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Abstract. Here we present a framework for the automatic tuning of
spiking neural networks (SNNs) that utilizes an evolutionary algorithm
featuring indirect encoding to achieve a drastic reduction in the dimen-
sionality of the parameter space, combined with a GPU-accelerated SNN
simulator that results in a considerable decrease in the time needed for
fitness evaluation, despite the need for both a training and a testing
phase. We tuned the parameters governing a learning rule called spike-
timing-dependent plasticity (STDP), which was used to alter the synap-
tic weights of the network. We validated this framework by applying it
to a case study in which synthetic neuronal firing rates were matched
to electrophysiologically recorded neuronal firing rates in order to evolve
network functionality. Our framework was not only able to match their
firing rates, but also captured functional and behavioral aspects of the
biological neuronal population, in roughly 50 generations.

Keywords: Spiking neural networks · Evolutionary algorithms ·
Indirect encoding · Neurophysiological recordings · Plasticity · Data
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1 Introduction

As the power and availability of high-performance computing resources grows,
large and biologically realistic networks of spiking neurons are becoming increas-
ingly relevant as a computational modeling tool. Networks consisting of on the
order of hundreds or thousands of neurons allow researchers to formulate models
that can represent how neural circuits give rise to cognition and behavior [12],
and they allow engineers to prototype novel mechanisms that may prove useful
in applications of neuromorphic hardware [9].
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An important step in the design of these networks is the selection of parame-
ter values that enable the model to perform a desired target function. Simulations
of spiking neural networks (SNNs) tend to be very computationally expensive,
and involve a large number of free parameters. For instance, even after a model of
a neurological system has been constrained with the best available physiological
data, it is not uncommon for an SNN to exhibit tens or hundreds of thousands
of unknown synaptic weight parameters that must be specified by the model
designer. Furthermore, SNN applications are often based on recurrent network
topologies, where gradient-based optimization methods (such as backpropaga-
tion) are inapplicable. For these reasons, the task of parameterizing an SNN to
solve a particular task, or to accurately model particular biological data, is an
especially difficult kind of neural network optimization problem.

In this paper, we propose a two-pronged framework for tuning the para-
meters of spiking neural networks. First, we achieve a drastic reduction in the
dimensionality of the parameter space by using a learning mechanism as an
indirect encoding method for automatically adapting the weights of neural con-
nections. This allows us to use an evolutionary algorithm (EA) to tune only the
coarse-grained structure of the network and the global parameters of the learning
method itself. Second, we use a GPU-based SNN simulator to accelerate fitness
evaluation. This allows us to compensate for the increased computational effort
that is required to train the networks through learning. To learn the synaptic
weights, we apply a standard nearest neighbor implementation of spike-timing-
dependent plasticity (STDP) [11], a widely-used and biologically realistic model
of synaptic plasticity which has been studied experimentally [4] as well as com-
putationally.

We demonstrate the functionality of this framework by applying it to a
case study in which an SNN is tuned to match neural recordings from the rat
retrosplenial cortex (RSC) [1]. To our knowledge, this is the first attempt to
apply search algorithms to train SNNs to replicate neurophysiological data from
awake, behaving animals. Existing work in the area of SNN synthesis has either
trained recurrent networks to match high-level animal behavior in cognitive tasks
[7,13,17], or it has focused on tuning the parameters of individual neuron models
to match electrophysiological data [8,14–16]. However, in order to better under-
stand the mechanisms underlying neurological circuits and to verify theoretical
models of cognition, it is important that they are able to match neurological
data in terms of neuronal firing rates as well as population functionality and
behavior. Sometimes the choice of these parameters can be constrained by high-
quality physiological data [20], but even with the best-understood brain regions
we almost never know the precise value that these parameters should assume to
best mimic nature. We show that this can be done effectively through the use of
the present evolutionary parameter-tuning framework.

In general, neural networks have been successfully evolved using both direct
and indirect encoding schemes. The NEAT and HyperNEAT algorithms [18,19]
utilize an indirect encoding scheme in order to evolve increasingly complex net-
work topologies, while Carlson et al. [5] used a similar approach to ours to
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evolve SNNs whose neuronal responses gave rise to receptive fields similar to
those found in neurons from the primary visual cortex. However, this study used
artificial data and did not perform a behavioral task. Asher et al. [2] used a
direct encoding scheme to train an artificial neural network (ANN) to perform
visually- and memory-guided reaching tasks. However, this approach took thou-
sands of generations to evolve, and yielded a network that had less biologically
realistic neuronal units. To our knowledge, evolutionary algorithms utilizing indi-
rect encoding have not been used to tune the parameters of networks containing
realistic spiking neurons in order to perform a cognitive task.

To summarize, our approach is novel in three key ways: (1) We use biologically
plausible spiking SNNs with realistic neural dynamics that not only reproduce
the behavior of neural circuits, but also match empirical data at the neuron level
while simultaneously capturing the holistic behavior of the circuit, (2) we use an
indirect encoding approach evolutionary algorithm to tune SNNs, and (3) we use
GPUs to run populations of SNNs simultaneously, thus speeding up the search
process. This approach may be useful for replicating other neural datasets, and
for creating biologically plausible SNNs.

2 Methodology

We test our STPD-based encoding method by fitting the activity of a network
of 1,017 neurons to neurophysiological and behavioral data that have been pre-
viously collected by Alexander and Nitz from six male Long-Evans rats [1]. In
neuroscience models, this topology is often loosely, manually specified based on
the known, somewhat incomplete properties of a real structure in the brain. In
the present case, we begin with a pre-specified network topology that defines the
coarse-grained connectivity structure among several groups of neurons (Fig. 1).
The goal of parameter tuning is to adjust the details of the network—such as
synaptic weights, the number of connections between groups, and/or the behav-
ioral parameters of the neurons in each group—such that the network success-
fully produces the desired target behavior.

2.1 RSC Model

In the current study, each SNN contained three groups of neurons, shown in
Fig. 1: 417 excitatory input neurons, which handled the encoding of the behav-
ioral inputs; 480 regular-spiking excitatory Izhikevich neurons and 120 fast-
spiking inhibitory Izhikevich neurons [10]. The network had four types of connec-
tions: inputs to excitatory (Inp→Exc), inputs to inhibitory (Inp→Inh), recur-
rent excitatory (Exc→Exc), and inhibitory to excitatory (Inh→Exc). All synaptic
projections were random with a 10% chance of connectivity. No topology was
enforced. To train the network, a learning rule known as STDP was used to
update the weights of the network [4]; specifically, a standard nearest-neighbor
implementation [11]. Homeostatic synaptic scaling was incorporated into the
STDP rule in order to keep the neuronal firing rates within a reasonable regime
by scaling to a target firing rate (for more details see Carlson et al. [6]).
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Fig. 1. The network topology used in the current study included four input groups,
excitatory and inhibitory neuron populations, feedforward inhibition, and recurrent
excitation, with 10% connectivity between neurons.

2.2 Parameters and Training

The automated tuning framework was used to evolve a total of 18 parame-
ters, which were related to plasticity, overall firing rates and weight ranges (see
Table 1). These parameters were used as inputs to the CARLsim GPU-based
simulation framework, which we used to run the SNN models [3,5]. Twelve
parameters related to STDP were evolved, which correspond to three types of
STDP curves. The remaining parameters control the homeostatic target base
firing rates for the excitatory and inhibitory populations, and the initial and
maximum weight values for each set of inter-group connections.

Table 1. Parameters initialized via the ECJ framework

Parameter A+ A− τ+ τ− Base

FR

(exc)

Base

FR

(inh)

Inp-

Exc

Init.

Inp-

Inh

Init.

EE

Init.

IE Init.

Minimum −0.0002 −0.0002 5.0 5.0 5.0 5.0 0.01 0.01 0.001 0.001

Maximum 0.004 0.004 100.0 100.0 20.0 20.0 0.5 0.5 0.5 0.5

Std. dev −0.00042 −0.00042 9.5 9.5 1.5 1.5 0.049 0.049 0.0499 0.0499

Each network was trained on a subset of trials from the Alexander and Nitz
experiments [1]. In the present study, each generation underwent a training ses-
sion and a testing session. Both consisted of 150 behavioral trials, which were
drawn randomly from separate subsets of the total number of trials recorded to
ensure that there was no overlap. In the testing phase, STDP was disabled in
order to keep the synaptic weights fixed following training.

Following testing, the population was evaluated by summing the best cor-
relations between the experimentally observed and simulated neurons for each
SNN. The best correlations were found by first correlating every simulated neu-
ron (n = 600) against every experimentally observed neuron (n = 228). Next,
a match was chosen based on highest correlation value between each experi-
mentally observed neuron and the corresponding simulated neuron (a neuron
could only be chosen once). After all experimentally observed neurons had a
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match, the fitness score for that individual SNN was computed by summing the
correlations ρ between each pair (1). A maximum mean firing rate threshold
was also incorporated into the fitness function to ensure that simulated firing
rates were reasonable and realistic. The firing rate of each neuron in the network
was averaged across all trials, and the highest observed value was considered
the maximum mean. If the observed maximum mean firing rate maxFR exceeded
the threshold, then the fitness score was penalized by subtracting the difference
between the threshold and the observed firing rate (2):

f(x ) =
{∑n

i=1 ρ(realFRi, synFRmatch) if maxFR < FRtarget,∑n
i=1 ρ(realFRi, synFRmatch) − FRerror otherwise, (1)

where
FRerror = FRmax − FRtarget, (2)

and FRtarget = 250Hz was the maximum mean firing rate allowed for any given
neuron.

After a generation, the fitness scores were sent to ECJ via the PTI for eval-
uation and constructing a new population. The simulations proceeded for 50
generations. The complete process was repeated 10 times to ensure repeata-
bility. It is important to reiterate that the use of GPU processing speeds up
the fitness function significantly. In this case, the fitness function runs 136,800
Pearson’s r correlations (600 synthetic neurons multiplied by 228 neurophysio-
logical neurons) per each individual, which is computationally very expensive.
This complexity could increase considerably with the size of the dataset being
replicated, the size of the network being run, and/or the number of individuals
in the population, making it very important that the fitness function can be
calculated in parallel on GPU.

2.3 Evolutionary Algorithm

We represented the parameter space of the RSC model as vectors in R18, and
then applied a (µ+ λ)-style, overlapping-generations EA with truncation selec-
tion to maximize f(x ). We used a mutation operator that takes each parameter
and adds 1-dimensional Gaussian noise with probability 0.5. The width of the
Gaussian mutation operator was fixed at 10% of the range that each parame-
ter was allowed to vary within. The values of µ and λ were fixed at 3 and
15, respectively. It was straightforward to combine the SNN simulator with the
ECJ evolutionary computation system [21] to create a unified parameter-tuning
framework.

These decisions result in an algorithm with a small population and a strong
selection pressure. This simple EA proved sufficient for our purpose, which is
provide a proof of the feasibility of evolving SNNs with an STDP-based indirect
encoding. We leave the problem of customizing EA design decisions to maximize
performance for future work.
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3 Results

3.1 Fitness Values and Firing Rate Correlations

Each of the 10 independent runs of the EA were executed for a small number of
generations. Thanks to the indirect encoding, the best fitness found tended to be
very high after just 50 generations (see Fig. 2(a)), with a mean of 105.93± 0.91.
The highest observed fitness was 107.79. A total of 228 experimentally correlated
neurons were matched, thus the average firing rate correlation was about 0.47 per
neuron. The lowest observed fitness was 104.7, resulting in a correlation of about
0.46 per neuron (strong correlations by experimental standards). At the start of
each evolutionary run, the average maximum fitness score was 84.57± 19.78.

Each of the ten evolutionary runs took 3.13 ± 1.26 days to complete. A
breakdown of how long a generation took can be seen in Table 2. In the beginning,
the population ran very slowly, taking approximately four hours to complete
(slightly under two hours for training, and slightly more for testing). By the
tenth generation, the population took roughly an hour to complete, which stayed
relatively constant across the remaining generations (breaking down to about
20min for training and 30 for testing). However, there was considerable variance
in how long a generation could take at each point (each generation had a standard
deviation of about one hour) because of the different firing rates of individual
SNNs. Although the fitness increased during the evolutionary run, the selection
strategy tended to include high and low firing SNNs in the population, which
affects runtime performance in CARLsim.

The tuning framework was able to closely match experimental neural activity
to simulated neural activity. Figure 2(c) shows two representative examples of
matched neurons with high correlations. Note that the correlation values in the
figure are not much higher than the average correlation value, suggesting that
they are typical examples of matched neurons indicative of the network’s overall
fitness. Thus the EA was able to generate networks whose neuronal firing rates
were able to match those of the experimental dataset.

Table 2. Average runtimes in minutes (mean/std. dev)

Generation 1 10 20 30 40 50

Training 115.09/24.86 21.85/20.71 22.23/21.54 20.29/17.62 18.5/11.83 21.17/16.79

Testing 126.28/39.51 42.43/40.55 42.91/30.89 39.39/28.34 32.1/17.32 39.65/37.13

Total 240.48/59.24 64.42/59.57 65.3/50.4 59.94/45.25 50.66/28.38 60.91/49.86

3.2 Replicating Empirical Data

The evolved networks were also able to capture functional aspects of the neurons
observed in the electrophysiological data. In agreement with Alexander and Nitz
[1], we found neurons that were active when the animal was turning left or right
(turn, no mod. in Fig. 2(b)) and turn cells that were route modulated (i.e.,
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(a) Fitness Curve (b) Neuron Type Distribution

(c) Matched Neuron Examples

Fig. 2. (a) Network fitness rapidly and consistently converged over 50 generations. (b)
All evolved networks yielded consistent distributions of neuron types. (c) Two repre-
sentative matched neuron examples are provided, demonstrating that firing rate cor-
relations between synthetic and experimentally-observed neurons were generally quite
high.

preferring one turn over another on the same route; e.g., the first left instead of
the second left on an LRL route; see turn, mod. in Fig. 2(b)), as well as neurons
that were turn-insensitive (see no action specificity in Fig. 2(b)). In agreement
with the experimental data, we found that approximately 20% of the population
were turn-sensitive, but were not route modulated. The ratios of turn-sensitive
and route modulated cells found in the evolved SNNs were comparable to those
found experimentally (compare our Fig. 2(b) with Fig. 3(a) in Alexander and
Nitz [1]). However, we found a higher proportion of neurons that were route
modulated (48% as opposed to 26%), and surprisingly, fewer of our neurons
were turn-insensitive (32% as opposed to 50%). This may be because our SNN
inputs, which were derived from recorded behavioral metrics, were less noisy
than the sensorimotor signals that the rat uses to navigate.
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3.3 Replicating Population Functionality

Lastly, the EA produced network behavior that was quite similar to the empir-
ical findings, which is important because it suggests that the network functions
similarly to the biological RSC, and thus has the ability to capture population
dynamics as well as replicate biological neuronal firing rates. The evolved agent’s
position along a track could be discerned from the simulated population activity
(see Fig. 3). Positional reconstruction was computed by cross-correlating mean
neural activity across even vs. odd trials. Similar to that observed experimen-
tally, the positional ensemble firing rate reconstructions from a representative
evolved SNN clearly showed that the neural activity at positions on even trials
was highly correlated with neural activity at the same positions on odd trials
(Fig. 3(a)), thus very accurate reconstructions could be determined from pop-
ulation activity when the subject was in the same environment. That is, the
highest correlation values occurred between the same bin numbers across even
and odd trials, as shown by the white dashed line, from the top left corner to
the bottom right corner. The reconstruction process was also applied to trials
when the tracks were in different locations (α and β). Figure 3(b) shows a corre-
lation matrix between positions in β and positions in α for the LRL trajectory.
These reconstructions indicated that the position of the agent could be inferred
between the track positions as well, but with less accuracy than for the even vs.
odd reconstructions. This is consistent with the results reported in [1] (compare
our Fig. 3(a) and (b) with Fig. 3(e) and 6(a) in Alexander and Nitz [1]), sug-
gesting that the evolved simulated network is capable of conjunctively encoding
allocentric and route-centric information similar to the biological RSC. These
results were consistent across all evolved SNNs.

(a) αLRL (b) αβLRL

Fig. 3. (a) Positional ensemble firing rate correlations (even vs. odd trials) which were
highest fell along a ‘perfect prediction line’ suggesting that the network was able to
infer its position along any given route so long as that route was in the same allocentric
position. (b) Positional ensemble firing rate correlations for all trials at position α
vs. position β deviated from the perfect prediction line, suggesting that the network
discriminated routes that existed in different allocentric positions.
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4 Discussion

In the present study, we introduced an automated tuning framework that lever-
ages the search power of evolutionary algorithms combined with the paralleliza-
tion of GPUs, which can result in a speedup of up to 60 times faster than a CPU
in CARLsim [3]. This results in an efficient method for searching the SNN para-
meter space by drastically reducing its dimensionality via an indirect encoding
scheme in which a learning rule, STDP, was used to specify the synaptic weights
of each network. Performing fitness evaluation on each network in parallel fur-
ther reduced the time necessary to tune the SNNs, even though every individual
in the population was subjected to both a training and a testing phase. We suc-
cessfully applied this framework to a case study in which it was used to evolve
a model of the brain region RSC using electrophysiologically recorded neurons.
Rather than altering the synaptic weights of each SNN directly, an evolutionary
algorithm was used to alter the learning parameters of each SNN until a close
match between synthetic and recorded neuronal firing rates was found, which
resulted in a reduction of the number of parameters to be tuned from thousands
to only 18. Furthermore, the evolutionary algorithm took only 50 generations to
converge, demonstrating the framework was able to efficiently evolve a solution.
This is in stark contrast to direct encoding methods of evolving neural networks,
which can take thousands of generations to converge [2].

The phenomenological results of this case study suggest that the approach
of using STDP as an indirect encoding scheme will generalize to other types
of SNN tuning problems, and can be used to match other neurophysiological
datasets, since many electrophysiological recordings are collected under condi-
tions similar to the present dataset. First, the SNNs successfully captured the
underlying network activity, which was reflected in the fitness score of each
evolved network. Secondly, the SNNs captured neuronal function observed in
the data, which was reflected in empirically observed distributions of non-route
modulated turn-sensitive neurons and route modulated turn-sensitive neurons,
respectively. Thirdly, the ensemble activity of the synthetic neurons captured
behavioral functionality, such as position and route reconstruction.

The capacity to efficiently synthesize networks that reproduce neuron and
network functionality across these three levels is of considerable importance
as we attempt to move toward a greater understanding of brain function. We
have demonstrated that we have created a powerful tool with this capacity by
applying our framework to this case study of the RSC, which may be applied
to a variety of modeling efforts and tuning problems involving SNNs. Further
experiments are underway to investigate how the network responds to manipula-
tions of its inputs, and to predict how neural activity in the retrosplenial cortex
might change depending on environmental context. These predictions can then
be tested by conducting new electrophysiological experiments, the results of
which could lead to a better understanding of how neural responses give rise to
behavior.
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