CHEMISTRY 212, Lect. Sect. 002
Dr. G. L. R. Weatherspoon
Exam \#2/Tuesday, April 5, 2005

Name
Last, First
G\#. \qquad

CLOSED BOOK EXAM—No notes or books allowed. Calculators may be used. Atomic masses of interest are included on the last page. Periodic tables are not allowed for this exam. CIRCLE ALL OF YOUR ANSWERS TO THE PROBLEMS BELOW.

1. For which of the following values of the equilibrium constant does the reaction mixture contain essentially products?
(a) 10^{7}
(b) 10^{1}
(c) 10^{0}
(d) 10^{-1}
(e) 10^{-7}
2. If $K=47.6$ for $4 \mathrm{AB} \leftrightarrow 2 \mathrm{~A}_{2}+4 \mathrm{~B}$, then for $\mathrm{A}_{2}+2 \mathrm{~B} \leftrightarrow 2 \mathrm{AB}, \mathrm{K}$ would equal
(a) 0.145
(b) -0.145
(c) 2.63
(d) 6.90
(e) 47.6
3. Consider the reaction system $\mathrm{Br}_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{BrCl}(g)$ at a given temperature. When the system is at equilibrium, the molar concentrations of $\mathrm{Br}_{2}, \mathrm{Cl}_{2}$, and BrCl are $0.0060 \mathrm{M}, 0.0095 \mathrm{M}$, and 0.015 M , respectively. The value of K_{c} for this system is .
(a) 0.25
(b) 3.9
(c) 27
(d) 53
(e) 260
4. Which of the following can we determine by using an equilibrium constant for a gaseous reaction system?
5. the effect of changing the volume of the reaction system
6. the extent of a reaction at equilibrium
7. the direction of a reaction upon adding both reactants and products
(a) 1 only
(b) 2 only
(c) 3 only
(d) 1 and 2 only
(e) 1,2, and 3
8. Carbon monoxide is toxic because it can successfully compete with oxygen for hemoglobin (Hb) sites according to the following equilibrium $\mathbf{H b}\left(\mathrm{O}_{2}\right)_{4}+\mathbf{4 C O} \leftrightarrow \mathbf{H b}(\mathbf{C O})_{4}+\mathbf{4 O}_{2}$. From Le Chatelier's Principle, how is CO poisoning reversed?
(a) by increasing the O_{2} pressure
(b) by increasing the CO pressure
(c) by increasing the CO_{2} pressure
(d) by decreasing the amount of Hb
(e) in increasing the amount of Hb
9. Which of the following is a weak base in aqueous solution?.
(a) $\mathrm{H}_{2} \mathrm{CO}_{3}$
(b) $\mathrm{B}(\mathrm{OH})_{3}$
(c) $\mathrm{N}_{2} \mathrm{H}_{4}$
(d) LiOH
(e) $\mathrm{Ba}(\mathrm{OH})_{2}$
10. Each of the following pairs contains one strong acid and one weak acid EXCEPT?
(a) $\mathrm{H}_{2} \mathrm{SO}_{4} \& \mathrm{H}_{2} \mathrm{SO}_{3}$
(b) $\mathrm{HNO}_{3} \& \mathrm{HNO}_{2}$
(c) $\mathrm{HCl} \& \mathrm{HF}$
(d) $\mathrm{HClO}_{4} \& \mathrm{HClO}_{2}$
(e) $\mathrm{H}_{3} \mathrm{PO}_{4} \& \mathrm{H}_{3} \mathrm{PO}_{3}$
11. All the following would be expected to be able to function as Lewis bases EXCEPT
(a) S^{2-}
(b) SH^{-}
(c) Al^{3+}
(d) $\mathrm{H}_{2} \mathrm{O}$
(e) $\mathrm{H}_{2} \mathrm{~S}$
12. Some raspberry juice has a pH of 3.40 . What is its $\left[\mathrm{OH}^{-}\right]$?
(a) $4.0 \times 10^{-4} \mathrm{M}$
(b) $1.0 \times 10^{-7} \mathrm{M}$
(c) $2.5 \times 10^{-9} \mathrm{M}$
(d) $2.5 \times 10^{-11} \mathrm{M}$
(e) $4.0 \times 10^{-12} \mathrm{M}$
13. Seawater has a pOH of 5.90 . What is its hydroxide-ion concentration?
(a) $1.0 \times 10^{-8} \mathrm{M}$
(b) $8.0 \times 10^{-1} \mathrm{M}$
(c) $7.9 \times 10^{-9} \mathrm{M}$
(d) $1.3 \times 10^{-6} \mathrm{M}$
(e) 5.9 M
14. The hydronium-ion concentration of a 0.050 M lactic acid solution is 2.62×10^{-3}. The acid dissociation constant is 1.37×10^{-4}. The pH of this lactic acid solution is?
(a) 0.42
(b) 1.30
(c) 2.58
(d) 3.86
(e) 5.94
15. Calculate the pH of a 0.017 M barium hydroxide solution.
(a) 0.034
(b) 1.47
(c) 1.77
(d) 12.13
(e) 12.53
16. What is K_{a} for 4-aminobenzoic acid if a 0.020 M solution of the acid has a pH of 3.31 ?
(a) 2.5×10^{-2}
(b) 2.0×10^{-2}
(c) 4.9×10^{-4}
(d) 1.2×10^{-5}
(e) 2.8×10^{-6}
17. A diprotic acid, $\mathrm{H}_{2} \mathrm{~A}$, has values if $\mathrm{K}_{\mathrm{a} 1}=1.0 \times 10^{-6}$ and $\mathrm{K}_{\mathrm{a} 2}=1.0 \times 10^{-10}$. In a 0.10 M solution of $\mathrm{H}_{2} \mathrm{~A}$, what is $\left[\mathrm{A}^{2-}\right]$?
(a) 0.10 M
(b) 0.2 M
(c) $3.2 \times 10^{-4} \mathrm{M}$
(d) $3.2 \times 10^{-6} \mathrm{M}$
(e) $1.0 \times 10^{-10} \mathrm{M}$
18. Which of the following mixtures is suitable for making buffers?
19. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
20. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3}
21. $\mathrm{NH}_{4} \mathrm{Cl}$ and NH_{3}
(a) 1 only
(b) 2 only
(c) 3 only
(d) $1 \& 2$ only
(e)1, 2, \& 3
22. For an acetic acid-sodium acetate buffer solution to have a pH of 4.97 , what molar ratio of $\mathrm{CH}_{3} \mathrm{COOH}$ to $\mathrm{NaCH}_{3} \mathrm{COO}$ is needed (K_{a} for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5})?.
(a) 0.60
(b) 0.80
(c) 1.2
(d) 1.7
(e) 2.0
23. What is the net ionic equation for the reaction that occurs when hydrochloric acid is added to the NaHCOO/HCOOH buffer?
(a) $\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$
(b) $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{HCl}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}^{-}$
(d) $\mathrm{HCl}+\mathrm{HCOO}^{-} \rightarrow \mathrm{HCOOH}+\mathrm{Cl}^{-}$
(e) $\mathrm{H}^{+}+\mathrm{HCOO}^{-} \rightarrow \mathrm{HCOOH}$
24. Which of the following salts when added to pure water will cause a significant change in the pH of the solution?
25. LiHSO_{4}
26. $\mathrm{Na}_{2} \mathrm{O}$
27. KBr
(a) 1 only
(b) 2 only
(c) 3 only
(d) $1 \& 2$ only
(e)1, 2, \& 3
28. Which of the following is the most effective buffer system for a pH value of 4.45 ?
(a) $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{HCO}_{3}^{-}$
$\left(\mathrm{K}_{1}=4.4 \times 10^{-7}\right)$
(b) $\mathrm{HCO}_{3}{ }^{-} / \mathrm{CO}_{3}{ }^{2-}$ $\left(\mathrm{K}_{2}=4.7 \times 10^{-11}\right)$
(c) $\mathrm{H}_{2} \mathrm{~S} / \mathrm{HS}^{-}$ $\left(\mathrm{K}_{1}=1.0 \times 10^{-7}\right)$
(d) $\mathrm{HC}_{2} \mathrm{O}_{4}^{-} / \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
$\left(\mathrm{K}_{2}=5.0 \times 10^{-5}\right)$
(e) $\mathrm{H}_{3} \mathrm{PO}_{4} / \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
$\left(K_{1}=7.5 \times 10^{-3}\right)$
29. A $25.00-\mathrm{mL}$ sample of propionic acid, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$, of unknown concentration was titrated with 0.104 M KOH . The equivalence point was reached when 35.31 mL of base had been added. The concentration of the original propionic acid is
(a) 0.0736 M
(b) 0.128 M
(c) 0.147 M
(d) 0.162 M
(e) 0.295 M

KEY EQUATIONS

f.p. cyclohexane $=6.55^{\circ} \mathrm{C}$
$\mathrm{k}_{f}($ cyclohexane $)=20.2^{\circ} \mathrm{C} / \mathrm{m}$
K.E. $=\mathrm{mv}^{2} / 2$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$
$\mathrm{m}_{\mathrm{p}}=1.673 \times 10^{-27} \mathrm{~kg}$
$\mathrm{m}_{\mathrm{n}}=1.675 \times 10^{-27} \mathrm{~kg}$
K_{f} (water) $=1.86^{\circ} \mathrm{C} / \mathrm{m}$
$\mathrm{K}_{\mathrm{b}}($ water $)=0.512^{\circ} \mathrm{C} / \mathrm{m}$
$\mathrm{J}=\mathrm{N} \bullet \mathrm{m}$
$\mathrm{J}=\mathrm{C} \bullet \mathrm{V}$
$e=2.718$
$\mathrm{F}=96,500 \mathrm{C}$
$\mathrm{N}=\mathrm{m} \bullet \mathrm{kg}^{\mathrm{s}} \mathrm{s}^{-2}$
$\mathrm{N}_{0}=\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}$ units $/ \mathrm{mol}$
$\mathrm{R}=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \bullet \mathrm{K}$
$1 \mathrm{~L} \cdot$ atm $=101 \mathrm{~J}=0.101 \mathrm{~kJ}$
$1 \mathrm{~Pa}=1 \mathrm{~kg} /\left(\mathrm{m} \bullet \mathrm{s}^{2}\right)=1 \mathrm{~N} / \mathrm{m}^{2}$
$1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}$
$\mathrm{g}=9.807 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{M}=\mathrm{n} / \mathrm{V}$
$\mathrm{w}=-\mathrm{P} \Delta \mathrm{V}$
$\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}$
$\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=\Sigma \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ (products) $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ (reactants)
$\Delta \mathrm{H}_{\mathrm{rxn}}=\Delta \mathrm{U}_{\mathrm{rxn}}+\mathrm{P} \Delta \mathrm{V}$
$\Delta \mathrm{H}=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{T}$
$\Delta H=c_{p} \Delta T$
$\mathrm{q}=\mathrm{ms} \Delta \mathrm{T}$
$1 \mathrm{Ci}=3.700 \times 10^{10} \mathrm{dps}$
$\mathrm{t}_{1 / 2}=5730$ years for ${ }^{14} \mathrm{C}$
$\mathrm{x}_{\mathrm{i}}=\left(\frac{n_{i}}{n_{\text {total }}}\right)=\left(\frac{P_{i}}{P_{\text {total }}}\right)$
$\mathrm{P}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}} \mathrm{P}_{\mathrm{T}}$
$\mathrm{P}_{\mathrm{T}}=\Sigma \mathrm{P}_{\mathrm{i}}$
$\log \left(\frac{P_{2}}{P_{1}}\right)=\left(\frac{\Delta H_{v a p}}{2.303 R}\right)\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
$\ln \left(\frac{K_{2}}{K_{1}}\right)=\left(\frac{\Delta H_{r x n}^{0}}{R}\right)\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
$\mathrm{S}=k_{\mathrm{H}} \mathrm{P}$
$\mathrm{P}_{A}=\mathrm{P}_{A}^{o} \mathrm{X}_{A}$

H 1.008	B 10.81	K 39.10	Ca 40.08
C 12.01	Br 79.90	Cl 35.45	F 19.00
N 14.00	Cr 52.00	P 30.97	Fe 55.85
O 16.00	S 32.00	Zn 65.39	Ni 58.70
Na 23.00	I 126.90		

$\Delta \mathrm{P}=\mathrm{P}_{A}^{o} \mathrm{X}_{B}$
$\Delta \mathrm{T}_{b}=\mathrm{K}_{b} c_{m}$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{f} c_{m}$
$\pi=\mathrm{MRT}$
$\ln \frac{[A]_{t}}{[A]_{0}}=-k t$

