Practice Test 2

Math 290

Dr. Colonna

May 29, 2019

- (1) Specify whether each of the following statements is true or false. Justify your answers.
 - (a) $u \in \{\{u\}, u\};$ (b) $\{u\} \subseteq \{u, \{u\}\};$
 - (c) $\{\emptyset\} \subset \{\{u\}\};$ (d) $\{u\} \in \mathcal{P}(\{u\}).$
- (2) Specify whether each of the following statements is true or false.
 - (a) $\emptyset \in \{\{\emptyset\}\};$ (b) $\{\alpha\} \in \{\emptyset, \{\alpha\}\};$
 - (c) $\emptyset \subseteq \{\{\alpha\}\};$ (d) $\alpha \subseteq \{\alpha, \{\emptyset, \alpha\}\}.$
- (3) Let $S = \{1, b, \{1, b\}\}$. List all the elements of the power set of S.
- (4) Let $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $A = \{1, 2, 4, 6, 8\}$, $B = \{4, 5, 6\}$, and $C = \{3, 5, 7\}$. List the elements of the following sets:
 - (a) $(A \cap B) \cup C$; (b) $A (B^c \cup C)$; (c) $B \times (B \cap C)$;
 - (d) $A^{c} (B \cap C);$ (e) $A \cup (\emptyset^{c} \cap C)$ (f) (A (B C)).
- (5) For $n \in \mathbb{N}$, let $A_n = \left(1 \frac{2}{n}, \frac{2n+1}{n}\right)$. Find $\bigcup_{n \in \mathbb{N}} A_n$ and $\bigcap_{n \in \mathbb{N}} A_n$.
- (6) Prove or give a counterexample for the each of the following statements.
 - (a) For any three sets A, B, C,

$$A \cup (B \cap C) = (A \cup B) \cap C.$$

(b) Let $\{B_n\}_{n\in\mathbb{N}}$ be any sequence of sets and A a set. Then

$$A \subseteq \bigcup_{n \in \mathbb{N}} B_n \Longrightarrow (\exists n \in \mathbb{N}) (A \subseteq B_n).$$

(7) Prove that for each natural number n,

$$3^n > n^2.$$

-

- (8) Let X be a set of 3 elements. Determine the number of elements of the power set of the power set of X (that is, of the set $\mathcal{P}(\mathcal{P}(X))$).
- (9) For each natural number n, let $A_n = \left[1 + \frac{2}{n}, \frac{6n-3}{n}\right]$. Find $\bigcup_{n \in \mathbb{N}} A_n$ and $\bigcap_{n \in \mathbb{N}} A_n$.
- (10) Let $a_1 = 0$, $a_2 = 6$, and for $n \ge 2$, let $a_{n+1} = 4a_n 3a_{n-1}$. Prove that $a_n = 3^n 3$ for all $n \in \mathbb{N}$.
- (11) Prove or give a counterexample for the following statement. If A and B are sets, then $A \cup B \subseteq A \cap B$ if and only if A = B.
- (12) Determine the coefficient of u^3v^4 in the binomial expansion of $(u-2v)^7$.