IQ in the Production Function: Evidence from Immigrant Earnings

Garett Jones Department of Economics and Finance Southern Illinois University Edwardsville and Visiting Scholar Department of Economics University of California, San Diego

> W. Joel Schneider Department of Psychology Illinois State University

National Average IQ (Lynn and Vanhanen, 2006) and 2000 GDP per Worker (PWT)

R²=64%; 1 IQ point ↔7.2% higher GDP per worker. Robust to using only: Pre-1960, 1970, or 1980 IQ scores; nonverbal/culture-reduced tests.

The question addressed by this paper:

• Can IQ's impact on worker productivity roughly replicate this result via a neoclassical production function?

The answer:

• No.

Why?

Quantitatively:
1 IQ point↔1% higher wages at the micro level
1 IQ point ↔6 or 7% higher productivity at the national level

• Theoretically:

Addressed in ongoing research

IQ in the Production Function: Overview (Part 1: Micro)

- Hendricks (AER 2002): Immigrants to U.S. differ widely in "unmeasured worker skill"
- Average IQ of immigrants' home country helps measure this "unmeasured" skill
- Robust to controlling for education, outliers, and geography
- Matches a standard result from labor econ:

1 IQ point \rightarrow 1% higher wages

N.B.: 1 IQ point $\equiv 15^{\text{th}}$ of a standard deviation within U.S. or U.K population

IQ in the Production Function: Overview (Part 2: Macro)

- In a productivity accounting exercise, this IQ-wage channel can explain 1/4th to 1/7th of (log) cross-country income differences.
- Some hand-waving about reverse causality
- Discussion of the role of IQ in future growth research

What does IQ correlate with? A psychologist's perspective

- Correlation of IQ with job performance: 0.3 to 0.5
- IQ correlates positively with occupational prestige, educational attainment, creativity, physical health, mental health, longevity, suicide.
- Cerebral glucose metabolism ($\rho \approx -0.75$)
- Nerve conduction velocity between eye and brain ($\rho=0.37$)
- Brain size ($\rho \approx 0.4$) (All from Jensen, *The g Factor*, 1998)
- Useful metaphor: IQ as chip processing speed—not software
- Recommended: Deary, *Intelligence: A Very Short Introduction* Jensen, *The g Factor*

What IQ measures

o general knowledge

- o verbal and spatial reasoning
- \circ inductive and deductive reasoning
- o quantitative reasoning
- o verbal and memory retrieval fluency
- o short-term and long-term memory
- o reasoning and perceptual speed
- o simple decision speed
- Ex: Wechsler IQ test (WAIS-R) uses 13 subtests:
 - 4: verbal comprehension
 - 4: visual perception
 - 3: working memory
 - 2: processing speed
 - (Source: Deary et al., Euro. J. Hum. Gen., 2006)

Why report one number, and not the distribution across IQ subtests?

- IQ's predictive validity comes from the mean
- Intellectual performance is multidimensional---but this matters little in practice
- The Full Scale IQ operationalizes the theoretical construct of g.
- Originally g was so named for the *general* factor of intelligence.
- In practice, g is the first principal component across IQ subtests
- Ex: Heckman et al. (1997) found that first principal component had 5X more power to predict wages than second component.

Are IQ tests biased against non-white minorities?

- Culturally loaded test items are not *relatively* more difficult for minority groups (Jensen, 1980, p. 528-529).
- Since the 1970's: No meaningful bias in IQ tests (Brown, Reynolds, & Whitaker, 1999; Jensen, 1980).
- IQ predicts important non-test outcomes equally well for these groups.
- East Asian populations—in U.S. or East Asia—outperform whites on tests written by whites.
- Brain size, electroencephalogram responses, and reaction-time tests maintain the same pattern across and within countries.

The Long-Run Rise in IQ

- Measured IQ's appear to rise an average of two to three points per decade, a phenomenon known as the *Flynn Effect*, after Flynn (1987).
- Possible explanations of the Flynn effect: --Genuine increase in the problem-solving ability of the population: *Health? Nutrition? TV?*
 - --Teachers' greater tendency to "teach to the test."
 - --More guessing on multiple-choice
- No economist has addressed this important subject. Is Flynn Effect "nominal" or "real?"
- Flynn says it recently slowed/stopped in US.

Environmental Effects on IQ

All major IQ researchers agree: The environment impacts IQ.

Example: Childhood Nutrition

• Vitamins and minerals (Copenhagen Consensus, 2004). (Fogel, Stokey, Bhagwati, Schelling, et al.)

Previous work on IQ and productivity

- Lynn and Vanhanen, <u>IQ and the Wealth of Nations</u> (2002); Weede and Kampf (*Kyklos*, 2002); Volken (2003); Weede (2004), Whetzel and McDaniel (2006), Ram (*Economics Letters*, forthcoming).
- 160 IQ tests, 81 countries over the last 100 years
- $\rho(IQ,$ *level*of Y/L) = 0.73
- Global mean IQ=90, Std Dev: 11. (UK Mean≡100, S.D.≡15)
- N.B.: Lynn and Vanhanen have new book (2006): <u>IQ and Global Inequality</u>; 200+ tests, 113 countries, same results.

(IQ and U.S. States: Kanazawa (2006), McDaniel (2006))

"Intelligence, Human Capital, and Economic Growth" Jones and Schneider, J. Econ. Growth, 2006

Goal: Stack the deck against IQ

- Ran 455 Solow/MRW-style growth regressions: All included IQ.
- Additional Controls: Combinations of 18 growth variables passing Sala-i-Martin et al.'s (AER 2004) Bayesian model averaging test
- IQ significant at 1% level in all 455 regressions
- Mean estimate: 1 IQ point \rightarrow persistent 0.12% <u>annual</u> rise in Y/L
- In steady state: 1 IQ point \rightarrow 6% rise in Y/L
- IQ dramatically more robust than education measures
- IQ also easily passed a Bayesian model averaging test: Even if you have a low prior that IQ is robust, the data should change your mind.

IQ Coefficient

Variables passing Sala-i-Martin (AER 1997) robustness test:

- 1. Equipment Investment +
- 2. Number of Years Open Economy +
- 3. Fraction Confucian +
- 4. Rule of Law +
- 5. Fraction Muslim +
- 6. Political Rights +
- 7. Latin America Dummy –
- 8. Sub-Saharan Africa Dummy -
- 9. Civil Liberties +
- 10. Revolutions and Coups -
- 11. Fraction of GDP in Mining +
- 12. Std. Dev. of Black Market Premium -
- 13. Fraction of GDP in Primary Exports in 1970 -
- 14. Degree of Capitalism +
- 15. War Dummy –
- 16. Non-Equipment Investment +
- 17. Absolute Latitude +
- 18. Exchange Rate Distortions -
- 19. Fraction Protestant -
- 20. Fraction Buddhist +
- 21. Fraction Catholic -

Variables Included in all Sala-i-Martin Regressions

Log GDP per capita 1960 – Rate of Primary School Enrollment, 1960+ Life Expectancy, 1960+

Variables passing Sala-i-Martin et. al's (AER 2004) robustness test: Included in all 455 regressions:

- 1. log GDP per capita 1960 (log) -
- 2. Primary schooling 1960 +
- 3. Investment price –

Included 3 at a time:

- 4. East Asian Dummy –
- 5. Fraction of tropical area –
- 6. Population density coastal 1960's +
- 7. Malaria prevalence in 1960's -
- 8. Life expectancy in 1960 +
- 9. Fraction Confucian +
- 10. African dummy -
- 11. Latin American dummy -
- 12. Fraction GDP in mining +
- 13. Spanish colony -
- 14. Years open to trade +
- 15. Fraction Muslim +
- 16. Fraction Buddhist +
- 17. Ethnolinguistic fractionalization -
- 18. Government consumption share 1960's -

The Next Step: Finding out why IQ matters

- First place to look: The human capital literature
- Question:

Can microeconomic IQ-wage estimates + standard aggregate production function explain the macro-level IQ/productivity relationship?

- Intentionally "naïve"
- Only looks at direct, externality-free effects
- Need γ : Impact of 1 IQ point on micro-level log wages
- We assume γ is the private marginal product of labor: <u>Our calibration parameter</u>

U.S. estimates of γ

- Neal-Johnson (JPE, 1996). $\gamma = 1.15\%$
- Bishop (AER, 1989): γ = 1.27%
- Zax-Rees* (REStat, 2002): 0.75% (young); 1.4% (middle-aged)
- Heckman et al.* (1997):
 1.3% (black females) to 1% (white males).
- Bowles-Gintis-Osborne (JEL, 2001): avg. 0.5% across studies.
- U.S. estimates typically drop about 1/3 when education is controlled for.

IQ's impact on wages around the world (Behrman et al., 2004)

• 6 developing countries: Mean=0.8%; Median=0.8%

Testing the IQ tests: IQ and immigrant wages

- Hendricks (AER 2002) showed that workers coming to the U.S. from different countries differed widely in their average productivity—country of origin mattered.
- True even after controlling for age and education
- He called this "unmeasured worker skill."
- Can IQ measure this? Does the average IQ of a country predict the average wages of immigrants from that country?

Testing the IQ tests (2)

- A simple test: see if "unmeasured worker skill" for immigrants from a country is strongly associated with the average IQ in that country
- A less simple test: see if the γ matches micro-level studies.
- Robustness tests: endogenous education and outliers.
- N.B. Hendricks shows immigrant self-selection matters little, on average.

Testing the IQ tests (3)

- Standard Mincer-style wage regressions adjust for experience and education only (e.g., Heckman et al. (1997), Zax and Rees (2002)).
- Hendricks has already done this.

Should γ match?

Gould, *Mismeasure of Man* (1981), Diamond, *Guns, Germs, and Steel* (1999), Ehrlich, *Human Natures* (2000):

> Key message: Cross-country/Cross Culture IQ tests are noisy measures of ability, perhaps worthless

If so, my estimate of γ will be biased downward.

But low IQ in a country may come bundled with other bad, non-IQ traits (e.g., low-productivity culture, poor health). If so, estimate of γ will be biased upward.

Data from Hendricks (AER 2002)

- 106,263 immigrants from the 1990 Census of Population and Housing.
- Between the ages of 20 and 69 and worked full-time in the U.S.
- Immigrants from 76 countries—data are aggregated to country level.
- Compared the earnings of native-born and immigrant from country *i* with identical ages and identical education levels
- Residual wage difference ≡ "Unmeasured Worker Skill" of workers from country *i*

Summary Statistics from Hendricks (AER 2002)

- Perhaps surprisingly, "unmeasured worker skill" varies widely for immigrants from different countries.
- s.d of log unadjusted wages is 0.29 across 76 countries.
- s.d. of log "unmeasured worker skill" is 0.19 across these same countries.
- Hendricks overlaps with 59 of LV's (2006) national average IQ estimates.
- *Now to the key question*: Does national average IQ measure "unmeasured" worker skill differences?

IQ and immigrant skill

X-axis: Lynn and Vanhanen (2006).

Y-axis: log of uws_i , the unmeasured worker skill estimate for immigrants from country *i*, estimated in Hendricks (2002).

OLS coefficient: 0.95%, $R^2 = 22\%$, t-stat = 4.05

Result: $\gamma \approx 1$

Robustness tests: A quick overview

What about outliers?

• Omitting S. African, Chinese, S. Korean immigrants changes little

What if $IQ \rightarrow Education$?

• Using log unadjusted wages changes little

What about geography dummies?

• Including Africa, East Asia, and Latin America dummies makes no difference (robust dummies from S-i-M)

Net result:

IQ predicts similar wage differences within and between countries

Immigrants from high-IQ countries behave like representative agents of their home countries.

IQ in the Production Function

 $Y_i = K_i^{\alpha} (e^{\gamma I Q_i} A_i L_i)^{1 - \alpha}$

- IQ_i = national average IQ in country *i*
- γ = IQ elasticity of effective labor
- $e^{\gamma IQ_i} = IQ$'s impact on effective labor
- A_i= All other productivity differences, *including* other channels running from IQ to output.

N.B.: This is the conventional way of modelling human capital's impact on output.

Productivity Accounting with IQ

To isolate the IQ-wage channel, consider case where K/Y is identical across countries: Denote as κ^*

$$\left(\frac{Y}{L}\right)_{i} = A_{i} e^{\gamma I Q_{i}} \left(\kappa^{*\frac{\alpha}{1-\alpha}}\right)$$

N.B. Can think of this as steady-state in Ramsey or Solow model

Accounting for IQ

Taking logs, collecting terms into μ and solving out log(A) yields:

$$\log\left(\frac{\mathrm{Y}}{\mathrm{L}}\right)_{i} = \gamma \mathrm{I} \mathrm{Q}_{i} + \mu + \varepsilon_{i}.$$

• Higher-IQ countries will be more productive in steady-state

Data and Parameter Values

- Consider γ in range from 0.5 to 1.25: 1.0 as preferred estimate
- log Y/L: Log output per worker, PWT, 2000 data, 63 countries.
- Lynn and Vanhanen (2006) IQ estimates from 63 countries.

Using the Model (1): What if IQ were the only difference?

- Gap between 5th and 95th percentiles: 38 IQ points
- Implies a rise in steady-state living standards of:

Impact of 38-point rise in IQ on Living Standards

γ	Rise in (Y/L)
0.5	21%
1.0	46%
1.25	61%

- But in the data, countries with 38 more IQ points are 15X richer.
- $e^{7*0.38} \approx 15$, $e^{6*0.38} \approx 10$, $e^{6*0.19} \approx 3$
- Conclusion: 1<6 or 7. Still a lot to explain: IQ externality?

Using the Model (2): Productivity Accounting ResultsVariance in year 2000 log Y/L explained byIQ's impact on marginal product of labor γ \mathbb{R}^2 0.59%1.017%1.2520%

• Conclusion: IQ in the Production Function explains $\approx 1/4^{\text{th}}$ of the empirical IQ-productivity relationship

(Recall: OLS $R^2 = 64\%$: 17/64 \approx 1/4)

- Puzzle: IQ matters more at macro than at micro level
- Opposite of education literature (cf. Krueger-Lindahl JEL 2001; Sala-i-Martin et al. AER 2004)

Can reverse causality explain IQ's robustness? (1)

IQ in East Asia: 1959-2003

Can reverse causality explain IQ's robustness? (2)

Real oil prices quadrupled between 1973 and 1986 before declining: Did Middle East have big IQ gains after mid-70's?

IQ	Country
77	Egypt
82	Lebanon
84	Iran*
81	Egypt
83	Iran*
87	Iraq*
87	Iraq*
80	Iran*
84	Jordan
78	Qatar*
83	Egypt
89	Iran*
85	Yemen
86	Kuwait*
	IQ 77 82 84 81 83 87 87 80 84 78 83 89 85 86

Median IQ Pre/Post 1973: 83 and 84

Median IQ in OPEC countries Pre/Post 1973: 85.5 and 83

Difference in differences between OPEC and non-OPEC countries, 1973 break: -5.5 IQ points: Wrong direction.

*: OPEC member

The root cause(s) of global IQ inequality: Culture? Environment? Nutrition? Genetics?

- Survey: Rushton and Jensen (2005), and other authors: *Journal of Psychology, Law, and Public Policy*, online.
- An active area of genetic research:
 - Lahn et al., *Science* (2005a,b); One IQ link refuted in Lahn et al., *Hum. Mol. Gen.* (2007).
 - Wang et al., PNAS (2005), online:

".....[S]everal predominant biological themes are common in these selected alleles, including....<u>neuronal function</u>....[M]ost of these selective events likely occurred in the <u>last 10,000–40,000 years</u>, a time of major population expansion out of Africa...." (emph. added)

• Wacziarg and Spoloare (2006): Genetic distance between countries may be a barrier to technology diffusion. *Proxy for culture?*

Other IQ \rightarrow Y/L channels?

- "Are Smarter Groups More Cooperative? Evidence from Prisoner's Dilemma Experiments, 1959-2003" (Jones, 2006)
- 100 SAT points↔5% rise in cooperation in repeated PD.
 Why? Patience, Perceptivity, and Altruism (Axelrod, 1984)
- Impatience (Warner and Pleeter, AER '01; Fredrick, JEP '06). Helps explain lower savings rates in poor countries—and higher cooperation in RPD's.
- IQ and intern'l technology diffusion (Jones, in progress). Higher national IQ→Faster TFP convergence, 1960-2000.
 --Beats education in a horse-race.
 --Robust to using pre-1970 IQ scores.

Conclusion

- Average intelligence differs across countries
- Easily verified by brain scans
- Canonical micro result: Higher IQ \rightarrow More productivity
- Can explain some of the IQ \rightarrow Y/L relationship (1/4th? 1/7th?)
- Reverse causation unlikely to be the whole story.
- Needed: Quantitative theoretical work exploring new IQ→Y/L channels
- Growth economists who avoid studying global IQ differences may be missing more than half of the story.