Practice Test 2

Math 290

Dr. Colonna

May 29, 2019
(1) Specify whether each of the following statements is true or false. Justify your answers.
(a) $u \in\{\{u\}, u\}$;
(b) $\{u\} \subseteq\{u,\{u\}\} ;$
(c) $\{\emptyset\} \subset\{\{u\}\}$;
(d) $\{u\} \in \mathcal{P}(\{u\})$.
(2) Specify whether each of the following statements is true or false.
(a) $\emptyset \in\{\{\emptyset\}\}$;
(b) $\{\alpha\} \in\{\emptyset,\{\alpha\}\}$;
(c) $\emptyset \subseteq\{\{\alpha\}\} ;$
(d) $\alpha \subseteq\{\alpha,\{\emptyset, \alpha\}\}$.
(3) Let $S=\{1, b,\{1, b\}\}$. List all the elements of the power set of S.
(4) Let $U=\{1,2,3,4,5,6,7,8\}, A=\{1,2,4,6,8\}, B=\{4,5,6\}$, and $C=\{3,5,7\}$. List the elements of the following sets:
(a) $(A \cap B) \cup C$;
(b) $A-\left(B^{c} \cup C\right)$;
(c) $B \times(B \cap C)$;
(d) $A^{c}-(B \cap C)$;
(e) $A \cup\left(\emptyset^{c} \cap C\right)$
(f) $(A-(B-C))$.
(5) For $n \in \mathbb{N}$, let $A_{n}=\left(1-\frac{2}{n}, \frac{2 n+1}{n}\right)$. Find $\bigcup_{n \in \mathbb{N}} A_{n}$ and $\bigcap_{n \in \mathbb{N}} A_{n}$.
(6) Prove or give a counterexample for the each of the following statements.
(a) For any three sets A, B, C,

$$
A \cup(B \cap C)=(A \cup B) \cap C .
$$

(b) Let $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ be any sequence of sets and A a set. Then

$$
A \subseteq \bigcup_{n \in \mathbb{N}} B_{n} \Longrightarrow(\exists n \in \mathbb{N})\left(A \subseteq B_{n}\right)
$$

(7) Prove that for each natural number n,

$$
3^{n}>n^{2}
$$

(8) Let X be a set of 3 elements. Determine the number of elements of the power set of the power set of X (that is, of the set $\mathcal{P}(\mathcal{P}(X))$.
(9) For each natural number n, let $A_{n}=\left[1+\frac{2}{n}, \frac{6 n-3}{n}\right]$. Find $\bigcup_{n \in \mathbb{N}} A_{n}$ and $\bigcap_{n \in \mathbb{N}} A_{n}$.
(10) Let $a_{1}=0, a_{2}=6$, and for $n \geq 2$, let $a_{n+1}=4 a_{n}-3 a_{n-1}$. Prove that $a_{n}=3^{n}-3$ for all $n \in \mathbb{N}$.
(11) Prove or give a counterexample for the following statement. If A and B are sets, then $A \cup B \subseteq A \cap B$ if and only if $A=B$.
(12) Determine the coefficient of $u^{3} v^{4}$ in the binomial expansion of $(u-2 v)^{7}$.

