Practice Test 1

Math 290

Dr. Colonna
May 19, 2016
(1) Give the precise definitions of the following terms:
(a) Consequent
(b) Contradiction
(c) Conditional statement
(d) The converse of if P, then Q.
(2) Write the truth table for each of the following statements and decide whether it is a tautology, a contradiction, or neither.
(a) $\sim(P \wedge \sim Q) \Rightarrow(P \vee \sim Q)$
(b) $P \Longleftrightarrow(\sim Q \wedge((\sim P) \Rightarrow Q))$
(3) Write the following statements in symbolic form and give a useful denial.
(a) For every rational number $x, 2 x-\pi \neq 0$ or $x<1$.
(b) n is the product of two primes and its square is not divisible by 2.
(b) $x^{2}-\pi<0$, for every rational number x.
(4) Which of the following are true in the universe of all whole numbers, $U=\{0,1,2,3, \ldots\}$? Explain.
(a) $(\exists!x)(x \geq 0 \wedge \sqrt{x}=x)$
(b) $(\forall x)\left(x^{2}-x\right.$ is even $)$
(5) Which of the following are true in the universe of all real numbers? Explain.
(a) $(\exists x)(x>0 \wedge \sin x=x)$;
(b) $(\forall x)(\exists y)(x+y<2 \wedge x-y>1)$.
(6) Prove that for all integers $n, 3 n+1$ is odd if and only if n is even.
(7) Recall that a real number x is a rational number if and only if it can be expressed as $x=\frac{m}{n}$, where m, n are integers and $n \neq 0$. A real number which is not rational is called irrational.
(a) Give a direct proof of the following statement: The product of two rational numbers is a rational number.
(b) Let x be a nonzero rational number. Give a proof by contraposition, using part (a), of the following statement: If y is an irrational number, then $\frac{y}{x}$ is an irrational number.
(c) Let x be a rational number. Provide either a proof or a counterexample for the following statement: For all irrational numbers $y, x-y^{3}$ is an irrational number.
(8) Prove that for all natural numbers a and $b, \operatorname{gcd}(a, b)=a$ if and only if $a \mid b$ (that is, a divides b).
(9) Prove that if a, b, c, d are any integers such that a divides $b+c$ and a divides $c+d$, then a divides $b-d$.

