Cooption and Catalysis in a Model of Technological Evolution

Eric “Siggy” Scott
Department of Engineering and Computer Science
Department of Mathematics

Mentors:
J. Doyne Farmer (SFI)
Stephen Thorman (AU)

Abstract

Most evolutionary algorithms ultimately focus on optimizing solutions to a single target function, coevolution and related methods notwithstanding. Cooptive phenomena between organisms adapted to distinct environmental niches, however, lie at the heart of the evolution of complex functions in nature and technology, where solutions adapted for one problem are repurposed to solve another, related problem. Boolean functions have become a popular toy model for exploring the dynamics of such processes, and provide insight into new approaches to evolutionary computation. We implemented the basics of a model of coevolutionarily evolving logic circuits developed by Brian Arthur and Wolfgang Polak, and began to explore the sort of coaptive and catalytic phenomena its success depends upon. We observed a significant difference in the dynamics of evolution between when the full suite of fitness functions is present, versus when only a few pieces of the selective pressure are active at a time. Future work will examine these dynamics in more detail.

Artificial Neural Network Example

Evolutionary computation (EC) aims to exploit the complexity-generating power of adaptive processes in nature to optimize solutions for real-world, human-defined problems. To date, the state of the art is notoriously limited when compared to the algorithms’ natural counterparts. It is the present author’s emphasis that part of the solution to these difficulties lies in Stephen Jay Gould’s concept of coaptation, in which functions evolved for one purpose or need are coopted and further refined for another task or environment (Gould 1983). Coaptation exploits commonalities and chance relationships between biological niches to learn and ultimately generalize from multiple fitness functions and develop higher quality and/or more complex solutions; in this paradigm, intermediate functions play a major role.

We illustrate this perspective with a toy example using an Artificial Neural Network (ANN). A simple ANN was trained via backpropagation to simulate the OR, XOR, and COUNT0NES (counting the number of ones in the input signal) functions for a truth input string. The solution is a function used as the initial condition to solve another problem, and coaptive effects are observed. For example, learning XOR — a more difficult problem — first makes it trivial to learn OR. Learning OR first, however, inhibits the network’s ability to learn XOR.

Technological Evolution

Cooptive effects are not limited to the biological domain, being the focus of the study of path-dependence and increasing returns in economics. In particular, the process of technological evolution by combination of existing technologies into new solutions relies heavily on the development of intermediate technologies that are retooled for myriad purposes.

We analyze a model of evolving logic circuits developed by Arthur and Polak (2006). Half-circuits are generated via random compositions of circuits already in the pool, and evaluated against a battery of fitness functions. Its mean fitness score defining its probability of being incorporated into a new circuit via tournament selection.

The model was implemented in Common Lisp, an adjacency matrix used to remember circuit designs, a topological sort on its components used to order parallel modules for execution, and a Reduced Ordered Binary Decision Diagram (ROBDD) used to cache the truth tables of each circuit for fast processing.

As a first step toward creating a map of coaptive relationships between initial conditions and fitness functions similar to the one we created for the ANNs, we graph the number of times the HALF-ADDER function was evolved in 5,000 generations under different combinations of selective pressures.

We found no statistically significant change in evolution rate for the HALF-ADDER between different combinations of initial conditions (i.e., circuits available in the initial pool) and selective pressures (fitness functions in the battery) involving the AND or OR functions. But when several dozen fitness pressures were active, the search process diverged from the HALF-ADDER, paralyzing its evolution.

Future Work

The goal of this research is to address questions like:

• Does the presence of an AND circuit in the primitives set facilitate the evolution of a HALF-ADDER circuit?
• Does the presence of both AND and HALF-ADDER fitness functions as a multiobjective selection pressure facilitate the evolution of a HALF-ADDER?
• Are the catalytic effects of fitness functions greater than the sum of their parts?
• What functions must evolve, and in what order, to allow more complex functions to be solved?
• What methods besides logic circuits (e.g., biological neural networks) might be amenable to A) simulation of coaptive evolution, and/or B) combinatorial evolution.

We aim to map the dependencies in question in more detail, and to develop a framework for systematically studying and representing coaptive phenomena (or arbitrary optimization problems).

Selected Biography