PRACTICE TEST 3

Math 290

Dr. Colonna

Summer 2016

(1) Let $X = \{1, 2, 3, 4\}$ and consider the relation on X defined by

$$R = \{(2,3), (4,1), (3,3), (3,1), (1,4)\}.$$

(a) Find the domain and the range of R.

(b) What is the minimum number of elements that need to be added to R to make it an equivalence relation on X? Specify which elements must be added and why.

(c) Let S be the equivalence relation obtained in part (b). List the elements of the equivalence class of 3.

- (2) Specify whether each of the following statements is true or false. If the statement is false, give a counterexample.
 - (a) If R and S are relations on a set X, then the range of R is equal to the range of $S \circ R$.
 - (b) If R is a symmetric relation on a set X, then R cannot be antisymmetric.

(c) If A and B are sets, then $A \times B \neq B \times A$ unless A = B.

(d) If R is a transitive relation on X and $A \subseteq X$, then the relation S on A defined by $S = \{(x, y) \in R : x \in A \land y \in A\}$ is transitive.

- (3) Let S be the relation on $\{a, b, c, d\}$ defined by $S = \{(b, a), (a, c), (b, b), (c, d)\}$. Find S^{-1} and the range of S^{-1} .
- (4) Consider the relation R on the set $\{a, b, c, d\}$ given by

$$R = \{(a, a), (b, b), (b, c), (c, a), (b, a), (c, c)\}.$$

- (a) Draw the digraph of R.
- (b) Is R (1) symmetric? (2) reflexive? (3) transitive? (4) antisymmetric? Explain.
- (5) Let $X = \{1, 2, 3, 4, 5, 6, 7\}$ and consider the collection of subsets of X given by

$$\mathcal{P} = \{\{1\}, \{2, 5\}, \{3, 4, 6\}, \{7\}\}.$$

List all the elements of the equivalence relation R having \mathcal{P} as the set of equivalence classes.

- (6) Let X be the subset of the natural numbers \mathbb{N} consisting of the divisors of 36. The relation R on X defined by aRb iff a divides b is a partial ordering on X. Draw the Hasse diagram of R.
- (7) Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = 1 x^2$, $g(y) = \sqrt{2 y}$. Find $(f \circ g)(y)$ and specify the domain and range of $f \circ g$.
- (8) Give an example of three sets A, B, C and two functions $f : A \to B$ and $g : B \to C$ such that $g \circ f$ is 1-1, but g is not 1-1.
- (9) Define $f : \mathbb{Z}_6 \to \mathbb{Z}_6$ by $f(\overline{m}) = 3\overline{m}$, where \overline{m} denotes the equivalence class of m.
 - (a) Verify that f is a function.
 - (b) Prove or disprove: f is 1-1.
 - (c) Prove or disprove: f is onto.