6.3 Systems of Ordinary Differential Equations | 303

6.3 SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

» EXAMPLE 6.13

Approximation of systems of differential equations can be done as a simple extension of
the methodology for a single differential equation. Treating systems of equations greatly
extends our ability to model interesting dynamical behavior.

The ability to solve systems of ordinary differential equations lies at the core of the
art and science of computer simulation. In this section, we introduce two physical systems
whose simulation has motivated a great deal of development of ODE solvers: the pendulum
and orbital mechanics. The study of these examples will provide the reader some practical
experience in the capabilities and limitations of the solvers.

The order of a differential equation refers to the highest order derivative appearing in
the equation. A first-order system has the form

yi =ﬂ(t7y19”-’yn)
yé:ﬁ(t’yl»,yn)

y;;:fn(ts)/l,’yn)

In an initial value problem, each variable needs its own initial condition.

Apply Euler’s Method to the first-order system of two equations:

V=3 -2
Y=y — -ty
»(0)=0
12(0) = 1. (6.36)

Check that the solution of the system (6.36) is the vector-valued function

@ =te”
nt)y=e.

For the moment, forget that we know the solution, and apply Euler’s Method. The scalar

Euler’s Method formula is applied to each component in turn as follows:

2
Wit1,1 = wi1 + h(w;, — 2w; 1)

2
Wwit1,2 =w;2 + h(wi 1 — wi2 — tiw;,).

Figure 6.9 shows the Euler Method approximations of y; and)», along with the correct
solution. The MATLAB code that carries this out is essentially the same as Program 6.1, with
a few adjustments to treat y as a vector:

o\

Program 6.2 Vector version of Euler Method

Input: interval inter, initial vector y0, number of steps n
Output: time steps t, solution y

Example usage: euler2 ([0 1], [0 1],10);

function [t,y]l=euler2 (inter,y0,n)

t(l)=inter(1); y(1,:)=y0;

h=(inter(2) -inter (1)) /n;

for i=1:n

t(i+1)=t (i) +h;

o° o

o°

304 | CHAPTER 6 Ordinary Differential Equations

y(i+1, :)=eulerstep(t(i),y(i,:), h);
end
plot(t,y(:,1),t,y(:,2));

function y=eulerstep(t,y,h)

%one step of the Euler Method

$Input: current time t, current vector y, step size h
$Output: the approximate solution vector at time t+h
y=y+h*ydot (t,vy) ;

function z=ydot (t,y)
$right-hand side of differential equation

z(1)=y(2) "2-2*y (1) ;
z(2)=y (1) -y(2)-t*y(2)"2;

6.3.1 Higher order equations

A single differential equation of higher order can be converted to a system. Let

Y = [t 3, ¥,y D)

be an nth-order ordinary differential equation. Define new variables

yi=y
n=y

— /!
yn =",

and notice that the original differential equation can be written

)’,,, :f(t,yl,yZ,---,yn)-

1¢

Figure 6.9 Equation (6.36) approximated by Euler Method. Step size h =0.1. The
upper curve is y1(t), along with its approximate solution w; 1 (circles), while the lower
curve is ya(t) and w;».

» EXAMPLE 6.14

6.3 Systems of Ordinary Differential Equations | 305

Taken together, the equations

—_

e 3
I
ST

y};—] = ynv
y}/’l = f(t7y17"‘7yn)

convert the nth-order differential equation into a system of first-order equations, which can
be solved by using methods like the Euler or Trapezoid Methods.

Convert the third-order differential equation
y/// — a(y//)Z _ y/ + yy// + sint (6.37)

to a system.
Set y; = y and define the new variables

n=y
»=y"

Then, in terms of first derivatives, (6.37) is equivalent to

Vi=n
Yy =3
Vs =ay} — y» + yiys + sint. (6.38)

The solution y(¢) of the third-order equation (6.37) can be found by solving the system (6.38)
for y1(2), y2(1), y3(0). <

Because of the possibility of converting higher-order equations to systems, we will
restrict our attention to systems of first-order equations. Note also that a system of several
higher-order equations can be converted to a system of first-order equations in the same way.

6.3.2 Computer simulation: the pendulum

Figure 6.10 shows a pendulum swinging under the influence of gravity. Assume that the
pendulum is hanging from a rigid rod that is free to swing through 360 degrees. Denote
by y the angle of the pendulum with respect to the vertical, so that y = 0 corresponds to
straight down. Therefore, y and y 4 2 are considered the same angle.

Newton’s second law of motion ' = ma can be used to find the pendulum equation.
The motion of the pendulum bob is constrained to be along a circle of radius /, where / is the
length of the pendulum rod. If y is measured in radians, then the component of acceleration
tangent to the circle is /)", because the component of position tangent to the circle is /y.
The component of force along the direction of motion is mgsin y. It is a restoring force,
meaning that it is directed in the opposite direction from the displacement of the variable y.
The differential equation governing the frictionless pendulum is therefore

mly" = F = —mgsin y. (6.39)

This is a second-order differential equation for the angle y of the pendulum. The initial
conditions are given by the initial angle y(0) and angular velocity)/ (0).

306 | CHAPTER 6 Ordinary Differential Equations

length /

| | |
-1 0 1

Figure 6.10 The pendulum. Component of force in the tangential direction is
F = —mgsiny, where y is the angle the pendulum bob makes with the vertical.

By setting y; = y and introducing the new variable y» = y/, the second-order equation
is converted to a first-order system:

N=n
r_ 8.
y2_—7 sin yj. (6.40)

The system is autonomous because there is no ¢ dependence in the right-hand side. If
the pendulum is started from a position straight out to the right, the initial conditions are
y1(0) = /2 and)»(0) = 0. In MKS units, the gravitational acceleration at the earth’s
surface is about 9.8 1m/sec’. Using these parameters, we can test the suitability of Euler’s
Method as a solver for this system.

Figure 6.11 shows Euler’s Method approximations to the pendulum equations with two
different step sizes. The pendulum rod is assigned to be / = 1 meter in length. The smaller
curve represents the angle y as a function of time, and the larger amplitude curve is the
instantaneous angular velocity. Note that the zeros of the angle, representing the vertical
position of the pendulum, correspond to the largest angular velocity, positive or negative.
The pendulum is traveling fastest as it swings through the lowest point. When the pendulum
is extended to the far right, the peak of the smaller curve, the velocity is zero as it turns
from positive to negative.

The inadequacy of Euler’s Method is apparent in Figure 6.11. The step size # = 0.01
is clearly too large to achieve even qualitative correctness. An undamped pendulum started
with zero velocity should swing back and forth forever, returning to its starting position with
aregular periodicity. The amplitude of the angle in Figure 6.11(a) is growing, which violates
the conservation of energy. Using 10 times more steps, as in Figure 6.11(b), improves the
situation at least visually, but a total of 10* steps are needed, an extreme number for the
routine dynamical behavior shown by the pendulum.

A second-order ODE solver like the Trapezoid Method improves accuracy at a much
lower cost. We will rewrite the MATLAB code to use the Trapezoid Method and take the
opportunity to illustrate the ability of MATLAB to do simple animations.

The code pend . m that follows contains the same differential equation information,
but eulerstep is replaced by trapstep. In addition, the variables rod and bob are
introduced to represent the rod and pendulum bob, respectively. The MATLAB set command
assigns attributes to variables. The drawnow command plots the rod and bob variables.
Note that the erase mode of both variables is set to xor, meaning that when the plotted

6.3 Systems of Ordinary Differential Equations | 307

(@ (b)

Figure 6.11 Euler Method applied to the pendulum equation (6.40). The curve

of smaller amplitude is the angle y; in radians; the curve of larger amplitude is the
angular velocity y,. (a) Step size h =0.01 is too large; energy is growing. (b) Step size
h =0.001 shows more accurate trajectories.

variable is redrawn somewhere else, the previous position is erased. Figure 6.10 is a screen
shot of the animation. Here is the code:

o\°

Program 6.3 Animation program for pendulum
Inputs: time interval inter,
initial wvalues ic=[y(1,1) y(1,2)], number of steps n
Calls a one-step method such as trapstep.m
Example usage: pend ([0 10], [pi/2 0],200)
function pend(inter,ic,n)
h=(inter (2) -inter (1)) /n; % plot n points in total
y(1,:)=ic; % enter initial conds in y
t (1) =inter (1) ;
set (gca, 'x1lim’, [-1.2 1.2],'ylim’,[-1.2 1.2],
'XTick’,[-1 0 1],’'YTick’,[-1 0 1],
'Drawmode’ , ' fast’,’Visible’,’on’, 'NextPlot’,’'add’) ;
cla;
axis square % make aspect ratio 1 - 1
bob=1line(’color’,’'r’,'Marker’,’.’, 'markersize’, 40, ...
"erase’,'xor’,’'xdata’, [],’ydata’, [1);
rod=1line(’color’,’b’,’'LineStyle’,’-’, ’LineWidth’,3, ...
"erase’,'xor’,’'xdata’, [],'ydata’, [1);
for k=1:n
t (k+1) =t (k) +h;
v(k+1,:)=trapstep(t(k),y(k,:),h);
xbob=sin(y(k+1,1)); ybob= -cos(y(k+1,1));
xrod=[0 xbob]; yrod=[0 ybobl];
set (rod, 'xdata’ ,xrod, 'ydata’,yrod)
set (bob, 'xdata’ ,xbob, 'ydata’ , ybob)
drawnow; pause (h)
end

o° o o°

o\

function y=trapstep(t,x,h)
$one step of the Trapezoid Method

308 | CHAPTER 6 Ordinary Differential Equations

» EXAMPLE 6.15

» EXAMPLE 6.16

zl=ydot (t,x) ;
g=x+h*z1;
z2=ydot (t+h,g) ;
y=x+h* (z1+22) /2;

function z=ydot (t,y)
g=9.81;length=1;

z(1)=y(2);
z(2)=-(g/length) *sin(y (1)) ;

Using the Trapezoid Method in the pendulum equation allows fairly accurate solutions
to be found with larger step size. This section ends with several interesting variations on
the basic pendulum simulation, which the reader is encouraged to experiment with in the
Computer Problems.

The damped pendulum.

The force of damping, such as air resistance or friction, is often modeled as
being proportional and in the opposite direction to velocity. The pendulum equation
becomes

NW=mn

/

= —?sinyl —dy, (6.41)

where d > 0 is the damping coefficient. Unlike the undamped pendulum, this one will lose
energy through damping and in time approach the limiting equilibrium solution y; = y» =0,
from any initial condition. Computer Problem 3 asks you to run a damped version of
pend.m. |

The forced damped pendulum.

Adding a time-dependent term to (6.41) represents outside forcing on the damped
pendulum. Consider adding the sinusoidal term Asinf to the right-hand side of)},
yielding

N=n»
¥ = —§siny1 — dy, + Asint. (6.42)
This can be considered as a model of a pendulum that is affected by an oscillating magnetic
field, for example.
A host of new dynamical behaviors becomes possible when forcing is added. For
a two-dimensional autonomous system of differential equations, the Poincaré—Bendixson
Theorem (from the theory of differential equations) says that trajectories can tend toward
only regular motion, such as stable equilibria like the down position of the pendulum, or
stable periodic cycles like the pendulum swinging back and forth forever. The forcing makes
the system nonautonomous (it can be rewritten as a three-dimensional autonomous system,
but not as a two-dimensional one), so that a third type of trajectories is allowed, namely,
chaotic trajectories.
Setting the damping coefficient to d = 1 and the forcing coefficient to 4 = 10
results in interesting periodic behavior, explored in Computer Problem 4. Moving the
parameter to 4 = 15 introduces chaotic trajectories. |

6.3 Systems of Ordinary Differential Equations | 309

» EXAMPLE 6.17 The double pendulum.

The double pendulum is composed of a simple pendulum, with another simple
pendulum hanging from its bob. If y; and)» are the angles of the two bobs with respect to
the vertical, the system of differential equations is

N=n

,_ “3gsinyr — gsin(yn — 2p3) = 2sin(n — 1) (0 — y3cosn =3
2= 3 —cos(2y; —23) 72
V=
V= 2sin(y — y3)[2y3 + 2gcos yi + yicos(y — y3)]

3 —cos(2y; —23)

where g = 9.81 and the length of both rods has been set to 1. The parameter d represents
friction at the pivot. For d = 0, the double pendulum exhibits sustained nonperiodicity for
many initial conditions and is mesmerizing to observe. See Computer Problem 8. |

6.3.3 Computer simulation: orbital mechanics

As a second example, we simulate the motion of an orbiting satellite. Newton’s second law
of motion says that the acceleration a of the satellite is related to the force F applied to the
satellite as F' = ma, where m is the mass. The law of gravitation expresses the force on a
body of mass m| due to a body of mass m> by an inverse-square law

_gmimy

F
72

]

where 7 is the distance separating the masses. In the one-body problem, one of the masses
is considered negligible compared with the other, as in the case of a small satellite orbiting
a large planet. This simplification allows us to neglect the force of the satellite on the planet,
so that the planet may be regarded as fixed.

Place the large mass at the origin, and denote the position of the satellite by (x, y). The
distance between the masses is » = /x2 + yz, and the force on the satellite is central—that
is, in the direction of the large mass. The direction vector, a unit vector in this direction, is

x y
PR P2

Therefore, the force on the satellite in terms of components is

gmimy —X gmimy -y) (6.43)

(Fx, Fy) = :
I O V- R T e VA e

Inserting these forces into Newton’s law of motion yields the two second-order equations

mix” — — gmimax
BT TR
% gmimay
myy =

- (x2 + y2)3/2°

Introducing the variables vy = x’ and v, =)’ allows the two second-order equations to be
reduced to a system of four first-order equations:

310 | CHAPTER 6 Ordinary Differential Equations

x =y
o gmx
X (x2 + y2)3/2
y/:’b
r_ gmay
v, = —(x2 T y2)3/2 (6.44)

The following MATLAB program orbit.m calls eulerstep.m and sequentially
plots the satellite orbit.

$Program 6.4 Plotting program for one-body problem

$Inputs: time interval inter, initial conditions

ic=[x0 vx0 y0 vyO0], x position, x velocity, y pos, y vel,
number of steps n, steps per point plotted p

Calls a one-step method such as trapstep.m

Example usage: orbit ([0 100],[0 1 2 0],10000,5)

function z=orbit (inter,ic,n,p)

o oP°

o oe

h=(inter (2) -inter (1)) /n; % plot n points

x0=1ic (1) ;vx0=ic(2) ;y0=1c (3) ;vyO=ic(4) ; % grab initial conds
y(1,:)=[x0 vx0 y0 vy0];t(1l)=1inter(1); % build y vector

set (gca, 'XLim’, [-5 5],’YLim’, [-5 5],'XTick’, [-5 0 5],'YTick’, ...

[-5 0 5], 'Drawmode’,’fast’,’'Visible’,’'on’) ;
cla;
sun=1line(’color’,’'y’, 'Marker’,’.’, 'markersize’,25,...

'xdata’, 0, 'ydata’,0) ;

drawnow;
head=1ine(’color’,’'r’, 'Marker’,’.’, 'markersize’,b25, ...
‘erase’,’'xor’,’'xdata’, [],'ydata’, [1);
tail=line(’color’,’'b’,'LineStyle’,’-',’erase’, 'none’,
'xdata’, [1,'ydata’, []);
% [px,pyl =ginput (1) ; % include these three lines
% [px1,pyl]l =ginput (1) ; % to enable mouse support
sy (1, :)=[px pxl-px py pyl-pvyl; % 2 clicks set direction
for k=1:n/p
for i=1:p

t(i+1)=t (i) +h;
y(i+1,:)=eulerstep(t(i),y(i,:),h);
end

yv(1l,:)=y(p+1,:);t(1)=t(p+1);
set (head, "xdata’ ,y(1,1),'ydata’,y(1,3))
set (tail,’'xdata’,y(2:p,1),'ydata’,y(2:p,3))
drawnow;
end

function y=eulerstep(t,x,h)
%one step of the Euler Method
y=x+h*ydot (t, x) ;

function z=ydot (t,x)
m2=3;g=1;,mg2=m2*g; px2=0;py2=0;
pxl=x(1) ;pyl=x(3) ;vxl=x(2) ;vyl=x(4) ;
dist=sgrt ((px2-px1l) "2+ (py2-pyl) "2) ;
z=zeros (1,4) ;
z (1) =vx1l;

2) = (mg2* (px2-px1))/ (dist"3) ;
3)=vyl;
4)=(mg2* (py2-pyl))/ (dist"3) ;

6.3 Systems of Ordinary Differential Equations | 311

Running the MATLAB script orbit .m immediately shows the limitations of Euler’s
Method for approximating interesting problems. Figure 6.12(a) shows the outcome of run-
ning orbit ([0 100],[0 1 2 0],10000,5). In other words, we follow the orbit
over the time interval [a, b] = [0, 100], the initial position is (xo, o) = (0, 2), the initial
velocity is (vy, vy) = (1,0), and the Euler step size is 7 = 100/10000 = 0.01.

Solutions to the one-body problem must be conic sections—either ellipses, parabo-
las, or hyperbolas. The spiral seen in Figure 6.12(a) is a numerical artifact, meaning a
misrepresentation caused by errors of computation. In this case, it is the truncation error
of Euler’s Method that leads to the failure of the orbit to close up into an ellipse. If the
step size is cut by a factor of 10 to 4 = 0.001, the result is improved, as shown in Fig-
ure 6.12(b). It is clear that even with the greatly decreased step size, the accumulated error is
noticeable.

5 <, 5 T
oF - o -
=35 (I) 5 s (I) 5
(a) (b)

Figure 6.12 Euler’s Method applied to one-body problem. (a) h =0.01 and (b) h =0.001.

Corollary 6.5 says that the Euler Method, in principle, can approximate a solution with
as much accuracy as desired, if the step size /£ is sufficiently small. However, results like
those represented by Figures 6.6 and 6.12 show that the method is seriously limited in
practice.

Figure 6.13 shows the clear improvement in the one-body problem resulting from the
replacement of the Euler step with the Trapezoid step. The plot was made by replacing the
function eulerstep by trapstep in the foregoing code.

The one-body problem is fictional, in the sense that it ignores the force of the satellite
on the (much larger) planet. When the latter is included as well, the motion of the two
objects is called the two-body problem.

The case of three objects interacting gravitationally, called the three-body problem,
holds an important position in the history of science. Even when all motion is confined to
a plane (the restricted three-body problem) the long-term trajectories may be essentially
unpredictable. In 1889, King Oscar II of Sweden and Norway held a competition for work
proving the stability of the solar system. The prize was awarded to Henri Poincaré, who
showed that it would be impossible to prove any such thing, due to phenomena seen even
for three interacting bodies.

The unpredictability stems from sensitive dependence on initial conditions, a term
which denotes the fact that small uncertainties in the initial positions and velocities can

312 | CHAPTER 6 Ordinary Differential Equations

6.3 Exercises

_ I
§5 0 5

Figure 6.13 One-body problem approximated by the Trapezoid Method. Step size
h =0.01. The orbit appears to close, at least to the resolution visible in the plot.

lead to large deviations at a later time. In our terms, this is the statement that the solution
of the system of differential equations is ill-conditioned with respect to the input of initial
conditions.

The restricted three-body problem is a system of 12 equations, 4 for each body, that are
also derived from Newton’s second law. For example, the equations of the first body are

xi = Vlx
o gma(x2 — x1) + gm3(x3 — x1)

DT (o =22+ 0n — D2 T (x5 — 22 + (3 — 11)2)32

J’i = Vly

/ gma(y2 — 1) gm3(ys — y1) (6.45)

v, = .
(2 =2+ 02 = DT (= x)? + (3 — v
The second and third bodies, at (x7, »») and (x3, 3), respectively, satisfy similar equations.
Computer Problems 9 and 10 ask the reader to computationally solve the two- and
three-body problems. The latter problem illustrates severe sensitive dependence on initial
conditions.

Apply the Euler’s Method with step size 7 = 1/4 to the initial value problem on [0, 1].

W=n+n W==n—»n
/ — / — _
(a) = _J’I +»n (b) 3%)/_1 »2
»n) =1 »1(0)=1
»n0)=0 »0)=0
) Vi=n+3n
/| — /:2 2
© {220 @ 2o T
»@) =1 »(@©0)=5
»0)=0 »(0)=0

Find the global truncation errors of y; and)» at ¢ = 1 by comparing with the correct solutions
(a) y1(t) = e’ cost, y»(t) = —e’ sint (b) y1(t) = e ' cost, y»(t) = e 'sint
() y1(t) = cost, ya(t) = sint (d) y1 (£) = 3e™" + 2e¥, o (1) = 2" + 2e*.

6.3 Systems of Ordinary Differential Equations | 313

Apply the Trapezoid Method with # = 1/4 to the initial value problems in Exercise 1. Find the
global truncation error at t = 1 by comparing with the correct solutions.

Convert the higher-order ordinary differential equation to a first-order system of equations.
(a) Y/ — ty = 0 (Airy’s equation) (b) " — 2¢y’ + 2y = 0 (Hermite’s equation)
©)y' -ty —y=0

Apply the Trapezoid Method with 7 = 1/4 to the initial value problems in Exercise 3, using
y(0)=)(0)=1.

(a) Show that y(¢) = (¢! + e~ — %) /2 — 1 is the solution of the initial value problem

V" — 3y =t, with »(0) = y/(0) = y”"(0) = 0. (b) Convert the differential equation to a system
of three first-order equations. (c) Use Euler’s Method with step size # = 1/4 to approximate
the solution on [0, 1]. (d) Find the global truncation error at ¢ = 1.

6.3 Computer Problems

1.

Apply Euler’s Method with step sizes 2 = 0.1 and 4 = 0.01 to the initial value problems in
Exercise 1. Plot the approximate solutions and the correct solution on [0, 1], and find the global
truncation error at # = 1. Is the reduction in error for 2 = 0.01 consistent with the order of
Euler’s Method?

Carry out Computer Problem 1 for the Trapezoid Method.

Adapt pend . m to model the damped pendulum. Run the resulting code with d = 0.1. Except
for the initial condition y;(0) = 7, »»(0) = 0, all trajectories move toward the straight-down
position as time progresses. Check the exceptional initial condition: Does the simulation agree
with theory? with a physical pendulum?

Adapt pend . m to build a forced, damped version of the pendulum. Run the Trapezoid Method
in the following: (a) Set damping d = 1 and the forcing parameter 4 = 10. Set the step size

h = 0.005 and the initial condition of your choice. After moving through some transient
behavior, the pendulum will settle into a periodic (repeating) trajectory. Describe this trajectory
qualitatively. Try different initial conditions. Do all solutions end up at the same “attracting”
periodic trajectory? (b) Now increase the step size to 2 = 0.01, and repeat the experiment. Try
initial condition [/2, 0] and others. Describe what happens, and give a reasonable explanation
for the anomalous behavior at this step size.

Run the forced damped pendulum as in Computer Problem 4, but set 4 = 12. Use the
Trapezoid Method with # = 0.005. There are now two periodic attractors that are mirror
images of one another. Describe the two attracting trajectories, and find two initial conditions
(1,) = (a,0) and (b, 0), where |a — b| < 0.1, that are attracted to different periodic
trajectories. Set 4 = 15 to view chaotic motion of the forced damped pendulum.

Adapt pend . m to build a damped pendulum with oscillating pivot. The goal is to investigate
the phenomenon of parametric resonance, by which the inverted pendulum becomes stable!
The equation is

V' +dy + (% + AcosZnt) siny =0,

where A is the forcing strength. Set d = 0.1 and the length of the pendulum to be 2.5 meters. In
the absence of forcing 4 = 0, the downward pendulum y = 0 is a stable equilibrium, and the

314 | CHAPTER 6 Ordinary Differential Equations

10.

11.

inverted pendulum y = 7 is an unstable equilibrium. Find as accurately as possible the range of
parameter A4 for which the inverted pendulum becomes stable. (Of course, 4 = 0 is too small;
it turns out that 4 = 30 is too large.) Use the initial condition y = 3.1 for your test, and call the
inverted position “stable’” if the pendulum does not pass through the downward position.

Use the parameter settings of Computer Problem 6 to demonstrate the other effect of
parametric resonance: The stable equilibrium can become unstable with an oscillating pivot.
Find the smallest (positive) value of the forcing strength 4 for which this happens. Classify the
downward position as unstable if the pendulum eventually travels to the inverted position.

Adapt pend . m to build the double pendulum. A new pair of rod and bob must be defined for
the second pendulum. Note that the pivot end of the second rod is equal to the formerly free
end of the first rod: The (x, y) position of the free end of the second rod can be calculated by
using simple trigonometry.

Adapt orbit .m to solve the two-body problem. Set the masses to m| = 0.3, m» = 0.03, and
plot the trajectories with initial conditions (x1, y1) = (2,2), (xi, yi) = (0.2,—-0.2) and
(x2,12) = (0,0), (x5, 5) = (=0.01,0.01).

Adapt orbit .mto solve the three-body problem. Set the masses to m| = 0.3,

my = m3 = 0.03. (a) Plot the trajectories with initial conditions (x1, y1) = (2,2),

(x1,) = (0.2, -0.2), (x2, y2) = (0,0), (x3, y3) = (0,0) and (x3,3) = (=2, -2),

(x5, ¥5) = (=0.2,0.2). (b) Change the initial condition of x| to 0.20001, and compare the
resulting trajectories. This is a striking visual example of sensitive dependence.

A remarkable three-body figure-eight orbit was discovered by C. Moore in 1993. In this
configuration, three bodies of equal mass chase one another along a single figure-eight loop.
Set the masses to m| = my = m3 = 1 and gravity g = 1. (a) Adapt orbit . mto plot the
trajectory with initial conditions (x1, y1) = (—=0.970,0.243), (x|, y}) = (—0.466, —0.433),
(¥2,32) = (=x1, =11, (¥, ¥%) = (x},) and (x3, y3) = (0,0), (x}, %) = (=2x], —2))).
(b) Are the trajectories sensitive to small changes in initial conditions? Investigate the effect
of changing x} by 10~ for 1 < k < 5. For each k, decide whether the figure-eight pattern
persists, or a catastrophic change eventually occurs.

6.4 RUNGE-KUTTA METHODS AND APPLICATIONS

The Runge—Kutta Methods are a family of ODE solvers that include the Euler and Trapezoid
Methods, and also more sophisticated methods of higher order. In this section, we introduce a
variety of one-step methods and apply them to simulate trajectories of some key applications.

6.4.1 The Runge—Kutta family

We have seen that the Euler Method has order one and the Trapezoid Method has order
two. In addition to the Trapezoid Method, there are other second-order methods of the
Runge—Kautta type. One important example is the Midpoint Method.

Midpoint Method
wo =)0

h h
Wiyl =w; +hf (fi + 5 Wi + Ef(tia wi))- (6.46)

6.4 Runge-Kutta Methods and Applications | 315

To verify the order of the Midpoint Method, we must compute its local truncation error.
When we did this for the Trapezoid Method, we found the expression (6.31) useful:

h? (9 9 &
Yier=yi +hft, y) + > <3_J;(tiayi) + a—f(ti,yi)f(fi,J/z‘)) + —)"(c). (6.47)
y 6

To compute the local truncation error at step i, we assume that w; = y; and calculate
Vi+1 — wi4+1. Repeating the use of the Taylor series expansion as for the Trapezoid Method,
we can write

h h
Wit] = Vi +hf<li + -+ Ef(tiyyi)>

2
ho h 0
=y +h (f(fi,yi) + Ea—{(fi,yi) + Ef(fi’yi)a_f(fi’yi) + 0(h2)> . (6.48)
y

Comparing (6.47) and (6.48) yields

Vigl — wig1 = O(h?),

so the Midpoint Method is of order two by Theorem 6.4.

Each function evaluation of the right-hand side of the differential equation is called a
stage of the method. The Trapezoid and Midpoint Methods are members of the family of
two-stage, second-order Runge—Kutta Methods, having form

wit1 =w; +h (1 - %) S, wi) + %f(ti + ah, w; +ahf(t;,w;)) (6.49)
for some « # 0. Setting o = 1 corresponds to the Explicit Trapezoid Method and o = 1/2
to the Midpoint Method. Exercise 5 asks you to verify the order of methods in this family.

Figure 6.14 illustrates the intuition behind the Trapezoid and Midpoint Methods. The
Trapezoid Method uses an Euler step to the right endpoint of the interval, evaluates the slope
there, and then averages with the slope from the left endpoint. The Midpoint Method uses
an Euler step to move to the midpoint of the interval, evaluates the slope there as f(#; +
h/2,w; + (h/2) f(t;, w;)), and uses that slope to move from w; to the new approximation
wj 1. These methods use different approaches to solving the same problem: acquiring a
slope that represents the entire interval better than the Euler Method, which uses only the
slope estimate from the left end of the interval.

Trapezoid w; , |
° S
Midpoint w; | 4

[]
S, + Sp)/2
Gu+) / S
St O/SM

| | t | | | t
i Liva L Livhn liv1

(a) (b)

Figure 6.14 Schematic view of two members of the RK2 family. (a) The Trapezoid
Method uses an average from the left and right endpoints to traverse the interval.
(b) The Midpoint Method uses a slope from the interval midpoint.

316 | CHAPTER 6 Ordinary Differential Equations

SPOTLIGHT ON Convergence The convergence properties of a fourth-order method, like RK4, are
far superior to those of the order 1 and 2 methods we have discussed so far.Convergence here
means how fast the (global) error of the ODE approximation at some fixed time ¢ goes to zero
as the step size 4 goes to zero. Fourth order means that for every halving of the step size, the

error drops by approximately a factor of 2% = 16, as is clear from Figure 6.15.

There are Runge—Kutta Methods of all orders. A particularly ubiquitous example is the
method of fourth order.

Runge-Kutta Method of order four (RK4)

Wil = w; + %(M + 2852 + 253 + 54) (6.50)
where
st = f(ti, wi)
= f(ti + g,wi + g&)
53 = f(ti + g,wi + %S2>

sqa= f(t; +h,w; + hs3).

The popularity of this method stems from its simplicity and ease of programming. It is
a one-step method, so that it requires only an initial condition to get started; yet, as a fourth-
order method, it is considerably more accurate than either the Euler or Trapezoid Methods.

The quantity 2 (s; + 252 + 2s3 + s4)/6 in the fourth-order Runge—Kutta Method takes
the place of slope in the Euler Method. This quantity can be considered as an improved guess
for the slope of the solution in the interval [#;, #; + &]. Note that s, is the slope at the left
end of the interval, s; is the slope used in the Midpoint Method, s3 is an improved slope at
the midpoint, and s4 is an approximate slope at the right-hand endpoint #; + /. The algebra
needed to prove that this method is order four is similar to our derivation of the Trapezoid
and Midpoint Methods, but is a bit lengthy, and can be found, for example, in Henrici
[1962]. We return one more time to differential equation (6.5) for purposes of comparison.

» EXAMPLE 6.18 Apply Runge-Kutta of order four to the initial value problem

/ 3
{ i((;’:y;r’ . 6.51)

Computing the global truncation error at # = 1 for a variety of step sizes gives the
following table:

steps n | step size error at f = 1

5 0.20000 | 2.3788 x 107
10 0.10000 | 1.4655 x 107
20 0.05000 | 9.0354 x 1078
40 0.02500 | 5.5983 x 10~°
80 0.01250 | 3.4820 x 1010

160 0.00625 | 2.1710 x 10~
320 0.00312 | 1.3491 x 1012
640 0.00156 | 7.2609 x 10~ 14

6.4 Runge-Kutta Methods and Applications | 317

1004 T T T

1076 A

1078 .

Global error g

100-10 -

107=1 | | e |
0 %0"—8 1076 10n-4 107-2 1

Step size h

Figure 6.15 Error as a function of step size for Runge-Kutta of order 4. The differ-
ence between the approximate solution of (6.5) and the correct solution at t =1 has
slope 4 on a log-log plot, so is proportional to h4, for small h.

Compare with the corresponding table for Euler’s Method on page 286. The difference
is remarkable and easily makes up for the extra complexity of RK4, which requires four
function calls per step, compared with only one for Euler. Figure 6.15 displays the same
information in a way that exhibits the fact that the global truncation error is proportional
to h4, as expected for a fourth-order method. |

6.4.2 Computer simulation:the Hodgkin-Huxley neuron

Computers were in their early development stages in the middle of the 20th century. Some of
the first applications were to help solve hitherto intractable systems of differential equations.

A.L. Hodgkin and A.F. Huxley gave birth to the field of computational neuroscience
by developing a realistic firing model for nerve cells, or neurons. They were able to approx-
imate solutions of the differential equations model even with the rudimentary computers
that existed at the time. For this work, they won the Nobel Prize in Biology in 1963.

The model is a system of four coupled differential equations, one of which models the
voltage difference between the interior and exterior of the cell. The three other equations
model activation levels of ion channels, which do the work of exchanging sodium and
potassium ions between the inside and outside. The Hodgkin—-Huxley equations are

Cv' = —gim’h(v — E1) — gon*(v — E2) — g3(v — E3) + Iy
m' = (1 —m)ay (v — Ep) — mBu(— Ep)
n' = (1 —n)a,(v — Eg) — nfy(v — Eg)

h'= (1 — h)ap(v — Eg) — hpy(v — Ep), (6.52)
where
25 —0.1v _
(V) = Sg T Bn() =4eE,
0.1 —0.01v 1
_ _ _,—v/80
an(v)— el_OJU—l’ .Bn(v)—ge v k)
and

1

= 0.07e /20, =S
ap (v) e Bn(v) 300y 4 |

318 | CHAPTER 6 Ordinary Differential Equations

The coefficient C denotes the capacitance of the cell, and /j;, denotes the input current from
other cells. Typical coefficient values are capacitance C = 1 microFarads, conductances
g1 = 120, g¢» = 36, g3 = 0.3 siemens, and voltages Eqg = —65, E; =50, E, = =77, E3 =
—54.4 millivolts.

The v’ equation is an equation of current per unit area, in units of milliamperes/cm?,
while the three other activations m, n, and 4 are unitless. The coefficient C is the capacitance
of the neuron membrane, g1, g2, g3 are conductances, and E, E, and E3 are the “reversal
potentials,”” which are the voltage levels that form the boundary between currents flowing
inward and outward.

Hodgkin and Huxley carefully chose the form of the equations to match experimental
data, which was acquired from the giant axon of the squid. They also fit parameters to the
model. Although the particulars of the squid axon differ from mammal neurons, the model
has held up as a realistic depiction of neural dynamics. More generally, it is useful as an
example of excitable media that translates continuous input into an all-or-nothing response.
The MATLAB code implementing the model is as follows:

o\°

Program 6.5 Hodgkin-Huxley equations
Inputs: time interval inter,
ic=initial voltage v and 3 gating variables, steps n
Output: solution y
Calls a one-step method such as rk4step.m
Example usage: hh([0,100],[-65,0,0.3,0.6],2000) ;
function y=hh(inter,ic,n)
global pa pb pulse
inp=input ('pulse start, end, muamps in [1, e.g. [50 51 71: ");
pa=inp (1) ;pb=inp (2) ;pulse=inp(3) ;
a=inter (1) ; b=inter(2); h=(b-a)/n; % plot n points in total
y(1,:)=1ic; % enter initial conds in y
t(l)=a;
for i=1:n
t(i+1)=t (1) +h;
y(i+1, :)=rkdstep(t(i),y(i,:), h);
end
subplot(3,1,1);
plot([a pa pa pb pb bl, [0 0 pulse pulse 0 0]);
grid;axis ([0 100 0 2*pulse])
ylabel (' input pulse’)
subplot (3,1,2);
plot(t,y(:,1));grid;axis ([0 100 -100 1001)
ylabel (‘voltage (mV)'’)
subplot (3,1,3);
plot(t,y(:,2),t,y(:,3),t,y(:,4));grid;axis ([0 100 0 1])
ylabel (‘gating variables’)
legend(‘m’,’'n’,'h")
xlabel (‘time (msec)’)

o° o oP°

o oe

function y=rk4step(t,w,h)

%one step of the Runge-Kutta order 4 method
sl=ydot (t,w) ;

s2=ydot (t+h/2,w+h*s1/2) ;

s3=ydot (t+h/2,w+h*s2/2) ;

s4=ydot (t+h,w+h*s3) ;

y=w+h* (s1+2*s2+2*s3+54) /6;

function z=ydot (t,w)
global pa pb pulse

6.4 Runge-Kutta Methods and Applications | 319

c=1;g1=120;92=36;g93=0.3;T=(pa+pb) /2;len=pb-pa;
e0=-65;el=50;e2=-77;e3=-54.4;

in=pulse* (1-sign(abs (t-T)-len/2))/2;

% square pulse input on interval [pa,pb] of pulse muamps
v=w(1l) ;m=w(2) ;n=w(3) ;h=w(4) ;

z=zeros (1,4) ;

z (1) =(in-gl*m*m*m*h* (v-el) -g2*n*n*n*n* (v-e2) -g3* (v-e3)) /c;
v=v-e0;
z(2)=(1-m)*(2.5-0.1*v) / (exp(2.5-0.1*v)-1) -m*4*exp (-v/18) ;
z(3)=(1-n)*(0.1-0.01*v) /(exp(1-0.1*v)-1)-n*0.125*exp (-v/80) ;
z(4)=(1-h)*0.07*exp (-v/20) -h/ (exp(3-0.1*Vv) +1) ;

Without input, the Hodgkin—Huxley neuron stays quiescent, at a voltage of approxi-
mately Ey. Setting /;, to be a square current pulse of length 1 msec and strength 7 microamps
is sufficient to cause a spike, a large depolarizing deflection of the voltage. This is illustrated
in Figure 6.16. Run the program to check that 6.9 1A is not sufficient to cause a full spike.
Hence, the all-or-nothing response. It is this property of greatly magnifying the effect of
small differences in input that may explain the neuron’s success at information processing.
Figure 6.16(b) shows that if the input current is sustained, the neuron will fire a periodic
volley of spikes. Computer Problem 10 is an investigation of the thresholding capabilities
of this virtual neuron.

y 2
210 210
0 10 20 30 40 50 60 70 80 90 100 %10 20 30 40 50 60 70 80 90 100
S 100 S 100
E 50 i E 50 1\ .
) 0 3
& i & 0 i N\
= 50 g -50 =
= 100710720 30 40 50 60 70 80 90 100 > ~1%0
0 10 20 30 40 50 60 70 80 90 100
.(-3 1 = =) 1 —
o — - — 1
£ 05 =i 2 s N\ —
g \ g \
E % 10 20 30 40 50 60 70 80 90 100 & %0 10 20 30 40 50 60 70 80 90 100
time (msec) time (msec)
(a) (b)

Figure 6.16 Screen shots of Hodgkin-Huxley program. (a) Square wave input of size
lin =7 A at time 50 msecs, 1 msec duration, causes the model neuron to fire once.
(b) Sustained square wave, with i, =7 uA, causes the model neuron to fire periodically.

6.4.3 Computer simulation: the Lorenz equations

In the late 1950s, MIT meteorologist E. Lorenz acquired one of the first commercially
available computers. It was the size of a refrigerator and operated at the speed of 60 multi-
plications per second. This unprecedented cache of personal computing power allowed
him to develop and meaningfully evaluate weather models consisting of several dif-
ferential equations that, like the Hodgkin—Huxley equations, could not be analytically
solved.

The Lorenz equations are a simplification of a miniature atmosphere model that he
designed to study Rayleigh-Bénard convection, the movement of heat in a fluid, such as air,

320 | CHAPTER 6 Ordinary Differential Equations

6.4 Exercises

from a lower warm medium (such as the ground) to a higher cool medium (like the upper
atmosphere). In this model of a two-dimensional atmosphere, a circulation of air develops
that can be described by the following system of three equations:

x'=—sx + sy

/
Yy =—Xz+rx-—y
7 =xy— bz (6.53)

The variable x denotes the clockwise circulation velocity, y measures the temperature
difference between the ascending and descending columns of air, and z measures the devi-
ation from a strictly linear temperature profile in the vertical direction. The Prandtl number
s, the Rayleigh number , and b are parameters of the system. The most common setting for
the parameters is s = 10,7 = 28, and b = 8/3. These settings were used for the trajectory
shown in Figure 6.17, computed by order four Runge—Kutta, using the following code to
describe the differential equation.

function z=ydot (t,y)
$Lorenz equations

s=10; r=28; b=8/3;
z(1)=-s*y (1) +s*y(2) ;
z(2)=-y (1) *y (3)+r*y (1) -y (2)
z(3)=y (1) *y (2) -b*y (3)

50

0 | J
-25 0 25

Figure 6.17 One trajectory of the Lorenz equations (6.53), projected to the xz-
plane. Parameters are set to s =10,r =28, and b =8/3.

The Lorenz equations are an important example because the trajectories show great
complexity, despite the fact that the equations are deterministic and fairly simple (almost
linear). The explanation for the complexity is similar to that of the double pendulum or
three-body problem: sensitive dependence on initial conditions. Computer Problems 12
and 13 explore the sensitive dependence of this so-called chaotic attractor.

Apply the Midpoint Method for the IVPs
@ Y=t ® Y=y © yV=20+1y

@ y=5t'y @ V=1/y") y=r/y

6.4 Runge-Kutta Methods and Applications | 321

with initial condition y(0) = 1. Using step size # = 1/4, calculate the Midpoint Method
approximation on the interval [0, 1]. Compare with the correct solution found in
Exercise 6.1.3, and find the global truncation error at t = 1.

Carry out the steps of Exercise 1 for the IVPs
(@ Y=t+y b) Y=t—y (© y=4-2y

with initial condition y(0) = 0. The exact solutions were found in Exercise 6.1.4.

Apply fourth-order Runge—Kutta Method to the IVPs in Exercise 1. Using step size & = 1/4,
calculate the approximation on the interval [0, 1]. Compare with the correct solution found in
Exercise 6.1.3, and find the global truncation error at t = 1.

Carry out the steps of Exercise 3 for the IVPs in Exercise 2.
Prove that for any o # 0, the method (6.49) is second order.

Consider the initial value problem)’ = A y. The solution is y() = ype’’. (a) Calculate w, for
RK4 in terms of wy for this differential equation. (b) Calculate the local truncation error by
setting wp =)p = 1 and determining y; — w;. Show that the local truncation error is of size
O(hd), as expected for a fourth-order method.

Assume that the right-hand side f(¢, y) = f(¢) does not depend on y. Show that s, = s3 in
fourth-order Runge—Kutta and that RK4 is equivalent to Simpson’s Rule for the integral

S 1 (s) ds.

6.4 Computer Problems

1.

Apply the Midpoint Method on a grid of step size # = 0.1 in [0, 1] for the initial value
problems in Exercise 1. Print a table of the # values, approximations, and global truncation
error at each step.

Apply the fourth-order Runge—Kutta Method solution on a grid of step size # = 0.1 in [0, 1]
for the initial value problems in Exercise 1. Print a table of the ¢ values, approximations, and
global truncation error at each step.

Carry out the steps of Computer Problem 2, but plot the approximate solutions on [0, 1] for
step sizes 7 = 0.1, 0.05, and 0.025, along with the true solution.

Carry out the steps of Computer Problem 2 for the equations of Exercise 2.

Plot the fourth-order Runge—Kutta Method approximate solution on [0, 1] for the differential
equation y/ =1 + y2 and initial condition (a) yp = 0 (b) yp = 1, along with the exact solution
(see Exercise 6.1.7). Use step sizes # = 0.1 and 0.05.

Plot the fourth-order Runge—Kutta Method approximate solution on [0, 1] for the differential
equation ' = 1 — »? and initial condition (a) yo = 0 (b) yo = —1/2, along with the exact
solution (see Exercise 6.1.8). Use step sizes # = 0.1 and 0.05.

Calculate the fourth-order Runge—Kutta Method approximate solution on [0, 4] for the
differential equation)’ = sin y and initial condition (a) yp = 0 (b) yp = 100, using step sizes
h=0.1 x27%for0 <k <5.Plot the k = 0 and k = 5 approximate solutions along with the
exact solution (see Exercise 6.1.15), and make a log—log plot of the error as a function of /.

322 | CHAPTER 6 Ordinary Differential Equations

10.

11.

12.

13.

Reality
Check A

Calculate the fourth-order Runge—Kutta Method approximate solution of the differential
equation)’ = sinh y and initial condition (a) yp = 1/4 on the interval [0, 2] (b) yp = 2 on the
interval [0, 1/4], using step sizes 7 = 0.1 x 2% forO0 <k <5.Plotthek =0and k = 5
approximate solutions along with the exact solution (see Exercise 6.1.16), and make a log—log
plot of the error as a function of 4.

For the IVPs in Exercise 1, plot the global error of the RK4 method at # = 1 as a function of 4,
as in Figure 6.4.

Consider the Hodgkin—Huxley equations (6.52) with default parameters. (a) Find as accurately
as possible the minimum threshold, in microamps, for generating a spike with a 1 msec pulse.
(b) Does the answer change if the pulse is 5 msec long? (c) Experiment with the shape of the
pulse. Does a triangular pulse of identical enclosed area cause the same effect as a square
pulse? (d) Discuss the existence of a threshold for constant sustained input.

Adapt the orbit . m MATLAB program to animate a solution to the Lorenz equations by the
order four Runge—Kutta Method with step size # = 0.001. Draw the trajectory with initial
condition (xg, 0, z0) = (5,5,5).

Assess the conditioning of the Lorenz equations by following two trajectories from two nearby
initial conditions. Consider the initial conditions (x, y, z) = (5,5, 5) and another initial
condition at a distance A = 107> from the first. Compute both trajectories by fourth-order
Runge—Kutta with step size # = 0.001, and calculate the error magnification factor after t = 10
and ¢ = 20 time units.

Follow two trajectories of the Lorenz equations with nearby initial conditions, as in Computer
Problem 12. For each, construct the binary symbol sequence consisting of O if the trajectory
traverses the “negative x”* loop in Figure 6.17 and 1 if it traverses the positive loop. For how
many time units do the symbol sequences of the two trajectories agree?

The Tacoma Narrows Bridge

A mathematical model that attempts to capture the Tacoma Narrows Bridge incident was
proposed by McKenna and Tuama [2001]. The goal is to explain how torsional, or twisting,
oscillations can be magnified by forcing that is strictly vertical.

Consider a roadway of width 2/ hanging between two suspended cables, as in
Figure 6.18(a). We will consider a two-dimensional slice of the bridge, ignoring the dimen-
sion of the bridge’s length for this model, since we are only interested in the side-to-side
motion. At rest, the roadway hangs at a certain equilibrium height due to gravity; let y
denote the current distance the center of the roadway hangs below this equilibrium.

Hooke’s law postulates a linear response, meaning that the restoring force the cables
apply will be proportional to the deviation. Let 6 be the angle the roadway makes with
the horizontal. There are two suspension cables, stretched y — /sin@ and y + /sin6 from
equilibrium, respectively. Assume that a viscous damping term is given that is proportional
to the velocity. Using Newton’s law F = ma and denoting Hooke’s constant by K, the
equations of motion for y and 6 are as follows:

/! / K . K .
V'=—dy — | —(y —Isinf) + —(y + [sin0)
m m

3cosf [K

K
0" = —do’ + —(y —=Isinf) — —(y + lsin@):|.
/ m m

6.4 Runge-Kutta Methods and Applications | 323

.
y
Al
L
Ok 1+
yelsinu y y-lsind L e
. L
ok
8 0 3 =T
(@) (b)

Figure 6.18 Schematics for the McKenna-Tuama model of the Tacoma Narrows Bridge.

(a) Denote the distance from the roadway center of mass to its equilibrium position by y, and the
angle of the roadway with the horizontal by 6. (b) Exponential Hooke's law curve

fly) = (K/a)e? -1).

However, Hooke’s law is designed for springs, where the restoring force is more or less
equal whether the springs are compressed or stretched. McKenna and Tuama hypothesize
that cables pull back with more force when stretched than they push back when compressed.
(Think of a string as an extreme example.) They replace the linear Hooke’s law restor-
ing force f(y) = Ky with a nonlinear force f(y) = (K/a)(e*”” — 1), as shown in Fig-
ure 6.18(b). Both functions have the same slope K at y = 0; but for the nonlinear force, a
positive y (stretched cable) causes a stronger restoring force than the corresponding negative
v (slackened cable). Making this replacement in the preceding equations yields

y// — —dy/ _ ﬁ [ea(y—lsine) — 1+ ea(y-i—lsin@) _ 1]

0" = —do’ + 3C?SQ £ I:ea(y—lsine) _ ea(y-i—lsine)]) (6.54)
ma

As the equations stand, the state y =)/ =0 = 6’ = 0 is an equilibrium. Now turn on
the wind. Add the forcing term 0.2/7 sin wt to the right-hand side of the y equation, where
W is the wind speed in km/hr. This adds a strictly vertical oscillation to the bridge.

Useful estimates for the physical constants can be made. The mass of a one-foot length
of roadway was about 2500 kg, and the spring constant K has been estimated at 1000
Newtons. The roadway was about 12 meters wide. For this simulation, the damping coef-
ficient was set at d = 0.01, and the Hooke’s nonlinearity coefficient a = 0.2. An observer
counted 38 vertical oscillations of the bridge in one minute shortly before the collapse—set
w =21 (38/60). These coefficients are only guesses, but they suffice to show ranges of
motion that tend to match photographic evidence of the bridge’s final oscillations. MATLAB
code that runs the model (6.54) is as follows:

$Program 6.6 Animation program for bridge using IVP solver
$Inputs: time interval inter,

% ic=[y(1,1) y(1,2) y(1,3) y(1,4)],

number of steps n, steps per point plotted p

Calls a one-step method such as trapstep.m

Example usage: tacoma ([0 1000],[1 0 0.001 0],25000,5)
function tacoma (inter,ic,n,p)

o° oe

o\

324 | CHAPTER 6 Ordinary Differential Equations

clf % clear figure window
h=(inter (2) -inter (1)) /n;
y(1,:)=1ic; % enter initial conds in y

t(l)=inter (1) ;len=6;

set (gca, 'XLim’, [-8 8],'YLim’, [-8 8],
'XTick’, [-8 0 8],’YTick’,[-8 0 8],
'Drawmode’ , ' fast’,’Visible’,’on’, 'NextPlot’,’add’) ;

cla; % clear screen

axis square % make aspect ratio 1-1

road=1line(’color’,’b’,’'LineStyle’,’-','LineWidth’,5
"erase’,’'xor’,’'xdata’, [],'ydata’, []1);

lcable=line(’color’,’'r’,'LineStyle’ -/, 'LineWidth’,
’erase’,’xor’,’xdata’,[],’ydata’,[])
rcable=line(’color’,'r’,'LineStyle’,’-', 'LineWidth’,1
"erase’,’'xor’,’'xdata’, [],'ydata’, []1);
for k=1:n
for i=1:p
t(i+1)=t (1) +h;
y(i+1,:)=trapstep(t(i),y(i,:),h);
end
v(1,:)=y(p+1,:);t(1)=t(p+1);

z1(k)=y(1,1);23(k)=y(1,3);

c=len*cos (y(1,3)) ;s=len*sin(y(1,3));

set (road, 'xdata’, [-c c],’ydata’, [-s-y(1,1) s-y(1,1)])
set (lcable, 'xdata’, [-c¢ -c],’'ydata’, [-s-y(1,1) 81)

set (rcable, 'xdata’, [c c¢],’ydata’, [s-y(1,1) 81)
drawnow; pause (h)

end

function y=trapstep(t,x,h)

$one step of the Trapezoid Method
zl=ydot (t, x) ;

g=x+h*z1;

z2=ydot (t+h,g) ;

y=x+h* (z1+z2) /2;

function ydot=ydot (t,vy)
len=6;a=0.2; W=80; omega=2*pi*38/60;

al=exp (a* (y (1) -len*sin(y(3))));

a2=exp(a* (y(1l)+len*sin(y(3))));

ydot (1) =y (2) ;

ydot (2)=-0.01*y (2)-0.4* (al+a2-2) /a+0.2*W*sin (omega*t) ;
ydot (3) =y (4) ;

ydot (4)=-0.01*y (4)+1.2*cos(y(3))*(al-a2)/(len*a) ;

Run tacoma . m with the default parameter values to see the phenomenon postulated
earlier. If the angle 0 of the roadway is set to any small nonzero value, vertical forcing
causes 6 to eventually grow to a macroscopic value, leading to significant torsion of the
roadway. The interesting point is that there is no torsional forcing applied to the equation;
the unstable “torsional mode” is excited completely by vertical forcing.

1. Run tacoma .m with wind speed W = 80 km/hr and initial conditions y =)/ =6’ =0,
6 = 0.001. The bridge is stable in the torsional dimension if small disturbances in 6 die out;
unstable if they grow far beyond original size. Which occurs for this value of W?

6.5 Variable Step-Size Methods | 325

2. Replace the trapezoid method by fourth-order Runge—Kutta to improve accuracy. Also, add
new figure windows to plot y(¢) and 6 (¢).

3. The system is torsionally stable for /' = 50 km/hr. Find the magnification factor for a small
initial angle. That is, set 6(0) = 10~3 and find the ratio of the maximum angle 6(¢),
0 <t < oo, to 8(0). Is the magnification factor approximately consistent for initial angles
6(0) =10"%,1077,...2

4. Find the minimum wind speed W for which a small disturbance 6 (0) = 103 has a
magnification factor of 100 or more. Can a consistent magnification factor be defined for
this W'?

5. Design and implement a method for computing the minimum wind speed in
Step 4, to within 0.5 x 10~ km/hr. You may want to use an equation solver from
Chapter 1.

6. Try some larger values of /. Do all extremely small initial angles eventually grow to
catastrophic size?

7. What is the effect of increasing the damping coefficient? Double the current value and
compare the critical 4 when w = 3. Can you suggest possible changes in design that might
have made the bridge less susceptible to torsion?

This project is an example of experimental mathematics. The equations are too difficult
to derive closed-form solutions, and even too difficult to prove qualitative results about.
Equipped with reliable ODE solvers, we can generate numerical trajectories for various
parameter settings to illustrate the types of phenomena available to this model. Used in this
way, differential equation models can predict behavior and shed light on mechanisms in
scientific and engineering problems.

6.5 VARIABLE STEP-SIZE METHODS

Up to this point, the step size 4 has been treated as a constant in the implementation of
the ODE solver. However, there is no reason that /4 cannot be changed during the solution
process. A good reason to want to change the step size is for a solution that moves between
periods of slow change and periods of fast change. To make the fixed step size small
enough to track the fast changes accurately may mean that the rest of the solution is solved
intolerably slowly.

In this section, we discuss strategies for controlling the step size of ODE solvers. The
most common approach uses two solvers of different orders, called embedded pairs.

6.5.1 Embedded Runge-Kutta pairs

The key idea of a variable step-size method is to monitor the error produced by the current
step. The user sets an error tolerance that must be met by the current step. Then the method
is designed to (1) reject the step and cut the step size if the error tolerance is exceeded, or
(2) if the error tolerance is met, to accept the step and then choose a step size 4 that should
be appropriate for the next step. The key need is for some way to approximate the error
made on each step. First let’s assume that we have found such a way and explain how to
change the step size.

The simplest way to vary step size is to double or halve the step size, depending on the
current error. Compare the error estimate e;, or relative error estimate e; /|w; |, with the error

