 2011 Hassan Gomaa

• Products: design model and deployment model.
– Implementation

• Product: software implementation
– Test.

• Products: Test cases and test results

Unified Software Development Process

• Phase

– Time between two major milestones

• Phases in Unified Process

– Inception

• Seed idea is developed

– Elaboration.

• Software architecture is defined

28Copyright © 2011 Hassan Gomaa

– Construction.

• Software is built to the point at which it is ready for release

– Transition.

• Software is turned over to the user community.

Figure 3.5: Unified Software Development Process

Requirements

Core Workflows

Phases

Inception Elaboration Construction Transition

Requirements

Analysis

Design

Implementation

29Copyright © 2011 Hassan Gomaa

Test

iteration
#1

iteration
#2

iteration
#n-1

iteration
#n

--- --- --- --- ---

Iterations

Software Design Concepts

• Objects and ClassesObjects and Classes

• Information Hiding

• Inheritance

• Concurrency

• Finite State Machines

30Copyright © 2011 Hassan Gomaa

Objects and Classes

• Objects represent “things” in real world

– Provide understanding of real worldg

– Form basis for a computer solution

• An Object (object instance) is a single “thing”

– E.g., John’s car

– Mary’s account

• A Class (object class) is a collection of objects with the same
characteristics

31Copyright © 2011 Hassan Gomaa

– E.g., account, employee, car, customer

• Figure 2.2 UML notation for objects & classes

• Figure 3.1 Example of classes and objects

Figure 2.2 UML notation for objects & classes

Class

Class

attributes

Class

attributes

operations

Class Class with attributes Class with attributes and operations

anObject
anotherObject

:Class
:Class

32Copyright © 2011 Hassan Gomaa

Objects

Customer

Class

Figure 3.1 Example of classes and objects

AccountCustomer

aCustomer:Customer
anotherCustomer

:Customer

Objects

Account

33Copyright © 2011 Hassan Gomaa

anAccount :Account

Attributes

• Attribute

Data value held by object in class– Data value held by object in class

• Example of Attributes

– E.g., account number, balance

• Each object instance has specific value of attribute

– John’s account number is 1234

– Mary’s account number is 5678

34Copyright © 2011 Hassan Gomaa

a y s accou t u be s 5678

• Attribute name is unique within class

• Figure 3.2 Example of class with attributes

Figure 3.2 Example of class with attributes

Class with attributes

Account

accountNumber : Integer
balance : Real

Objects with values

35Copyright © 2011 Hassan Gomaa

accountNumber = 5678
balance = 1,897.44

anotherAccount:
Account

anAccount:
Account

accountNumber = 1234
balance = 525.36

Classes and Operations

• Operation
– Is function or procedure that may be applied to objects in a class
– All objects in class have same operations

• Class has one or more operationsClass has one or more operations
– Operations manipulate values of attributes maintained by object

• Operations may have
– Input parameters
– Output parameters
– Return value

• Signature of operation
Operation’s name

36Copyright © 2011 Hassan Gomaa

– Operation s name
– Operation’s parameters
– Operation’s return value

• Interface of class
– Set of operations provided by class

• Figure 3.3 Class with attributes and operations

Figure 3.3 Class with attributes and operations

readBalance () : Real
credit (amount : Real)
debit (amount : Real)
open (accountNumber : Integer)
close ()

accountNumber : Integer
balance : Real

Account

37Copyright © 2011 Hassan Gomaa

()

Information Hiding

Each object hides design decision

E.g., data structureg ,

interface to I/O device

Information hiding object

Hides (encapsulates) information

Accessed by operations

Basis for Object-Oriented Design

38Copyright © 2011 Hassan Gomaa

j g

Advantage

Objects are more self-contained

Results in more modifiable -> maintainable system

Example of Information Hiding

• Example of Stack

• Conventional approach• Conventional approach

– Stack data structure is global

– Stack accessed by modules

– Module corresponds to procedure / function / subroutine

– Problem

– Change to stack data structure has global impact

39Copyright © 2011 Hassan Gomaa

C a ge to stac data st uctu e as g oba pact

• Consider

– Array implementation (Fig. 3.4) changed to

– Linked list implementation (Fig. 3.6)

• Every module is impacted by change

Figure 3.4 Example of Global Access to Data

Stack Implemented
As ArrayAs ArrayModule

A
Module

B
PUSH POP

MAX SIZE = N

INDEX

N

X

40Copyright © 2011 Hassan Gomaa

Stack Array

1

Figure 3.6 Example of Global Access to Data

Stack Implemented
As Linked List

Module
A

Module
B

Top

PopPush
X

41Copyright © 2011 Hassan Gomaa

Bottom

Example of Information Hiding

• Example of StackExample of Stack

• Information hiding solution

– Hide stack data structure and internal linkage

– Specify operations on stack data structure

– Access to stack only via operations

• Consider

42Copyright © 2011 Hassan Gomaa

– Array implementation (Fig. 3.5) changed to

– Linked list implementation (Fig. 3.7)

• Change to stack only impacts Stack object

Figure 3.5 Example of Information Hiding

Pop (X)Push (X) FullEmpty

MAX SIZE

INDEXStack
Information

Hiding
Object

X

43Copyright © 2011 Hassan Gomaa

Stack Array

Object

Figure 3.7 Example of Information Hiding

Pop (X)Push (X) FullEmpty

Stack
Information

Hiding
Object

Top# Entries

X

44Copyright © 2011 Hassan Gomaa

Bottom

Stack Linked List

Max Size

Inheritance in Design

• Subclass inherits generalized properties from superclass
• Inheritance

– Allows sharing of properties between classes
• Property is Attribute or Operation

– Allows adaptation of parent class (superclass) to form
child class (subclass)

• Subclass inherits attributes & operations from superclass
– May add attributes

45Copyright © 2011 Hassan Gomaa

y dd bu es
– May add operations
– May redefine operations

Generalization / specialization hierarchy

«entity»
Account

accountNumber: Integer
balance: Real

46Copyright © 2011 Hassan Gomaa

«entity»
CheckingAccount

lastDepositAmount: Real

«entity»
SavingsAccount

interest: Real

Sequential & Concurrent Problems

Sequential problems

Activities happen in strict sequenceActivities happen in strict sequence

E.g., compiler, payroll

Sequential solution = program

Concurrent problems

Many activities happen in parallel

E g multi user interactive system air traffic

47Copyright © 2011 Hassan Gomaa

E.g., multi-user interactive system, air traffic
control system

Sequential solution to concurrent problem increases
design complexity

Concurrent and Real-Time Systems

• Concurrent SystemConcurrent System

– Consists of many activities (tasks) that execute in
parallel

• Real-Time system

– Concurrent system with timing deadlines

• Distributed application

48Copyright © 2011 Hassan Gomaa

– Concurrent system executing on geographically
distributed nodes

Concurrency

• Characteristics of concurrent task C c e s cs o co cu e s
– A.k.a. (lightweight) process, thread

• Active object, concurrent object
– One sequential thread of execution
– Represents execution of

• Sequential program
• Sequential part of concurrent program

49Copyright © 2011 Hassan Gomaa

• Sequential part of concurrent program
– Concurrent system

• Many tasks execute in parallel
• Tasks need to interact with each other

Consumer Task

Wait for Message
Message Queue

Producer Task

Send Message

50Copyright © 2011 Hassan Gomaa

Asynchronous Message Communication between Concurrent Tasks

Finite State Machines
• Many information and real-time systems are state

dependent
– Action depends not only on input event
– Also depends on state of system

• Finite State Machine
– Finite number of states
– Only in one state at a time

• State
– A recognizable situation

51Copyright © 2011 Hassan Gomaa

g
– Exists over an interval of time

• Event
– A discrete signal that happens at a point in time
– Causes change of state

Initial Braking Initial Not Braking

Brake Pressed

Brake Released

Figure 10.4 Partial statechart

Brake Released

Accelerating

Accel

52Copyright © 2011 Hassan Gomaa

Software Design Terminology

Design concept or principle
Fundamental idea that can be applied to designing a

system, e.g., information hidingy g g
Design notation or representation

A means of describing a software design
Textual and Graphical, e.g., UML

Design strategy
Overall plan and direction for performing design

Design structuring criteria

53Copyright © 2011 Hassan Gomaa

Design structuring criteria
Guidelines for decomposing a system into its parts

Software Design Method

Systematic approach for creating a design
Design decisions to be madeDesign decisions to be made
Order in which to make them

Describes sequence of steps for producing a design
Based on set of design concepts
Employs design strategy(ies)
Provides design structuring criteria

54Copyright © 2011 Hassan Gomaa

Documents resulting design using design notation(s)

Example of Software Design Method
Structured Design

Design concept
Functional module

D i i i iDesign structuring criteria
Module Cohesion criteria

Unity within module
Module Coupling criteria

Connectivity between modules
Design strategy

55Copyright © 2011 Hassan Gomaa

g gy
Transaction Analysis and Transform Analysis

Design notation
Structure charts
Program Design Language (PDL)

Design Strategies
Transform Analysis

Physical PhysicalLogical Logical

• Structured Analysis
- Data flow diagram

Physical
Input
Data

Physical
Output
Data

Logical
Input
Data

Logical
Output
Data

Read WriteProcess

Supervisor
Module

• Structured Design
- Structure Chart

56Copyright © 2011 Hassan Gomaa

Central
Transform

Output
Module

Input
Module

Logical
Input
Data Logical

Output
Data

Logical
Input
Data

Logical
Output
Data

Example of Software Design Method
COMET

Design concepts
Finite state machine, concurrent task, information hiding

Design structuring criteria
Object, subsystem and task structuring criteria

Design strategy
Develop analysis model, then map to design model

Design notation

57Copyright © 2011 Hassan Gomaa

g
UML (Unified Modeling Language)

View
Workstation

Status

ClassWhole

Example of Software Design Method
COMET

«user interface»
:Operator
Interface

V1:
Operator
Request

V1.3:
Displayed Info

Factory Operator
ClassPart2ClassPart1

58Copyright © 2011 Hassan Gomaa

«entity»
:Workstation

Status
Server

V1.1: Workstation
Status

Request

V1.2:
Workstation

Data

Displayed Info
:FactoryOperator

Review

• Follows general guidelines of Software Engineering Body
of Knowledge (SWEBOK) – Chapter 3 Software Design

• Published by IEEE – 2004 Versiony
– Fundamentals of Software Design
– Software Design Process
– Software Design Concepts
– Software Design Notations and Methods

59Copyright © 2011 Hassan Gomaa

