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ABSTRACT
This paper presents a robust adaptive goodness-of-fit (GOF)
χ2 test event detector for non-intrusive load monitoring ap-
plications. We derive a closed form for the decision threshold
and a guideline for choosing the size of the detection data
window. Using real-world power data collected in residential
buildings, the proposed GOF detector shows superior perfor-
mance compared to the conventional generalized likelihood
ratio detector.

Index Terms— Event Detection, Goodness-of-Fit

1. INTRODUCTION

Nonintrusive load monitoring (NILM) is an emerging tech-
nology that can disaggregate individual electrical loads due
to various household appliances in individual buildings from
measurements made at a centralized location, such as the elec-
tric utility service entry. Knowledge of electricity consump-
tion and time of use in individual buildings is vital to con-
sumers and utility companies. For utility service providers,
this information provides the basis for billing and payments,
while for consumers, the utilities information helps monitor
and reduce energy consumption in buildings. Furthermore,
the electrical load usage due to appliances can be related to
the aggregated behavior of individual human beings, which
typically exhibits a periodicity in time on a number of scales
(daily, weekly, etc) that reflects the rhythms of the underlying
human activity. Hence, NILM is an ideal platform for ex-
tracting useful information about electricity usage, daily hu-
man activity, and thus in turn enables potential changes of
consumer behavior.

A typical electricity meter reports aggregated usage in-
formation, which is not very useful in determining the best
method for energy conservation. On the other hand, although
a metering system that explicitly meters individual circuits
and appliances can provide much more detailed information
regarding load energy consumption, the required additional
hardware and sensors would be prohibitively expensive. In
contrast to other systems, NILM reduces sensor costs by us-
ing relatively few sensors. From measurements of the voltage
and aggregate current at the utility service point, NILM dis-
aggregates and reports the operation of individual electrical
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Fig. 1. Measured voltage and current signals over time.

loads such as lights and motors. The current and voltage data
is often corrupted by a number of bursty periods of unusual
behavior due to degrading or abnormal load conditions for ap-
pliances on a household electricity network. Hence, applying
signal processing and data mining techniques in NILM ap-
plications for finding and extracting these anomalous events
becomes difficult because of these elements, [1, 2].

In this paper, we develop a framework for robust adaptive
appliance event detection. We consider the problem of event
detection based upon near real-time power data stream that
characterizes appliance activities in a household electricity
grid. The goal of event detection is to raise an alarm after the
onset of an event (i.e., on or off status of an appliance or appli-
ance state-transitions), which would enable identification of
the time-instant when the On or Off occurs. A simple way of
addressing the event detection problem is to look for changes
in the data stream and equate “change” with “onset of event”.
Changes in the data stream can be detected by comparing the
distribution of the most recent observations (the current set)
with the distributions of previous observations (the reference
set). This is often called “change detection.” Various methods
for detecting changes in data streams have been proposed (see
e.g., [3]). In the NILM application, conventional event detec-
tor often time requires periodic training to adjust the detection
threshold due to the dynamics of electrical loads in order to
achieve a high detection probability and a low false alarm rate.
This condition imposes severe limits on the achievable accu-
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racy of the event detector, thus reducing the practical usage of
a NILM system. This paper develops a robust adaptive detec-
tion scheme to detect appliance events with limited training
while achieving high detection accuracy.

2. LOAD POWER CALCULATION

In an AC electric power system, harmonics have always been
presented. Harmonics refer to spectral components present in
a voltage or current waveform, whose frequencies are integer
multiples of fundamental frequency (i.e., 60 Hz in the US) of
the voltage form. Harmonic currents are created by nonlinear
loads, such as variable speed drives (VSDs), electronic bal-
lasts for fluorescent lighting, switching power supplies, recti-
fiers. In general, we may define the instantaneous voltage and
current as follows:

v(t) = V0 +
∞∑

k=1

Vkcos(kωt + φvk) (1)

i(t) = I0 +
∞∑

k=1

Ikcos(kωt + φik) (2)

where V0, I0 is the average value. Vk, Ik is the amplitude of
the k-th harmonic of voltage and current, respectively. By
integrating the instantaneous power p(t) = v(t)i(t) over a
window period T , where T is typically one or more periods
of the fundamental frequency of the voltage waveform, we
obtain the average power

Pave(t) =
1
T

∫ t

t−T
p(τ)dτ (3)

= V0I0 +
1
2

∞∑

k=1

VkIkcos(φvk − φik) (4)

We note that (4) is related to many other power calculations
reported in the literature. For example, the IEEE working
group on power systems with nonsinusoidal waveforms and
unbalanced loads, [4], recommends the following fundamen-
tal active power, P1(t), by separating the fundamental com-
ponent V1 and I1 from the total voltage and current,

P1(t) =
1
2
V1I1cos(φv1 − φi1) (5)

Fig. 1 depicts a snapshot of experimentally measured voltage
and current signals caused by activities of appliances. The
plots clearly show that the voltage signal has a dominant first-
harmonic component, V1 and zero DC value, V0. Hence we
can approximate the voltage signal as

v(t) ≈ 1√
2
V1cos(ωt + φv1) (6)

Under this approximation, we can show that Pave(t) ≈ P1(t),
i.e., the average power calculation given in (4) is consistent
with the commonly used active power in the power industry.
Furthermore, we should note that in a practical NILM system,
Pave(t) or P1(t) varies over time t because of the continuous
changes in the appliance operation status.

3. EVENT DETECTION

We consider the problem of event detection based upon the
continuous power data stream collected from whole-house
power meters. The data stream is recorded and divided into
blocks (or windows) of n-samples. The goal of event detec-
tion is 1) to raise a flag after the onset of an event (i.e., on or
off status of an appliance or other appliance state-transitions),
and 2) to identify the time-instant where the change of appli-
ance status occurs. The proposed event detection consists of
two steps: 1) detect an event within each data block (or win-
dow) and 2) locate the time-instant of change for the event.
Next, we discuss the data signal model for detection.

3.1. Signal Data Model

From the calculated power data given in (4), we model the
discrete average power signal calculated as

xi = ei + wi, i = 1, 2, · · · , n (7)

where wi is the disturbance in power measurement and is as-
sumed to be distributed as a white Gaussian process. The
symbol ei is considered as an indication that the data sample
belongs to an appliance transition power signature. n is size
of the observation window of the sampled power data. We
should note that at a high sampling rate, the event signature
signal ei consists of the static state, transient state, and often-
times a bursty period due to nonlinearities of the appliance
load condition. Thus, the overall power signal behavior xi is
complicated and must be processed using statistical means. If
there is no event, only white noise exists, which can be repre-
sented as xi = wi, i = 1, · · · , n. The event detector operates
on two sliding data windows defined as follows:
Pre-event window. The pre-event window is used as the ref-
erence for upcoming events. The pre-event window is defined
as

Wi,k = {xn|i ≤ n ≤ k} (8)
Detection window. This is the window preceding the pre-
event window. This is the working window of the GOF test.
It is in this window we intend to detect the occurrence of an
event, i.e., on or off of an appliance. The detection window is
defined as

Wl,m = {yn|l ≤ n ≤ m} (9)
where l = i + n, and m = k + n. Next, we develop a frame-
work for event detection based on the χ2 test for goodness-of-
fit. The parameters of detectors of the detection window are
compared to the pre-event window, and a decision is reached
based on the outcome of a event detector.

3.2. χ2 Test of Goodness-of-Fit (GOF)

The goodness-of-fit test seeks to determine whether a set of
data could reasonably have originated from some given prob-
ability distribution. Assume that we have n independent and
identically distributed (iid) random samples xi, i = 1, 2, · · · , n,
drawn from a distribution G(x), which is a priori unknown.
We have a supposed distribution function F (x). The problem
can be formulated as the binary hypothesis testing problem

H1 : G(x) ̸= F (x)
H0 : G(x) = F (x) (10)
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GOF tests will allow deciding between the two hypotheses in
(10). In event detection, we will explain the GOF problem
differently: There exist two sets of iid samples. The reference
set (i.e., the pre-event window data set) consists of n samples
xi, i = 1, · · · , n, with the distribution G(x). The test set
(i.e., the detection window data set) consists of n samples yi,
i = 1, · · · , n with distribution F (y). Both G(x) and F (y)
are unknown. The goal of GoF tests is to decide between the
two hypotheses of (10). If the null hypothesis H0 is rejected,
we claim that an appliance event occurs.

Among various goodness-of-fit tests, the χ2 test has been
widely used in statistics literature. In a standard application
of the χ2 test, the test procedure requires a random sam-
ple of size K from a population whose probability distribu-
tion is unknown. These K observations are arranged in a
frequency histogram, having n bins or class intervals. Let
pi(i = 1, · · · , n) denote the probability of an observation
falling into the ith bin, and yi be the observed frequency in
the ith bin, the test statistic is

X2 =
n∑

i=1

(yi − Kpi)2

Kpi
. (11)

where the quantity Kpi is the expected frequency in the i-th
bin. If the observed frequency satisfies the supposed distri-
bution, these observed values follow a multinomial distribu-
tion with pi being probabilities, [5]. In power signal event
detection, we consider the observation in the detection win-
dow yi ∼ F (y) be the observed frequency in the i-th time-
instant within the detection window [6]. Because the quantity
Kpi is unknown, it will be estimated from the data samples
xi ∼ G(x) in the pre-event window. We can show that the
maximum likelihood estimate of Kpi based on the pre-event
window data xi, i = 1, · · · , n, is given by,

K̂pi = xi. (12)

Inserting (12) into (11), we obtain the χ2 test for goodness-
of-fit

ℓGOF =
n∑

i=1

(yi − xi)2

xi
(13)

We would reject the H0 hypothesis that the distribution of the
population is the hypothesized distribution if the calculated
value of the test statistic [5]

ℓGOF > χ2
α,n−1 (14)

with 100(1 − α)% confidence interval and n − 1 degrees of
freedom. We should note that χ2

α,n−1 is the decision thresh-
old that depends on the window size n and the detection con-
fidence level α. This observation raises a question: how to
determine the proper window size n?

Note that in the data model (7), the disturbance wi implies
the absence of event and is assumed to be a Gaussian process
with mean µw and variance σ2

w. These two quantities are un-
known and need to be estimated from (pre-event) training data
of n samples. If we use the sample mean w̄ = 1

n

∑n
i=1 wi to

estimate µw, we can be 100(1 − α)% confident that the er-
ror |w̄ − µw| will not exceed a specified amount E when the

minimum sample size is, [7]

n0 =
(zα/2σw

E

)2
(15)

where zα/2 is the upper 100α/2 percentage point of the stan-
dard normal distribution. The quantity E can be chosen by the
users. For example, if we decide to discard appliance events
that are less than 30 Watts, we could set E = 30. Further-
more, the maximum window size, n1, of the detection win-
dow should be limited by the maximum length of the state-
transient transient of appliance signatures. Thus, we obtain

n0 < n < n1 (16)

The importance of Eqns. (14) or (16) in GOF event detection
is that they provide a guideline for choosing the window size,
and then the decision threshold, based on no-event training
data. Once the window size is chosen, repeated training or
a data-dependent threshold becomes unnecessary. This is a
significant advantage compared with the conventional gener-
alized likelihood ratio test which will be discussed below.

3.3. Conventional Generalized Likelihood Ratio Test

The generalized log-likelihood ratio test (GLR) detector for
k-th data block is defined as

ℓk
GLR = ln

f(xk; µ̂1, σ̂2
1)

f(xk; µ̂0, σ̂2
0)

=
n∑

j=1

ln
f(xk

j ; µ̂1, σ̂2
1)

f(xk
j ; µ̂0, σ̂2

0)
(17)

where the kth data vector xk = [xk
1 , · · · , xk

n]T are modeled as
the random realizations of a Gaussian normal process. µ̂i, σ̂2

i
are the maximum likelihood estimates of the mean and vari-
ance under hypothesis Hi, respectively. Notice that the nor-
mal probability density function is

f(xk
j ; µ̂i, σ̂

2
i ) =

1
σ̂i

√
2π

e−(xk
j −µ̂i)

2/2σ̂2
i (18)

Hence by straightforward derivation, we obtain

ℓk
GLR =

n∑

j=1

(
(xk

j − µ̂0)2

σ̂2
0

−
(xk

j − µ̂1)2

σ̂2
1

)
(19)

where the maximum likelihood estimates are obtained from
the pre-event window and the detection window as follows:

µ̂1 =
1
n

n∑

i=1

yi σ̂2
1 =

1
n

n∑

i=1

(yi − µ̂1)2 (20)

µ̂0 =
1
n

n∑

i=1

xi σ̂2
1 =

1
n

n∑

i=1

(xi − µ̂0)2 (21)

Using the GLR, we would reject the null hypothesis H0 if
ℓk
GLR > ηk

GLR, where ηk
GLR is the decision threshold for k-th

data block. Due to the dynamic behavior of the appliance load
conditions, we emphasize that this decision threshold shall be
obtained based on periodic training in order to achieve a high
correct detection rate and a low false alarm rate.
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Table 1. Labeled Appliance Events
ID Appliance Event Description
1 Microwave went to On
2 Microwave went to Off
3 Oven went to On
4 Oven went to Off
5 Lamp #1 in living room went to On
6 Lamp #1 in living room went to Off
7 Lamp #2 in living room went to On
8 Lamp #2 in living room went to Off
9 Lamp #3 in living room went to On
10 Lamp #3 in living room went to Off

Table 2. Detection Results
GOF GLR GLR*

PD 99.9% 72.7% 99.1%
PFA 0.9% 0.58% 1.3%

4. EXPERIMENTAL RESULTS

A series of experimental week-long data-sets were collected
in 3 different residential units. Through an initial training pe-
riod, we obtained an initial set of state-transition transients for
the appliances of interest in these homes. A set of plug-level
power meters and other sensors were used to collect ground-
truth data about the operation of the appliances during the pe-
riod of study. From the measured voltage and current signals,
we calculated the average power based on (4). We then con-
ducted experiments on these power data using the developed
event detector for performance evaluation.

Fig. 2 depicts a snapshot of power data with labeled ap-
pliance events over about a 250-second period. The label IDs
for the appliance events (ID 1 ∼ 10) are summarized in Ta-
ble 1. The detection results by the GOF and GLR detectors
are marked with different symbols (! for GOF and × for
GLR, respectively). The results show that the GOF correctly
detects all the events ID 1 ∼ 10, while the GLR fails to detect
events 3, 7, 8, 9, and 10. Note that event ID 11 is part of the
state-transition transient signal for the oven (ID 4) but is de-
tected as an event. Here, we consider this outcome as a false
alarm since we focus on event detection. However, this error
can be corrected in the subsequent classification stage using
the turn-on state-transition signature waveform of the oven.
Next, we calculate the correct detection rate PD, defined as
the ratio of the number of correctly detected events over the
total number of events (ground truth), and the false alarm rate
PFA, defined as the ratio of the number of falsely detected
events over the total number of events. The average detection
rate and false alarm rate over 20 consecutive sets of collected
power data from the 3 residential units are summarized in Ta-
ble 2 for the three detectors: GOF (with a fixed threshold cal-
culated by (14) and (16)), GLR (with a fixed threshold), and
GLR* (with periodic training for adjusting threshold). The
GOF shows the best performance in detection rate.
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Fig. 2. Labeled and detected events by GOF (denoted by red
!) and GLR (denoted by green ×).

5. CONCLUSION

In this paper we develop a robust adaptive goodness-of-fit
χ2 test for appliance event detection. The preliminary re-
sults based on the power data collected from three residential
buildings show that the GOF test requires limited training and
achieves a superior performance than the conventional gener-
alized likelihood ratio detector.
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