Colligative Mole Fraction and Vapor Pressure

Consider the following problem:
What would be the vapor pressure of water at $70^{\circ} \mathrm{C}$ above a solution made by dissolving 37.840 g of sodium nitrate, NaNO_{3}, in 281.52 g of water? The vapor pressure of pure water at this temperature is 233.70 mmHg . Assume complete dissociation of solute.

Solution: when we see problems that have vapor pressure and salts dissolved into a solvent, we should think of colligative properties with ionic solutions in particular in this case Raoult's law; your book tells you to use: $P_{A}=i \cdot P_{A}^{0} \cdot X_{A}$. These problems were written to take into account the total number of particles in another way and you should use the following instead to solve the problems.

$$
\begin{gathered}
P_{A}=P_{A}^{0} \cdot X_{A, C} \text { where } X_{A, C}=\text { colligative mole fraction. } \\
X_{A, C}=\frac{n_{A}}{n_{A}+i \cdot n_{B}} \text { where } I=\text { van't Hoff factor. }
\end{gathered}
$$

1. Determine colligative mole fraction:
$\mathrm{n}_{\mathrm{A}}=\mathrm{mol}$ water $=281.52 / 18.01=15.63 \mathrm{~mol}$
$\mathrm{n}_{\mathrm{B}}=\mathrm{mol} \mathrm{NaNO}=37.840 / 85.00=0.445 \mathrm{~mol}$ $i=2$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{A}, \mathrm{C}} & =\frac{15.63}{15.63+2 \cdot 0.445} \\
& =0.946
\end{aligned}
$$

2. Substitute into above equation and determine answer:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{A}} & =233.70 \cdot 0.946 \\
& =221.1 \text { torr }
\end{aligned}
$$

