Preparation for the Final Exam

Math 290

Dr. Colonna

- (1) State in words the contrapositive and the converse (specify) of the following statement: If the test is easy and I study hard, then I get an A.
- (2) Write the truth table for each of the following statements and decide whether it is a tautology, a contradiction, or neither.
 - (a) $\sim (\sim P \Rightarrow (P \lor \sim Q)),$
 - (b) $(P \lor \sim Q) \Leftrightarrow \sim ((\sim P) \land Q).$
- (3) Is the statement ~ $[(\exists x)(x > 0 \land x^3 = -x)]$ true in the universe of all real numbers? Explain.
- (4) Let \mathbb{R} be the universe. Give a useful denial of the statement $(\exists x)(\forall y)(x^2 > 0 \land xy \neq 1)$. Make sure not to have \sim in your final answer.
- (5) Provide either a proof or a counterexample for the following statement: If a, b, c are any integers such that a divides both 2b c and b c, then a must divide both b and c.
- (6) Let $A = \{\emptyset, a, \{a, \emptyset\}\}$. List all elements of the power set of A.
- (7) Draw a digraph for the relation R on the set $\{a, b, c, d, e\}$ given by

 $R = \{(a, a), (b, c), (c, e), (b, e), (b, a), (d, d)\},\$

and determine whether R is reflexive, symmetric, transitive, antisymmetric.

- (8) Specify whether each of the following statements is true or false. Explain. (a) $\{e\} \subseteq \{e, \{e^2\}\};$ (b) $\emptyset \in \{e, \{\emptyset\}\};$ (b) $\{\emptyset\} \in \mathcal{P}(\{\emptyset\}).$
- (9) Let $U = \{1, 2, 3, 4, 5, 6, 7\}$, $A = \{1, 2\}$, $B = \{2, 3, 4, 6\}$, and $C = \{3, 4, 7\}$. List the elements of the following sets:

(a) $(A \cap B) \cup C$; (b) $A^c - (B \cap C)$.

- (10) For each natural number n, let $A_n = \left[-\frac{2}{n+1}, \frac{4n-1}{3n}\right]$. Find $\bigcup_{n \in \mathbb{N}} A_n$ and $\bigcap_{n \in \mathbb{N}} A_n$.
- (11) Let $a_1 = 1$, $a_2 = 7$, $a_3 = 7$, and for each natural number $n \ge 3$, let

$$a_{n+1} = 2a_n + a_{n-1} - 2a_{n-2}.$$

Use the PCI to prove that for each $n \in \mathbb{N}$,

$$a_n = 1 + 2(-1)^n + 2^n.$$

(12) Specify whether each of the following statements is true or false. Justify your answers. (a) If the sets A, B, $A \cap B$ have 12, 7, and 4 elements, respectively, then the set $(A - B) \times (A \cup B)$

(a) If the sets A, B, A + B have 12, 7, and 4 elements, respectively, then the set $(A - B) \times (A \cup B)$ has 120 elements.

- (b) A denumerable set always has a proper denumerable subset.
- (c) If A is any set, then $(A \cup A) \times A = A \times (A \cup A)$.

(d) An equivalence class defined by an equivalence relation on a set X is an element of the power set of X.

- (13) Let R and S be the relations on $\{a, b, c, d\}$ defined by $R = \{(a, b), (c, b), (d, c), (d, b)\}$, and $S = \{(b, a), (a, b), (c, d)\}$. Find $R \circ S$, and $S^{-1} \circ R$.
- (14) Let \mathcal{A} be the partition on the set $\{a, b, c, d, e, f, g\}$ defined by

$$\mathcal{A} = \{\{a, e\}, \{b, c, d\}, \{f, g\}\}.$$

List the ordered pairs in the equivalence relation associated with \mathcal{A} .

- (15) Draw the Hasse diagram for the poset $X = \{1, 2, 5, 7, 10, 14, 35, 70\}$ under the partial ordering R defined by mRn iff m divides n.
- (16) Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = 1 + 2x x^2$. Find the sets f([1,2]) and $f^{-1}(f([0,1]))$.
- (17) Let f: N×N→N be given by f(m,n) = m(2n+1). Find the sets
 (a) f⁻¹(A), where A = {2,4,6,8,10}.
 (b) f(B), where B = {1,2} × {1,2}.
- (18) Prove that if $f: A \to B$ and $g: B \to C$ are both 1-1, then $g \circ f: A \to C$ is 1-1.
- (19) Prove that $X = \{n \in \mathbb{Z} : n \text{ is odd}\}$ is denumerable by constructing a one-to-one correspondence between X and N.
- (20) (a) Make a table according to the categories, "finite", "denumerable", and "uncountable" and insert in the appropriate column each of the sets below.
 - (b) Which of the following sets are equivalent? List all possible pairs of such sets.

 $\mathbb{R}_+, \mathbb{Z}_-, (0,\sqrt{2}), \{3^q : q \in \mathbb{Q}\}, \mathcal{P}((-\infty,1]), \mathcal{P}(\{0,\sqrt{2}\}), \mathcal{P}(\mathcal{P}(\emptyset)), \mathcal{P}(\mathbb{N}), \mathbb{Z} \times \mathbb{N}.$

(c) Order the cardinal numbers of all of the above sets from smallest to largest.