PRACTICE TEST 3

Math 290
Dr. Colonna
Summer 2016
(1) Let $X=\{1,2,3,4\}$ and consider the relation on X defined by

$$
R=\{(2,3),(4,1),(3,3),(3,1),(1,4)\}
$$

(a) Find the domain and the range of R.
(b) What is the minimum number of elements that need to be added to R to make it an equivalence relation on X ? Specify which elements must be added and why.
(c) Let S be the equivalence relation obtained in part (b). List the elements of the equivalence class of 3 .
(2) Specify whether each of the following statements is true or false. If the statement is false, give a counterexample.
(a) If R and S are relations on a set X, then the range of R is equal to the range of $S \circ R$.
(b) If R is a symmetric relation on a set X, then R cannot be antisymmetric.
(c) If A and B are sets, then $A \times B \neq B \times A$ unless $A=B$.
(d) If R is a transitive relation on X and $A \subseteq X$, then the relation S on A defined by $S=\{(x, y) \in$ $R: x \in A \wedge y \in A\}$ is transitive.
(3) Let S be the relation on $\{a, b, c, d\}$ defined by $S=\{(b, a),(a, c),(b, b),(c, d)\}$. Find S^{-1} and the range of S^{-1}.
(4) Consider the relation R on the set $\{a, b, c, d\}$ given by

$$
R=\{(a, a),(b, b),(b, c),(c, a),(b, a),(c, c)\}
$$

(a) Draw the digraph of R.
(b) Is R (1) symmetric? (2) reflexive? (3) transitive? (4) antisymmetric? Explain.
(5) Let $X=\{1,2,3,4,5,6,7\}$ and consider the collection of subsets of X given by

$$
\mathcal{P}=\{\{1\},\{2,5\},\{3,4,6\},\{7\}\} .
$$

List all the elements of the equivalence relation R having \mathcal{P} as the set of equivalence classes.
(6) Let X be the subset of the natural numbers \mathbb{N} consisting of the divisors of 36 . The relation R on X defined by $a R b$ iff a divides b is a partial ordering on X. Draw the Hasse diagram of R.
(7) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=1-x^{2}, g(y)=\sqrt{2-y}$. Find $(f \circ g)(y)$ and specify the domain and range of $f \circ g$.
(8) Give an example of three sets A, B, C and two functions $f: A \rightarrow B$ and $g: B \rightarrow C$ such that $g \circ f$ is $1-1$, but g is not $1-1$.
(9) Define $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ by $f(\bar{m})=3 \bar{m}$, where \bar{m} denotes the equivalence class of m.
(a) Verify that f is a function.
(b) Prove or disprove: f is 1-1.
(c) Prove or disprove: f is onto.

