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Abstract. When combined with machine learning, the black-box analy-
sis of fitness landscapes promises to provide us with easy-to-compute
features that can be used to select and configure an algorithm that is
well-suited to the task at hand. As applications that involve computa-
tionally expensive, stochastic simulations become increasingly relevant
in practice, however, there is a need for landscape features that are both
(A) possible to estimate with a very limited budget of fitness evalua-
tions, and (B) accurate in the presence of small to moderate amounts of
noise. We show via a small set of relatively inexpensive landscape fea-
tures based on hill-climbing methods that these two goals are in tension
with each other: cheap features are sometimes extremely sensitive to even
very small amounts of noise. We propose that features whose values are
calculated using population-based search methods may provide a path
forward in developing landscape analysis tools that are both inexpensive
and robust to noise.
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1 Introduction

Tuning the parameters of large, stochastic simulations in science and engineer-
ing is becoming an increasingly important and popular application domain for
evolutionary algorithms (EAs) and metaheuristics (ex. [6,16,17]). These applica-
tions tend to involve fitness functions that are very expensive to compute—each
evaluation taking on the order of seconds, minutes, or even hours to complete.
To approach problems of this kind effectively, the algorithm designer must have
some means of quickly and efficiently gathering information about the problem
that can help reduce the number of generations that are necessary for a search
method to reach a satisfactory solution. In applications where a thorough ana-
lytical understanding of the problem is not available, this information-gathering
process is often restricted to learning about the problem by directly sampling
the evaluation function, which is treated as a black boz.

© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 952-961, 2016.
DOI: 10.1007/978-3-319-45823-6_89



Revisiting the Problem of Noise 953

Finding ways of characterizing salient properties of fitness landscapes via
empirical data—and, especially, of predicting what kinds of algorithms are likely
to perform well on them—has been a fundamental goal of metaheuristics and
evolutionary computation research since the early days of the field. Researchers
have leveraged a number of different mathematical ideas over the years (such
as epistasis, correlational properties, and information theory) to produce several
families of black-box landscape features [11,14,18,19]. Because these statistical
methods are based solely on queries made to the objective function, they can
be used even on poorly-understood problems, where little or nothing is known
a priori about the relationships among variables.

In order for black-box landscape analysis to be useful in practice, however,
the information it provides about how to solve a given problem must outweigh
the cost of calculating the statistical features. The ‘budget’ of computational
effort that can be spared for up-front analysis is especially small in applications
whose evaluation functions involve expensive scientific simulations. A number
of landscape features have been proposed that can be computed effectively with
especially few queries to the evaluation function, at least on deterministic (noise-
less) test functions [1]. Real-world fitness landscapes, and stochastic simulations
in particular, often display some degree of noise, however.

In this paper, we are concerned about the intersection of noisy fitness land-
scapes and the calculation of informative landscape features for computationally
intensive applications. In some circumstances, noise may interfere, not only with
the progress of a search algorithm as it seeks a global optimum, but also with
the attempts of a landscape analysis tool to accurately estimate properties of
the task. The problem of noisy fitness functions was heavily studied in the 1990’s
and early 2000’s, and a variety of well-understood approaches are available for
configuring evolutionary algorithms to cope with noise [3,10]. Coping with noise
does not come for free, however—it often requires extra fitness evaluations which
we may not be able to afford when the evaluation function is computationally
intensive.

We find it necessary, then, to revisit the well-studied question of noise, now
in the context of a pressing need for effective landscape analysis tools that make
as few queries as possible to the evaluation function. In this study, we examine
several cheap-to-evaluate landscape features and show that a subset of them are
extremely sensitive to even very small amounts of noise. Furthermore, we find
that the error that this noise introduces into feature estimation can be difficult
to correct for in an efficient way. As an alternative, we propose features that
use population-based methods as a means of gathering information about the
landscape in a way that is both inexpensive and robust to noise.

1.1 Research Questions

Intuitively, it’s clear that qualitative features of an objective function such as
multimodality, deceptiveness, or the correlation of traits among parents and off-
spring [2,13] convey a great deal of information about whether a given search
strategy is well-suited to particular task. Early work on landscape analysis sought
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to identify ways in which a problem might be “easy” or “hard” for a particular
algorithm of choice (namely the genetic algorithm, ex. [8,9]). But as the philos-
ophy of the research community moves toward “solving the problem at hand in
the best way possible, rather than promoting a certain metaheuristic” [5], the
primary purpose of landscape analysis has shifted to serving as a predictive aid
in the design or selection of a custom algorithm that is well-suited to the given
task [15]. Landscape features can be used as input data for machine learning
algorithms, which are increasingly being used to learn predictive models for use
in algorithm selection and configuration (ex. [4]). Even if a particular statistical
feature is difficult for an engineer to interpret in terms of intuitive concepts like
multimodality, the feature may be useful if it provides salient or complementary
information to a machine learner in conjunction with other features.

If there is a great deal of error or bias in an estimate of a feature, however, its
usefulness as a basis for learning may in some cases be greatly diminished. There
is a practical need, then, for landscape features that are both (A) inexpensive
to estimate, and (B) accurate in the presence of small to moderate amounts of
noise. Table1 details a number of features, taken from Abell et al., that can
typically be computed in on the order of a few hundred or a few thousand fit-
ness evaluations, but which are still sufficiently informative to enable a portfolio
method to perform well on a suite of noiseless benchmark functions [1]. These
satisfy our criterion of inexpensiveness (A), but how do they fair with noise (B)?

Research Question 1: How sensitive to noise are the 8 landscape features
identified in Table 1?7

Next we begin an investigation into how error in the estimation of features can
be corrected for. A straightforward way to do this is to seek to approximate the
features of the expected fitness landscape F (x) by taking several fitness samples
each time the landscape is queried and returning their ‘explicit average’ [10].

Research Question 2: Is using explicit averaging an effective means of
correcting for noise when measuring these features?

Finally, the features in Table 1 rely heavily on the results of a number of runs
of a hill-climbing method as a means of exploring the structure of the landscape.
Trajectory methods such as this are notorious for their sensitivity to noise. We
consider the possibility that a population-based method may be more effective
at identifying informative local optima in the presence of noise:

Research Question 3: Can population-based algorithms serve as a useful
alternative to hill-climbers for quickly gathering information about noisy
fitness landscapes?
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Table 1. Landscape features used this study.

Feature Description

1 |MeanPairwiseLocalOptDist | Mean pairwise distance between optima found by
a number of hill climbers.

2 StdPairwiseLocalOptDist |Standard deviation of (1).

3 | MeanLocalToBestDist Mean distance between the best known optimum
and the optima found by a number of hill
climbers.

4 | StdLocalToBestDist Standard deviation of (3).

5| FractionBest The ratio of local optima found by the

hill-climbers that have fitness equal to the best
known optimum.

6 | MeanRandomToLocalDist Mean distance from a number of random points to
the nearest optimum found with a hill climber.

7 | StdRandomToLocalDist Standard deviation of (6).

8 | FDC Local fitness distance correlation, based on the

best result of the hill-climbers

2 Methodology

2.1 Test Functions

Our experiments are conducted on 10-dimensional instances from the suite of 24
test functions that are implemented in version v15.03 of the COmparing Contin-
uous Optimisers (COCO) platform, a framework that has been used for a number
of years in the Black-Box-Optimization-Benchmarking (BBOB) workshops held
at GECCO and CEC. This test suite includes many well-known unimodal and
multimodal real-valued functions, such as the sphere, Rastrigin, and Rosenbrock
functions, along with rotated variants, etc., all of which are defined on a range
of [-5,5] in each dimension. The COCO source code is available from http://
coco.gforge.inria.fr/.

In addressing RQ1, our independent variable will be the amount of noise on
the landscape. We opt to use a multiplicative noise model of the form

Fz) = f(x) +p-[f(x) - f(@)] € (1)

where f(x) is the original (noiseless) test function, f(x*) is the fitness of the
global optimum, and ¢ ~ N(0,1) is a standard Gaussian random variable.
The constant p controls the strength of the noise. In this model, the amount
of noise that is added to the landscape at the point @ is proportional to the dif-
ference between its fitness and the global best fitness—so, the poorer a solution
is, the nosier it is. This qualitative rule holds in many applications, where poor
solutions often correspond to solutions that have especially unstable behavior.



956 E.O. Scott and K.A. De Jong

2.2 Features

All of the features in Table 1 make some use of the result of a number of inde-
pendent runs of a hill-climbing algorithm. We implement the hill climber as a
(14 1)-style evolutionary algorithm, and we run this method 100 times to gather
a set of representative local optima from which features may be computed. Each
individual in the EA is represented as a point © € R%, with L = 10, and we
apply a 1-dimensional Gaussian mutation operator to each element of the off-
spring with probability 1/L. We let each hill climber run for 3,000 steps, so as to
get a stable estimate of the features. It is worth noting, however, that features
based on hill climbing can be informative even if they are run only for a very
small number of steps [1].

Features 1-4 are computed directly from the best individuals found by the
100 runs. Feature 5 (FractionBest) denotes the fraction of the 100 hill-climbing
runs whose best individual has fitness equal to the overall best individual found
in all 100 runs. The intent of this feature is to measure the frequency with which
a greedy search method converges on a local optimum. There is always some
variation, however, in just how closely a given climber will converge to the true
local optimum. For the purposes of calculating this feature, then, we consider
two individuals to have ‘equal’ fitness if and only if the difference between their
fitnesses is less then an arbitrary threshold value of 0.01.

We compute features 6 and 7 using 1,000 random points. For feature 8, we
use a local variant of Jones’ well-known fitness distance correlation (FDC) [11].
Classical fitness distance correlation requires knowledge of the global optimum
to be computed. Since we are using synthetic test functions, we do have knowl-
edge of the global optimum. The purpose of this study, however, is to examine
the behavior of landscape features as exploratory, black-box analysis tools. We
follow Kallel and Scipemaier in defining a local FDC simply by substituting the
best known optimum for the global optimum [12]. In our case, the “best known
optimum” refers to the best optimum found by the 100 hill-climbing routines.

2.3 Coping with Noise

A test of RQ2 involves performing the feature measurements as described above,
but we now replace the fitness function F'(x), which is a random variable, with
a constant estimate F'(x) of the expected fitness landscape like so:

Fla) =+ S F@). )

We will test this method’s effectiveness by empirically examining the relationship
between the observed error in feature estimates and the number of samples V.

To test RQ3, we replace the (1+1)-style EA used in the feature calculations
with a (1 + A)-style EA. We vary the value of p and keep A = p.
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Feature Profiles for 10-D Noiseless BBOB Objectives

Feature Value

Fig. 1. Mean feature profiles, averaged across 50 ten-dimensional instances of each of
the 24 noiseless test functions in the BBOB suite.

3 Results

3.1 Sensitivity Analysis

The features we have implemented provide us with an eight-dimensional char-
acteristic profile of each test function. The parallel plot in Fig. 1 visualizes these
profiles for all 24 of the noiseless test functions. We consider the profile calcu-
lated from each noiseless landscape to be the ‘true’ feature values. The question
is how our estimate of those feature values incurs error as noise increases (RQ1).

Figure 2 shows the value of each feature estimate, averaged over all 24 test
functions, as we increase the value of p (see Eq. 1). While there is a great deal of
variance in behavior across the 24 functions (not shown), in general we find that
features 1—4 are extremely sensitive to noise: the estimate becomes inaccurate as
soon as p reaches a value of about 10~3. The remaining feature estimators (6-8)
appear to be reasonably robust to small amounts of noise—but they suddenly
become inaccurate when p reaches a threshold of about 0.25.

This answers RQ1: The features under study are highly sensitive to noise in
the fitness landscape.

3.2 Explicit Averaging

We’ve shown that we can make the error in feature estimation explode by adding
small amounts of artificial noise. Now we turn to the question of whether we can
attenuate this error through explicit averaging of more than one fitness sample.
We implemented explicit averaging for fitness evaluation during the hill-climber
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Sensitivity of Features to Noise, Averaged over all 24 Functions
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Fig. 2. Deviation between the estimated and true feature values as noise increases.

runs—that is, in this section we use the same (1+1)-style EA to compute feature
estimates, but now every time an individual has its fitness evaluated, some N > 1
fitness samples are taken and averaged according to Eq. 2.

Let the magnitude of the noise be fixed at the small value of p = 5-107%.
Figure 3 shows the result of feature estimation averaged over all 24 instances
while allowing the number of samples N to vary. We find that using explicit
averaging of fitness has very little discernible impact on the accuracy of fitness
measurements. Even at N = 15, a great deal of error remains.

Our answer to RQ2 is thus negative: it seems that explicit averaging is not
an effective means of correcting for noise.

3.3 Population-Based Search

It is well known that population-based search methods can perform a kind of
‘implicit averaging’ that makes their performance robust to noise. This is borne
out in our experiments with the (u + A\)-EA, shown in Fig.4. We see a sharp
reduction in error when we increase p from 1 to 2. As u grows, however, we see
stark, systematic deviations from the true feature values. This may be because,
while the population-based EA is not significantly affected by small amounts
of noise, it also has a tendency to converge to high-quality or global optima
instead of the [ocal optima that the features based on the (1+1)-EA are designed
to seek out.

Our answer to RQ3 is mixed, then: Replacing the hill-climbers in these
features with a population-based algorithm does overcome noise, but it changes
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the kind of information that the features gather from the landscape. Whether
this information is useful for prediction or not is a question that is beyond the
scope of this study.

Mean Error in Feature Estimate

Change in Error with Num Samples, Averaged over all 24 Functions
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Fig. 3. Deviation between the estimated and true feature values as the number of
explicit fitness samples increases.
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Fig. 4. Deviation between the estimated and true feature values as the population size
increases.



960 E.O. Scott and K.A. De Jong

4 Conclusion

Noise poses a particularly difficult challenge to the solution of computationally
expensive problems. We find that the features under study, which are based on
identifying local optima with a greedy search method, are sensitive to noise,
yielding a positive answer to RQ1. Even very, very small quantities of noise are
sufficient to entirely frustrate efforts to accurately measure features of a fitness
landscape with these methods. Furthermore, we found that explicit averaging
of many fitness samples is not sufficient to substantially attenuate the error
caused by noise. A large number of fitness samples may be necessary to fully
counteract even the impact that a very minuscule quantity of noise has on feature
measurements—answering RQ2 in the negative. Consequently, the features we
have studied here, while they are initially appealing for computationally intensive
applications because of their low cost, become computationally infeasible in the
presence of noise.

We have shown that modifying these features to use a population-based algo-
rithm in place of the hill-climbers is a promising approach, allowing us to over-
come the issue of noise (RQ3). Because these algorithms are less greedy than a
hill-climber, however, they gather different information about the landscape, and
are less effective at collecting a representative sample of diverse local optima.

Our findings suggest that landscape analysis researchers should look toward
the design of features that use population-based algorithms to gather information
about the landscape. Future work might, for instance, explore replacing hill-
climbers with state-of-the-art multimodal optimization methods. These may be
able to overcome the noise problem while still gathering a representative sample
of local optima [7]. Such an approach may be able to maintain some of the
computational efficiency of the hill-climbing approach while also attaining some
robustness to moderate amounts of noise.
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