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ABSTRACT
A number of papers have emerged in the last two years that
apply and study asynchronous master-slave evolutionary al-
gorithms based on a steady-state model. These efforts are
largely motivated by the observation that, unlike traditional
(synchronous) EAs, asynchronous EAs are able to make
maximal use of many parallel processors, even when some
individuals evaluate more slowly than others. Asynchronous
EAs do not behave the same as their synchronous counter-
parts, however, and as of yet there is very little theory that
makes it possible to predict how they will perform on new
problems. Of some concern is evidence suggesting that the
steady-state versions tend to be biased toward regions of the
search space where fitness evaluation is cheaper. This has
led some authors to suggest a so-called ‘quasi-generational’
asynchronous EA as an intermediate solution that incurs
neither idle time nor significant bias toward fast solutions.
We perform experiments with the quasi-generational EA,
and show that it does not deliver the promised benefits: it
is, in fact, just as biased toward fast solutions as the steady-
state approach is, and it tends to converge even more slowly
than the traditional, generational EA.
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1. INTRODUCTION
When the time it takes to evaluate the fitness of candidate

solutions to a problem varies, the performance and efficiency
of parallel evolutionary algorithms (EAs) can suffer. In par-
ticular, classical master-slave EAs that use a generational
model of evolution leave some processors idle as they wait
for the longest-evaluating individual in each generation to
return a fitness value [5]. In extreme cases, as much as 50%
of the available computational resources can be left idle as a
direct result of variance in evaluation time [7]. The greater
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the variance in evaluation times, the lower the utilization of
the processors.

The problem of idle time has become especially important
as applications that involve using search and optimization
to tune the parameters of computationally expensive simu-
lations become more popular in science and engineering (ex.
[6, 7, 18, 19]). Variance in evaluation times arises for dif-
ferent reasons in a wide class of applications: when tuning
the parameters of a computationally intensive simulation,
for instance, some configurations may cause the simulator
to engage in more expensive and time-consuming operations
than others. In genetic programming, a large, bloated pro-
gram structure will take more time to evaluate than a small,
parsimonious one. In a distributed evolutionary algorithm,
as a third example, evaluation times may vary if the load or
computational capacities of the available compute nodes are
heterogeneous. Wherever it arises from, variance in evalu-
ation time can have a pronounced effect on the behavioral
characteristics of an EA.

The form this effect takes depends on the algorithm. A
number of researchers and practitioners have sought to re-
claim idle resources by moving away from a synchronous,
generational model and instead adopting an asynchronous,
steady-state model (ex. [2, 8, 9]; a more comprehensive
overview can be found in [16]). In these steady-state asyn-
chronous EAs (SSAEAs), individual offspring are generated
one-at-a-time and sent to a slave processor to have their
fitness evaluated. As soon as an individual completes eval-
uating, it immediately competes for a place in the existing
population, without waiting to synchronize with any other
individuals. In this way, when fitness evaluation is the most
expensive operation in the algorithm, asynchronous parallel
EAs have the virtue of being able to keep an unlimited num-
ber of processors operating at a nearly 100% utilization rate.
The last two years have seen a small surge of new publica-
tions that apply or analyze asynchronous EAs of this kind
[11, 12, 13, 14, 15, 16, 17, 21].

While SSAEAs can eliminate idle time, they do so at the
cost of introducing a dependence between the evolutionary
trajectory that the population takes and the evaluation-
time characteristics of the problem. Specifically, it seems
that these methods exhibit an implicit selection bias that
favors individuals that are cheap to evaluate. In some cases,
such an evaluation-time bias may be desirable. Martin et
al. observe, for instance, that a bias toward fast-evaluating
individuals in genetic programming may provide a favor-
able parsimony pressure [12], and Yagoubi et al. construct
an example of a multi-objective optimization problem in
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which penalizing high-quality solutions by giving them long
simulated evaluation times improves the performance of an
SSAEA by helping to prevent premature convergence [20].
In general, however, practitioners are wary of evaluation-
time bias, as it may either hinder the algorithm’s ability
to find high-quality solutions quickly, or it may otherwise
introduce unwanted implications. In scientific applications,
especially, the goal is often to find regions of a model’s pa-
rameter space that maximize goodness of fit to some data
set—an additional pressure toward models that are com-
putationally efficient may undermine the validity of such a
study’s conclusions.

As a consequence of these concerns, some authors have
suggested novel algorithms that combine some aspects of
existing synchronous and asynchronous EAs, in an attempt
to achieve the best of both worlds. In particular, Fon-
seca and Fleming [10] have proposed what they call a
‘quasi-generational’ EA (QGEA). The QGEA uses an asyn-
chronous evaluation scheme to minimize idle time, but as
new individuals are evaluated, they are are not incorporated
directly into the parent population P in steady-state fash-
ion. Instead they are added one-at-a-time to a separate child
population P ′. Once the child population becomes full, it
replaces the parent population, and a new, empty child pop-
ulation is initialized. The key difference between the QGEA
and the classical generational scheme is that the QGEA gen-
erates more than |P | children from each set of parents, as
a means of keeping all of the processors occupied. Fonseca
and Fleming argue that this approach retains dynamics that
are similar to the generational EA, and that by doing so it
will reduce the “bias towards individuals easy to evaluate.”
They also observe that it is possible to select all of the par-
ents up front, rather than one-at-a-time—and that it is thus
possible to use Stochastic Universal Sampling in conjunction
with the QGEA [3].

While the quasi-generational EA has been suggested and
discussed, to our knowledge Durillo et al. are the only au-
thors who have implemented a QGEA (applying it to a
multi-objective optimization problem) [9]. The advantages
and disadvantages that the QGEA has in comparison to the
generational EA and SSAEA is an entirely open question.

In this paper, we compare the behavior of the quasi-
generational and steady-state asynchronous EAs. In
particular, we use synthetic problems to examine the extent
to which each algorithm shows a bias toward fast-evaluating
solutions.

RQ1: What are the pros and cons of the quasi-
generational EA (QGEA)? Specifically, does the
QGEA exhibit less evaluation-time bias than the
steady-state asynchronous EA (SSAEA)?

Evaluation-time bias arises in a complex way from the
interaction between variance in evaluation times, the avail-
ability of processors, the population size and the fitness land-
scape. As of yet, there is no theory of evaluation-time bias in
EAs that explains these interactions in any significant way,
or that begins to make it possible to predict how evaluation-
time bias will affect an EA’s performance on particular prob-
lems. Defining what it means for one algorithm to have“less”
evaluation-time bias than another is itself an open research
question. Investigating RQ1, then, will lead us to ask some

basic questions about evaluation-time bias in asynchronous
EAs and how it works:

RQ2: How does evaluation-time bias arise in asyn-
chronous EAs? What does it mean for one algorithm
to be more biased than another?

2. METHODOLOGY
We begin by presenting the details of the algorithms under

study, and summarizing the hypotheses and experimental
framework we will use to operationalize our research ques-
tions.

2.1 Master-Slave Algorithms
Of the rich menagerie of parallel metaheuristics that have

been proposed and studied over the years [1], the master-
slave evolutionary algorithms are among the simplest and
most frequently used in practice. A master-slave EA main-
tains a single, global population on the master processor,
and dispatches individuals in the population out to slave
processors to have their fitness evaluated. Sometimes repro-
ductive operators are also executed on slave nodes. Master-
slave EAs are beneficial when the cost of fitness evaluation
is substantially greater than the cost of transmitting indi-
viduals from the master to the slaves.

2.1.1 The Generational Master-Slave EA
The best known master-slave EA is the parallel genera-

tional evolutionary algorithm. Most readers are likely to
be quite familiar with this EA, so we only pause to offer a
few clarifying remarks. By ‘generational,’ we mean that this
algorithm operates in the style of a (µ, λ)-EA, where µ par-
ents are selected from the population to create λ offspring
(typically, µ = λ). The parents are then discarded, and the
offspring become the new population, with no overlap (gen-
eration gap) between the generations. Fitness evaluation is
performed in parallel by sending the λ offspring out to a
number of slave processors. The algorithm waits for all in-
dividuals to have their fitness evaluated before the parents
for the next generation are selected.

Any time there is variance in evaluation times, the pro-
cessors used by the generational EA incur idle time. The
amount of time the slaves spend in an idle state is deter-
mined by both the number of slaves relative to the popula-
tion size and the distribution of evaluation times among the
offspring.

2.1.2 The Steady-State Asynchronous EA
Asynchronous master-slave EAs eliminate the primary

source of idle time by ensuring that, any time a processor
has become free, a new offspring individual is immediately
produced to take its place. Almost all asynchronous global-
population EAs to date have been built on the steady-state
model: Individuals are integrated into the population one-
at-a-time immediately after their fitness has been evaluated,
in the style of a (µ+ 1)-EA.

A general pseudocode template for asynchronous evolu-
tion is described in Algorithm 1 from the perspective of the
master processor. Both the steady-state asynchronous EA
(SSAEA) and the quasi-generational EA (QGEA) can be de-
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scribed in terms of this asynchronous template—they differ
only in the implementation of the integrate() method.

Algorithm 1 A General Asynchronous EA

1: function asynchronousEvolution(µ, T , steps)
2: P ← ∅

. Begin parallel initialization of the population
3: for i← 1 to T − 1 do
4: Send(randomIndividual())

5: while |P | < µ do
6: Send(randomIndividual())
7: P ← P ∪ {nextEvaluatedIndividual()}

. Begin main evolutionary loop
8: for i← 0 to steps do
9: send(breedOne(P ))

10: integrate(nextEvaluatedIndividual(), P )

The first two loops of Algorithm 1 initialize the popu-
lation by sending randomly-generated individuals to a free
slave node for evaluation (send()). As individuals complete
evaluating, they are retrieved one-by-one via nextEvalu-
atedIndividual() and added to the population. Together,
these two loops generate a total of µ + T − 1 random indi-
viduals, where T is the number of slave processors—enough
to fill the population and ensure that all but one processor
is fully occupied when evolution begins.

Evolution then proceeds in the for loop, which generates
an offspring individual and sends it to the free processor—
breedOne() here indicates both parent selection and re-
productive operators—and then integrates the next individ-
ual that completes evaluating into the population. In the
SSAEA, the integrate() method takes the form of Algo-
rithm 2. The newly evaluated individual competes against
an individual chosen by selectOne()—if the offspring in-
dividual is better, then it replaces the selected individual in
the population.

Algorithm 2 Steady-state insertion into a population

1: function integrateSteadyState(ind, P )
2: replaceInd← selectOne(P )
3: if betterThan(ind, replaceInd) then
4: P ← (P − replaceInd) ∪ ind

This high-level description leaves a number of design de-
cisions up to the practitioner. The choice of selection oper-
ators is not integral to our research question in this paper—
but in our experiments we use tournament selection of size
2 to select parents in breedOne(), and we use random se-
lection for survival selection (selectOne()). We consider
one individual to be betterThan() another if its fitness
is greater than or equal to the other. The details of the
representation and reproductive operators we use will be
explained below.

2.1.3 The Quasi-Generational Asynchronous EA
The QGEA has been proposed as an asynchronous vari-

ant of the generational EA, where idle time is reclaimed by
generating extra offspring to fill the vacant CPU resources
[9, 10]. As individuals complete evaluating, they are added
to an offspring population. When the offspring population
reaches a size equal to the parent population, it replaces the

parent population, and a new, empty offspring population
is created. In this way, observe Durillo et al., “the master
does not have to wait until all the individuals of a generation
have been evaluated” [9].

For simplicity, we interpret the QGEA as a variant of the
general asynchronous EA given in Algorithm 1. To imple-
ment generational dynamics, we define an integrate() pro-
cedure that inserts individuals into an offspring population
until it is full—see Algorithm 3. Here we treat the offspring
population P ′ as a global variable that is initialized to be
the empty multiset.

Algorithm 3 Quasi-generational insertion into a population

1: function integrateGenerational(ind, P )
2: P ′ ← P ′ ∪ {ind}
3: if |P ′| = |P | then
4: P ← P ′

5: P ′ ← ∅

This integration method ensures that changes to the pop-
ulation occur in a generational way, in the sense that the
population is completely replaced every µ steps.

2.2 Analyzing Evaluation-Time Bias
Since we are interested in the case where fitness evaluation

dwarfs other EA overhead, experiments with parallel EAs
can be quite time consuming to run if we wish to obtain sta-
tistically significant results. To facilitate doing a large num-
ber of runs on artificial problems as well as complete con-
trol over the experimental conditions, we implemented the
above algorithms via a discrete-event simulation, in which
each individual ~x is assigned an evaluation time from an
artificially-imposed evaluation-time function t(~x) that is de-
fined as part of the experiment. A priority queue is used to
instantly jump to the next completed evaluation event when
nextEvaluatedIndividual() is called.

Intuitively, the reason that we anticipate an evaluation-
time bias in the asynchronous EAs is that, while an indi-
vidual with a long evaluation time is being executed on one
processor, the other processors might evaluate a large num-
ber of faster individuals. An example of this is shown in
Figure 1, which shows the sequence of evaluation times for
100 steps of an asynchronous EA simulation as it minimizes
a paraboloid function. Evaluation time is proportional to
fitness, and the EA utilizes 10 simulated processors. The
dashed lines emphasize the times that an individual with a
particularly long evaluation begins and ends. Because the
algorithm is operating with simulated evaluation times, only
the relative differences in evaluation times matter, and we
show time in arbitrary units. Once the single long-evaluating
individual completes, more than 50 individuals have com-
pleted evaluation and had a chance to compete for a place
in the population. This would appear to put long-evaluating
individuals at a disadvantage, since in some cases fast indi-
viduals have more opportunity to reproduce.

The implications that this observation has for the dynam-
ics of an EA are presently not well understood. Näıvely, we
might expect that the fast-evaluating subset of the popula-
tion in an asynchronous EA are akin to the famously ex-
ponential growth of rabbits in 19th-century Australia: the
faster you mature, the more fast-evaluating children you will
have, and so forth. However, besides the fact that the total
population size is fixed, there are at least two reasons that
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Figure 1: A sequence of fitness evaluation durations
in an SSAEA.

the reproductive advantage that fast individuals receive in
an asynchronous EA is limited in a way that it was not for
the Australian rabbits:

1. While a slow individual is evaluating, the CPU re-
source it is occupying is made unavailable. So, if half
the processors are occupied with slow individuals, only
half remain for fast-evaluating individuals to exploit.

2. Individuals do not reproduce as soon as they finish
evaluating. Evaluations trigger a breeding event that
produces a new child, but the parents are selected from
the general population. Individuals only reproduce
when they are selected.

These interactions between available processors and indi-
vidual evaluation times give rise to a variety of open ques-
tions. This paper focuses on: 1) Do asynchronous EAs seek
out fast-evaluating solutions even on flat fitness landscapes?
2) Can evaluation-time bias lead an algorithm to prefer to
move into certain basins of attraction over others? 3) Does
evaluation-time bias occur mostly close to initialization, or
does it occur throughout the run?

To answer these questions we report here on a number
of experiments in which we compare the steady-state and
quasi-generational asynchronous EAs by examining their be-
havior on flat fitness landscapes, by examining which opti-
mum they converge to on a simple multimodal problem, and
by isolating bias at initialization from bias that occurs later
in the run.

The experiments in this paper are conducted on simple
real-valued optimization problems. These problems are not
intended to form a representative benchmark with real-world
features. The purpose of this kind of study is rather to gain
targeted insight into aspects of the algorithms’ behavior.
In particular, we focus on how the evaluation-time prop-
erties of landscape impact the behavior of each algorithm.
Each synthetic problem is defined by a tuple of two func-
tions (f, t), where f(~x) represents the fitness of individual
~x and t(~x) defines its evaluation time (in arbitrary units).
Because there is always some small amount of variation in
the time a function takes to execute on a computer, thanks

to process scheduling effects if nothing else, we always add a
small amount of Gaussian noise to the simulated evaluation
time t(~x).

In all the experiments below, we represent solutions as
vectors in Rn, and breed single children by applying Gaus-
sian mutation with hard bounds and a standard deviation of
0.5, mutating each gene individually with probability 1/n.
We do not use crossover, and we consider only the case where
the number of slave processors T is equal to the population
size. These design decisions clearly limit the generality of
our results, but they are sufficient for our purpose, which
is to isolate the effect of evaluation-time bias, rather than
to study its interactions with particular representations or
reproductive operators.

3. RESULTS

3.1 Bias on Flat Fitness Landscapes
Evaluation-time bias can be understood as an implicit se-

lection effect: at some point during a run, fast-evaluating
individuals gain a reproductive advantage over slow ones—
that is, they are selected as parents more frequently than can
be explained by other factors (such as fitness). The simplest
and most direct way to study evaluation-time bias, then, is
to ask what happens when the fitness of all individuals is
equal.

We hypothesize that, on a flat fitness landscape, both
asynchronous EAs will display a strong evaluation-time bias
at the beginning of each run, but that bias will be negli-
gible beyond that point. Bias at the beginning of the run
clearly ought to occur for the following reason. During the
initialization phase of Algorithm 1, a total of µ+ T − 1 in-
dividuals are generated while the population is being filled,
and the very first µ individuals that complete evaluating are
the ones that form the initial population. The initial popu-
lation, then, will contain a disproportionately large number
of fast-evaluating individuals.

Hypothesis 1: Let the quasi-generational EA and the
steady-state asynchronous EA be run on a flat fitness
landscape, and let different parts of the landscape take
different amounts of time to evaluate. Then, for both
algorithms:

a) At the beginning of the run, fast-evaluating individ-
uals will become overrepresented in the population.

b) After initialization, the population will show no
preference for fast or slow regions of the search
space.

We test Hypothesis 1 by visualizing the location of the
population in the search space over time. The heat maps in
Figure 2 show the result of running the SSAEA with popu-
lation sizes µ = 10 and µ = 100 on a task where the fitness
function is flat (f(x) = 1), and evaluation times follow a 1-
dimensional parabola centered on the origin (t(x) = x2)—so
individuals close to 0 are very fast-evaluating. Initial indi-
viduals are generated randomly from a uniform distribution
across the genotype space, U(−10, 10). The heat map shows
the distribution of the population as a function of the num-
ber of evolutionary steps, averaged over 500 runs. In each
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plot, the dashed line represents the end of the initialization
phase—i.e. the step at which the population is first filled.

At the beginning of the run, a clear pattern of initializa-
tion bias emerges: individuals with very short evaluation
times enter the population first, while the slowest individu-
als do not begin to enter the population until around step
400 (in the µ = 100 case). When the population is large,
we see that the initial overrepresentation of fast individu-
als persists—confirming Hypothesis 1a. Similar results were
obtained for the QGEA (not shown).

When the population is small, however (µ = 10), the ef-
fect of mutation is strong enough to quickly erase the effects
of initial evaluation-time bias. In fact, by step 2,000, the
average distribution of the population for both the SSAEA
and the QGEA is statistically indistinguishable from a uni-
form distribution (using a Kolmogorov-Smirnoff test with
p > 0.05). We obtained similar results when we replaced
the evaluation-time function t(x) with a two-Gaussian func-
tion that has a fast and a slow region (as shown on the left
of Figure 3), a linear function (t(x) = x − 10), and with
a Rastrigin function (not shown). This indicates that any
evaluation time bias that exists on flat fitness landscapes
after the initialization period is so weak that it can be en-
tirely overpowered by the disruptive effects of mutation. We
take this as confirmation of Hypothesis 1b: no observable
evaluation-time bias exists after initialization on flat land-
scapes.

3.2 Preference for Fast Basins of Attraction
Our second experiment considers non-flat fitness land-

scapes, and is designed to detect even very weak biases:

Hypothesis 2: Let the quasi-generational EA and
the steady-state asynchronous EA be run on a fit-
ness landscape that has two basins of attraction,
and let one basin of attraction have fast evaluation
times, and the other have long evaluation times. Then:

a) Both algorithms will be more likely to converge to
the fast basin than the slow one.

b) The SSAEA will exhibit a stronger preference for
the fast basin than the QGEA does.

If true, Hypothesis 1b is evidence in favor of the conjec-
ture of Fonseca and Fleming that the QGEA has a reduced
“bias towards individuals easy to evaluate” compared to the
SSAEA [10]. We test this on an objective function defined
over Rn that has two Gaussian basins of attraction centered
on local minima A0 and B0:

fa,b(~x) = max(|a|, |b|)

− a exp

(
− 1

2σ2

∑
(xi − 2σ)2

)
− b exp

(
− 1

2σ2

∑
(xi + 2σ)2

)
.

(1)

We set σ = 2.5 and use bounds of (−10, 10) when initializ-
ing and mutating each gene. When the depth parameters a
and b are equal, the two basins are identical from a fitness
perspective. Because of the symmetry in the objective func-
tion, most evolutionary algorithms will converge to either of
the two optima with equal probability.

In addition to the fitness function, we introduce an asym-
metry into the problem by assigning each individual ~x a
simulated evaluation time t(~x), where the eval-time func-
tion t : Rn 7→ R is given by:

t(~x) = fa,−b(~x). (2)

Evaluation-time is thus equal to fitness, except that
evaluation-time basin surrounding optimum B0 is inverted.
This ensures that A0 is surrounded by fast-evaluating solu-
tions, and B0 is surrounded by slow-evaluating solutions.

We ranN = 5, 000 independent runs of both asynchronous
EAs out to 2,000 steps—long enough so that all N runs con-
verged. The population size is 10 and we use 10 simulated
slave processors, and the search space has two dimensions.
The result of each run can be represented by the random
variable

Ri =

{
1 if ‖~x′ −A0‖ ≤ τ
0 if ‖~x′ −B0‖ ≤ τ , (3)

where ~x′ is the best individual discovered in the run, A0

and B0 are the locations of the two optima, and τ is a small
number that serves as a convergence threshold. Now, the
number of runs that converge to basin A is

∑N
i=1Ri, which

follows a binomial distribution with proportion parameter r
equal to P (R = 1). We use the Wilson method [4] to com-
pute 95% confidence intervals around r. If the asymmetry
in evaluation times has no affect on the basin the algorithm
coverages to, then r will be equal to 0.5.

The empirical results of the two-basin experiment are
shown in Figure 4. Both the QGEA and the SSAEA display
a statistically significant preference for the faster basin, con-
firming Hypothesis 1a. However, we find that the QGEA dis-
plays a stronger evaluation-time bias than the SSAEA. The
difference is small, but statistically significant at p < 0.05.
On these grounds, we reject Hypothesis 2b. Under the
conditions of the two-basin experiment, it turns out that the
QGEA is in fact quite biased toward fast solutions.

3.3 Initialization Bias in the Two-Basin Func-
tion

The two-basin problem gives us limited insight into
evaluation-time bias. We know that both asynchronous
EAs are biased at initialization, and initialization bias alone
may be sufficient to set the population on a trajectory
toward the faster optimum. Here we repeat the two-basin
experiment from Hypothesis 2, but now we control for
evaluation-time bias at initialization.

Hypothesis 3: Most of the evaluation-time bias in
the QGEA and SSAEA occurs during the initialization
stage of the run.

We test this by configuring both the fitness function f(~x)
and the evaluation-time function t(~x) to have a constant
value for the first 100 steps of each evolutionary run. After
100 steps, the functions revert back to their original values
of f(~x) = fa,b(~x) and t(~x) = fa,−b(~x) (with a = b). This
way there is no evaluation-time bias during initialization.
Any bias that we can still measure is due to the dynamic in-
teraction between the fitness landscape and evaluation time.

The results—again as estimates of the probability of each
algorithm converging to optimum A0—are shown in Fig-
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of two basins of attraction when initialization bias is
controlled for.

ure 5. Removing initialization bias caused a significant re-
duction in this measure of evaluation-time bias, confirming
Hypothesis 3. Both algorithms still display a statistically
significant preference for optimum A0, however. This indi-
cates that, unlike flat fitness landscapes, we can detect an
evaluation-time bias on non-flat fitness functions that occurs
after initialization.

3.4 Convergence of the QGEA
We conclude with a brief observation of a potential disad-

vantage of the QGEA apart from evaluation-time bias: the
QGEA, it turns out, is an algorithm that converges very
slowly on unimodal functions. Figure 6 shows the number
of steps that it takes the generational EA, the SSAEA, and
the QGEA to reach a threshold fitness value of τ = 0.5
on paraboloid functions of differing dimensionality. In this
experiment, evaluation times are held constant. Each bar
depicts the convergence time of N = 500 independent runs.
The quasi-generational EA consistently takes longer to con-
verge than the generational EA. This is a consequence of

the asynchronous dynamics of the QGEA, which cause it to
generate more than µ children at each generation.

4. DISCUSSION
Asynchronous evolutionary algorithms are able to make

efficient use of parallel processing resources when fitness
evaluation is expensive enough to make the master-slave
model viable—but asynchronous EAs bring evaluation-time
bias with them as side effect. Evaluation-time bias may
hinder the results of some applications, have no impact on
other applications, and in some cases it may even be ben-
eficial. The current state of the literature does not give us
the theoretical insight we need to make accurate predictions
about how evaluation-time bias will impact EA performance
on a particular problem.

We began our investigation of the quasi-generational EA
(RQ1) on the belief that it can serve as a behavioral inter-
mediate to the classical, generational EA and the steady-
state asynchronous EA. In this study, however, we found
that this is not the case. In the simplified scenarios we used
to measure evaluation-time bias, we find that the QGEA has
a slightly stronger preference for fast-evaluating regions of
the search pace than the SSAEA. Furthermore, the evolu-
tionary trajectory of the QGEA does not mimic the gener-
ational EA closely, but instead takes substantially longer to
converge on smooth, unimodal landscapes. Our results sug-
gest that the QGEA does not have the particular benefits
that it has been conjectured to offer.

Secondly, this paper marks the first attempt that we know
of to analyze the nature of evaluation-time bias in asyn-
chronous evolutionary algorithms (RQ2), especially by dis-
tinguishing between bias that occurs at initialization and
bias that occurs later in the run. Despite the strong intuitive
case to be made that evaluation-time bias can significantly
affect the trajectory of an EA under the right conditions,
the empirical evidence seems to suggest that the effect is
relatively mild after initialization.

Many open questions still remain about evaluation-time
bias in asynchronous EAs that fall outside the scope of this
study. Our experiments made a number of assumptions—in
particular, we used a fixed mutation width and no crossover,
and we assumed that the number of processors was equal
to the population size. In our experience, the representa-
tion and operators do not have a major effect on the kind
of results that we have presented here—we observed some
similar results, for instance, with higher-dimensional search
spaces, with crossover enabled, and with binary representa-
tions on simple pseudo-Boolean functions. These kind of pa-
rameters may have a substantial impact on the magnitude
of evaluation-time bias in certain circumstances, however.
Furthermore, the simple two-basin objective that we used
to measure evaluation-time bias, while a useful instrument
for our purposes here, may not capture the information that
is most useful for predicting the behavior of an EA on new
problems. Future empirical studies could move closer to
a predictive theory of evaluation-time bias by investigating
more complex landscapes, or by considering how a popula-
tion moves asynchronously along smooth fitness gradients.
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