Name_____ SSN_____ Tuesday, November 28, 2000

CLOSED BOOK EXAM—No notes or books allowed. Calculators may be used. <u>CIRCLE ALL OF</u> <u>YOUR ANSWERS TO THE PROBLEMS BELOW</u>. BE SURE TO FILL IN THE CORRECT OVAL ON THE SCANTRON SHEET. <u>ONLY ONE ANSWER</u> SHOULD BE <u>DARKENED FOR</u> <u>EACH PROBLEM ON THE SCANTRON</u> SHEET. Turn in ScanTron ONLY prior to leaving examination area.

- 1. In general, at room temperature
 - (a) ionic compounds are all solids and covalent compounds are all gases
 - (b) ionic compounds are all solids, but covalent compounds may be solids, liquids, or gases
 - (c) ionic compounds are all solids, and covalent compounds are liquids or gases
 - (d) covalent compounds are all gases, but ionic compounds may be solids, liquids, or gases
- 2. Which bond should have the highest bond dissociation energy?
 - (a) N–N (b) N=N (c) N=N (d) all three have equal energy
- 3. Arrange the following in order of increasing ionic character; Al₂S₃, MgS, Na₂S, P₄S₃, S₈
 - (a) MgS, Na₂S, Al₂S₃, P₄S₃, S₈ (b) Na₂S, MgS, Al₂S₃, P₄S₃, S₈
 - (c) S_8 , P_4S_3 , Al_2S_3 , MgS, Na_2S (d) S_8 , P_4S_3 , Al_2S_3 , Na_2S , MgS
- 4. In general, the more atoms of a given type present in a molecule, the greater the capacity to take up energy and thus the greater the entropy.
 - (a) true (b) false
- 5. Which of the following is not true?
 - (I) Group IA and IIA elements primarily form ionic compounds
 - (II) Group IIIA elements are more likely to form covalent bonds
 - (III) The metalloids usually form metallic bonds
 - (IV) Group VA elements are all nonmetals

(a) I, II (b) II, IV (c) I, III, IV (d) III, IV (e) none of the above

6. A triple bond is generally composed of
(a) three π bonds
(b) two π bonds and one σ bond
(c) one π bond and two σ bonds
(d) three σ bonds

7. The hybridization expected for $SbCl_{5^2}$ is _____ and the geometry is _____

- (a) sp^3 , tetrahedral (b) s^2p^3 , square pyramidal
- (c) sp³d, square pyramidal (d) sp³d², octahedral
- (e) sp³d, trigonal bipyramidal
- 8. The paramagnetism of O_2 is explained by
 - (a) coordinate covalent bonding (b) **molec**
 - (c) resonance

9.

- (b) molecular orbital theory(d) valence bond theory
- The following MO diagram is appropriate for B_2 . Based on this diagram, B_2

$\underline{\qquad} \sigma_{2p}^{*}$	
$_\ \pi_{2p}^*$	
$\\sigma_{2p}$	
$_$ $_$ π_{2p}	
$\underline{\qquad} \sigma_{2s}^*$	
$\underline{\qquad} \sigma_{2s}$	
$\{1s}^*$	
$\ \sigma_{1s}$	

- (a) has a bond order of one and is diamagnetic
 (b) has a bond order of one and is paramagnetic
 (c) has a bond order of two and is diamagnetic
 (d) has a bond order of two and is paramagnetic.
- 10. Which of the following can be interpreted as a measure of randomness? (a) enthalpy (b) entropy (c) free energy (d) temperature

11. The first law of thermodynamics

(a) defines chemical energy

(c) is a statement of conservation of energy spontaneity

(b) defines entropy

(d) provides a criterion for reaction

(d) +47.2 kJ

12. Use the given standard enthalpies of formation to calculate ΔH° for the following reaction

Species	$\Delta { m H}^{\circ}_{ m f}, { m kJ/mol}$
Fe_2O_3 (s)	-824.2
$Fe_3O_4(s)$	-1118.4
CO (g)	-110.5
CO ₂ (g)	-393.5

(c) -47.2 kJ

 $Fe_2O_3(s) + CO(g) \rightarrow Fe_3O_4(s) + CO_2(g)$

13. Calculate ΔG° for the reaction below and tell whether it is spontaneous or nonspontaneous under standard conditions at 25°C.

 $2S(s) + 3O_2(g) + 2H_2O(l) \rightarrow 2H_2SO_4(l)$; $\Delta H^\circ = -1056 \text{ kJ/mol}; \Delta S^\circ = -505 \text{ J/mol}$

- (a) $\Delta G^{\circ} = -1207 \text{ kJ}$ and the process is spontaneous
- (b) $\Delta G^{\circ} = -1207 \text{ kJ}$ and the process is nonspontaneous
- (c) $\Delta G^{\circ} = -906 \text{ kJ}$ and the process is spontaneous
- (d) $\Delta G^{\circ} = -906 \text{ kJ}$ and the process is nonspontaneous
- 14. Entropy increases when
 - (*i*) a molecule in a reaction is broken into two or more smaller molecules
 - (*ii*) the number of moles of gas decreases

(a) -5213.4 kJ (b) -577.2 kJ

- (iii) phase changes occur
- (a) i, ii (b) i, iii (c) ii, iii (d) none of the above
- 15. Calculate the energy as heat required to raise the temperature of 151 kg of water (40 gal, the volume of a typical home water heater) from 18.0°C to 60.0°C, assuming no loss of energy to the surroundings.

(a) 2.65 MJ (b) 26.5 MJ (c) 13.3 MJ (d) 11.8 MJ (e) none of these

E = hv $E = -R_H/n^2$ $\Phi = hv_0$ $R_{\rm H} = 2.18 \text{ x} 10^{-18} \text{ J}$ $\lambda = h/mv$ K.E. = $mv^2/2$ $m_e = 9.11 \ge 10^{-31} \text{ kg}$ $m_p = 1.673 \text{ x } 10^{-27} \text{ kg}$ $m_n = 1.675 \ge 10^{-27} \text{ kg}$ $J = N \bullet m$ $N = m \bullet kg \bullet s^{-2}$ $E_n = -(2.18 \times 10^{-18} \text{J})Z^2(1/n^2)$ $Z_{\rm eff} = Z - \sigma$ $N_0 = N_A = 6.02 \text{ x } 10^{23} \text{ units/mol}$ d(Hg) = 13.6 g/mL $d(H_2O) = 1.00 \text{ g/mL}$ $\hat{C_p}(H_2O, s) = 37.7 \text{ J/mol} \bullet \text{K}$ $C_p(H_2O, l) = 75.2 \text{ J/mol} \bullet \text{K}$ $C_p(H_2O,g) = 33.6 \text{ J/mol} \bullet \text{K}$ $R = 0.0821 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$ $R = 8.314 \text{ J/mol} \bullet \text{K}$ R = 1.987 cal/(mol • K) $R = 8.314 \text{ m} \cdot \text{kg} \cdot \text{s}^{-2} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ 1 atm = 760 torr = 760 mmHg $1 \text{ Pa} = 1 \text{ kg}/(\text{m} \cdot \text{s}^2) = 1 \text{ N}/\text{m}^2$ $1 \text{ atm} = 1.10 \text{ x} 10^5 \text{ Pa} = 14.7 \text{ psi}$ $g = 9.807 \text{ m/s}^2$ $1.00 \text{ L} \cdot \text{atm} = 101 \text{ J} = 0.101 \text{ kJ}$ M = n/V $M_m = (dRT/P)$ P = hda = hdg $h_x d_x = h_y d_y$ $w = -P\Delta V$ $\Delta U = q + w$ $\Delta H^{\circ}_{rxn} = \Sigma \Delta H_{f}^{\circ}(products) - \Sigma \Delta H_{f}^{\circ}(reactants)$ $\Delta H_{\rm rxn} = \Delta U_{\rm rxn} + P \Delta V$ $\Delta H = nC_p\Delta T$ $\Delta H = c_p \Delta T$ $q = ms\Delta T$ $\bar{X}_i = n_i/n_T$ $P_i = X_i P_T$ $P_T = \Sigma P_i$ $\log (P_2/P_1) = (\Delta H_{vap}/2.303R)(1/T_1-1/T_2)$ $E = U = (\frac{1}{2}) mv^2 = (3/2) RT$ $(P + n^2 a/V^2)(V-nb) = nRT$ $u = rms = (3RT/M_m)^{1/2}$ F.C. = $(\#ve) - (\#lpe) - \frac{1}{2} (\#se)$ scc: a = 2rbcc: $a = 4r/\sqrt{3}$ fcc: $a = \sqrt{8} r$ $n\lambda = 2d \sin\theta$ $V_{unit cell} = (nM/dN_0)$ B.E. (N-N) = 167 kJ/molB.E. (F-F) = 565 kJ/molB.E. (N-F) = 283 kJ/molB.E. (N=N) = 418 kJ/molB.E. $(N \equiv N) = 942 \text{ kJ/mol}$