
Learning Genetic Representations for Classes of
Real-Valued Optimization Problems

Eric O. Scott
Computer Science Department

George Mason University
Fairfax, Virginia USA
escott8@gmu.edu

Jeffrey K. Bassett
Krasnow Institute for Advanced Study

George Mason University
Fairfax, Virginia USA

jbasset1@gmu.edu

ABSTRACT
Applying evolutionary algorithms to new problem domains
is an exercise in the art of parameter tuning and design
decisions. A great deal of work has investigated ways to
automate the tuning of various EA parameters such as pop-
ulation size, mutation options, etc. However, genotype-
to-phenotype mappings have typically been considered too
complex to adapt automatically. We demonstrate a genetic
representation learning method that uses meta-evolution to
adapt a bitstring encoding for a synthetic class of real-valued
optimization problems. The genetic representation we learn
performs as well or better than a Gray code both on new
instances of the problem class it was trained on and on prob-
lem types that it was not trained on.

Categories and Subject Descriptors
I.2 [Computing Methdologies]: ARTIFICIAL INTELLI-
GENCE—Problem Solving, Control Methods, and Search

Keywords
Evolutionary Algorithms, Hyper-heuristics, Multitask
Learning, Transfer Learning

1. INTRODUCTION
The successful application of evolutionary algorithms to

difficult optimization and design problems in science and
engineering is invariably an exercise in the art of parame-
ter tuning. It is widely understood that design decisions
such as the choice of operators, mutation rate, and popula-
tion size must be determined for new problems in a domain-
specific manner. A number of theoretical and empirical in-
sights have been discovered in recent decades that can help
practitioners navigate the design of evolutionary algorithms
in a reasonably principled way [7]. In many cases, however,
the application of EAs remains a time consuming process
that requires a significant amount of domain knowledge and
formal or informal experimentation.

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768460

We often think of evolutionary algorithms as stochastic
processes that search a genotype space G for solutions that
optimize some fitness function f . Genotypes, however, are
often abstract representations that can be conveniently ma-
nipulated by evolutionary operators, but that have no ob-
vious meaning by themselves as solutions to a problem.
Importantly, then, in many applications, fitness functions
aren’t defined over genotype space, but instead over a phe-
notype space, where candidate solutions are described in a
fashion that is natural to the problem domain. A fitness
function for traveling salesman problems takes graph tours
as input, for instance, while a fitness function for real-valued
optimization accepts vectors in Rn. Here, it is necessary to
specify genotype-to-phenotype mapping R (a.k.a. represen-
tation, or encoding) as part of the EA, which transforms
individuals from their genetic representation (such as a bit-
string) into a corresponding phenotype (the input to the
fitness function).

At a high level of abstraction, the design decisions that go
into constructing a simple (µ, λ)- or (µ+λ)-style EA include
choosing the reproduction and selection operators and their
parameters, the values of µ and λ, and a stopping condition.
In particular, however, the search behavior of the algorithm
depends heavily on the choice of representation. This is
because the representation determines the pattern of pheno-
typic change that occurs when reproductive operators are
applied to individuals’ genotypes. The selection of a good
representation for the problem domain is commonly seen
as one of the most important components of EA design—a
view that is consistent with biologists’ understanding of the
crucial role that genotype-phenotype relationships play in
natural evolution [9].

Many methods have been devised to try and automate
the choice of at least some design decisions for evolutionary
algorithms, and to thereby reduce the manual effort needed
to tune them to a problem or domain [6, 11]. Perhaps the
most widely known of such methods are self-adaptive mu-
tation operators which, modify parameters of a mutation
operator while the EA is running [3]. These are often used
in the evolutionary strategies family of algorithms. Other
methods adjust the parameters of the EA in an offline way:
the EA parameters remain fixed during an individual run,
and many independent runs are conducted to search for pa-
rameters that lead to good performance. Meta-evolution, in
which one evolutionary algorithm (the meta-EA) is used to
tune the parameters of another evolutionary algorithm (the
sub-EA), has historically been a popular approach to offline
parameter tuning [8, 10].

http://dx.doi.org/10.1145/2739482.2768460

Because they execute the sub-EA a large number of times,
offline parameter tuning methods such as meta-evolution re-
quire a great deal of computational resources. If we wish
merely to solve a single problem instance, meta-evolution is
only advantageous in the case that exerting effort to find
good parameter choices yields a substantial improvement in
the quality of the final solution [12]. Meta-evolution may
also be beneficial, however, if we wish to solve many in-
stances of a class of related problems. In this case, the
meta-EA may yield a set of parameters that can be reused
to quickly solve a large or unlimited number of problem in-
stances. Offline parameter tuning for a class of problems can
be seen as a learning problem: the parameters are tuned on
a training set of problem instances, and the ability of the re-
sulting EA configuration to generalize can be evaluated by
running the sub-EA on a set of test instances.

It is relatively straightforward to use a method such as
meta-evolution to automate the selection of numeric design
decisions such as population size, parameters for mutation,
etc. The hyper-heuristics community, moreover, has shown
that it is often possible to optimize more complicated parts
of a heuristic algorithm’s behavior by searching for combi-
nations of operators or heuristics that play on each others’
strengths and weaknesses [4, 5]. The design of elaborate,
domain-specific reproductive operators or encodings, how-
ever, is often viewed as too complex and challenging to ap-
proach automatically [6]. As such, despite the large litera-
ture on automatic EA configuration, and despite the central
importance of genetic representations to EA performance,
very little work has attempted to adapt a representation to
a problem or class of problems.

Simões et al. have recently suggested that multi-layer,
feed-forward neural networks can be used for representing
and adapting arbitrary genotype-to-phenotype encodings for
real-valued optimization problems [14]. They conduct an ex-
ploratory study of how several such encodings radically alter
the local neighborhood of a mutation operator that takes a
fixed step size in a real-valued genotype space. Their goal
is to understand how the selection of a fruitful genotype-to-
phenotype mapping might be automated; however, they do
not propose a mechanism for doing so, and it may be very
difficult to learn complex neural network encodings that are
useful on classes of problems.

In this work we present what is to our knowledge the
first demonstration of representation learning. We propose a
relatively simple meta-representation—a representation for
representations—that allows us to specify a restricted class
of genotype-to-phenotype maps that convert fixed-length
bitstrings into real-valued vectors. The familiar binary en-
coding is a special case of this general class of bitstring en-
codings. We find that we are able to use meta-evolution to
learn a representation that makes it easy to solve a syn-
thetic set of training, validation and test problems. We
also show that the resulting representation generalizes in
the sense that it is useful on other problem instances from
the same problem class and dimensionality it was trained
on, and even on completely new problems from outside the
class.

2. METHODOLOGY
A genotype-to-phenotype mapping defines the effect that

each gene has on the phenotypic representation of a solu-
tion. In traditional binary representations for real-valued

optimization, each bit in the genome has an independent ad-
ditive effect on exactly one phenotypic trait. For instance,
the bitstring ~g = 0101 can be converted into the real-valued
phenotype p = 5.0 by interpreting the two non-zero bits as
20 = 1 and 22 = 4 and collecting the sum. We observe that
in binary code, A) since the effect of each bit is purely addi-
tive, there are no non-linear interactions among genes with
respect to the phenotype, and B) the magnitude of each bit’s
impact varies exponentially, allowing both small and large
jumps to occur in phenotype space when bit-flip mutation
is applied.

We construct a general class of bitstring representations
that preserve these two properties. We also allow our map-
pings to have the property of pleiotropy—genes may influ-
ence multiple traits. Let a phenotype consist of a vector in
Rn. Each element of the phenotype vector is a phenotypic
trait. We define a mapping R : Bm 7→ Rn by assigning
a weight wij to every possible gene-trait interaction. Each
gene is further assigned a factor si ∈ R, which serves as an
exponent that scales the magnitude of all the gene’s pheno-
typic effects. Specifically, let ~g ∈ Bm be a bitstring genome
corresponding to an individual in the sub-EA. Then each
trait in the corresponding phenotype vector ~p ∈ Rn is deter-
mined by the equation

pj =

m∑
i=1

2siwijgi. (1)

So when gi is 1, a value proportional to wij is contributed to
each trait pj for all j ∈ {1..n}. When gi is 0, the wij ’s con-
tribute nothing to ~p. If the si’s are uniformly distributed,
then the magnitude of each gene’s effect will be exponen-
tially distributed. We find it helpful to think of the parame-
ters in Equation 1 as a set of m vectors of length n. The bits
in the sub-EA bitstring ~g select which of the vectors 2si ~wi
are added together in the phenotype space Rn to collectively
form a candidate solution:

~p = R(~g) =

m∑
i=1

2si ~wigi. (2)

Each mapping of this type can be seen as a linear transfor-
mation from the space of bitstrings to Rn, and any linear
transformation between these spaces can be encoded by an
appropriate choice of weights. Accordingly, we refer to map-
pings of this type as linear pleiotropic encodings.

Since we have allowed gene effects to be pleiotropic, these
mappings bear some similarity to a representation once ex-
plored by Altenberg [1]. Equation 1 can also be interpreted
as a feed-forward neural network with linear activation func-
tions (Figure 1). Since we are limiting our choice of map-
pings to linear transformations that take binary inputs, how-
ever, the expressive power of this class of representations is
more limited than the complex neural network mappings
studied by Simões et al. [14].

2.1 Meta-Evolution of Representations
Fully m·(n+1) real-valued constants are required to spec-

ify the parameters that make up a single linear pleiotropic
mapping R. The question we pose here is whether it is feasi-
ble to automatically search this high-dimensional parameter
space for a mapping that is effective on a class a problems.

For the purpose of meta-evolution, we group the param-
eters of a linear pleiotropic encoding into a sequence of m

g1

g2

.

.

.

gm

p1

p2

.

.

.

pn

2s1w11

2 s1
w
12

2smwmn

Figure 1: A linear pleiotropic encoding can be in-
terpreted as a feed-forward neural network, in which
genes have an additive effect on phenotypes.

tuples of the form (si, ~wi) ∈ R× Rn. As is made clear from
Equation 2, the values in the ith tuple of a meta-individual
completely define the effect that the ith bit of a sub-EA
individual has on the phenotype. This sequence of tuples
forms the meta-level genome, and we treat each tuple as a
meta-level gene.

We use a generational evolutionary algorithm with two-
point crossover to tune the values of the tuples (s, ~w). Each
tuple in a child has a chance of being selected for mutation.
When the ith tuple is selected for mutation, we add values
drawn i.i.d. from a normal distribution to both si and to each
element of ~wi, unless otherwise specified. The number of
genes m that the sub-EA uses to represent solutions in Rn is
a free parameter that must be chosen a priori. We opt to use
20 genes per dimension, simply because traditional bitstring
encodings typically need about that many in order to have a
sufficiently fine-grained ability to cover the phenotype space.
The remaining design decisions we use to implement our
meta-EA are detailed in Table 1.

The exponential scaling factors si do not add to the ex-
pressive power of the meta-representation scheme. Any lin-
ear pleiotropic mapping defined by a sequence of tuples
(si, ~wi) can be represented by an equivalent mapping (1, ~vi),
where vij = 2siwij . The merit of explicitly including the
si’s is that it changes how the meta-EA’s mutation operator
affects vectors that differ exponentially in length. When si
is large, a small Gaussian perturbation of the values in ~wi
has a large effect on the vector 2si ~wi. When si is small,
perturbing the values of ~wi has a small effect, allowing the
shorter vectors to be fine-tuned.

The fitness we assign to a candidate mapping R should
reflect R’s ability to serve as a useful component of a sub-
EA’s search heuristic. One way to measure this is to plug
R into a sub-EA, and then run the sub-EA several times on
an objective function f : Rn 7→ R and see how it does. This
raises the concern of over-fitting, however: if we succeed in
adapting an encoding R that can easily solve f every time,
have we found a good search heuristic, or have we simply
designed an algorithm that has ‘memorized’ the location of
f ’s global optimum by encoding it into R? If our goal is

Figure 2: The valley objective.

only to optimize a single difficult function f , then we don’t
care about over-fitting. If we wish to reuse R to solve new
instances from a class of problems, however, we need to en-
courage the meta-EA to find a more general solution.

Here we assume that we have at our disposal a training set
composed of several examples from a class of problems, all
of the same dimensionality. Such classes arise frequently in
algorithmic applications – traveling salesmen problems with
20 cities, for instance, or room-scheduling problems with 20
rooms. To assign fitness to a mapping R, we plug R into a
sub-EA, and run the sub-EA once on each problem in the
training set. The average best fitness the sub-EA achieves
on the training problems becomes R’s fitness.

2.2 Problem Class
For this study, we synthesize a problem domain that is

diverse enough to demonstrate the ability for the meta-EA
to learn, but that is still relatively simple to analyze. We
define the translation class of f , T (f), as the set of all func-
tions created by applying an arbitrary offset to f in its input
space within some bounds. Every element of T (f) has the
same shape, but the location of the global optimum varies.
As such, it is not sufficient to construct a representation that
memorizes the location of the optimum.

For the objective f we choose the “valley objective” de-
fined in [2]:

f(~x) = 10δ(~x, L) + ‖~x− ~o‖, (3)

where L is some line that passes through the optimum ~o, and
δ(~x, L) denotes the distance between ~x and the nearest point
on the line. In two dimensions, this function defines a valley
with linearly sloping sides (via the first term) and a slight
conical gradient that prevents its floor from being flat (via
the second term) – see Figure 2. We define our translation
class T (Valley) such that random translations are applied
within the bounds [−15, 15] along each dimension.

2.3 Predictions
We have defined our meta-evolutionary scheme for rep-

resentation learning and a synthetic problem class to exer-
cise it on – namely the translation class T (Valley). We
now investigate our meta-EA’s ability to learn a genotype-
phenotype mapping on a set of training instances that is
useful for solving new problem instances.

Component Meta-EA Sub-EA
Type (µ+ µ) (µ+ µ)
Pop. Size (µ) 50 50
Gene Type (s, ~w) ∈ R× Rn b ∈ B
Genes/dimension 20 20
Initialization Bounds s ∈ [−4, 4], wi ∈ [−1, 1] n/a
Parent Selection Binary tournament Binary tournament
Reproduction 2-point crossover 2-point crossover
Mutation Gaussian perturbation of all values (σ = 1) Bit-flip
Mutation Rate 1/L chance per gene 1/L
Mutation Bounds Soft n/a
Objective Mean best fitness of 10 sub-EA runs T (Valley) with no rotation
Stopping Condition 500 generations 40 generations without improvement

Table 1: Default configuration used in our meta-EA experiments, except where otherwise specified.

First, we have made a number of design decisions in the
implementation of the meta-EA itself, not all of which may
be optimal. In particular, we went out of our way to in-
clude an extra scale parameter si in each gene of our meta-
representation. Is this useful? Or is it superfluous? This is
our first hypothesis:

Hypothesis 1: It will be easier to improve the train-
ing fitness of a mapping R on the translation class
T (Valley) if we mutate both the magnitude and the
elements of each vector in the mapping than if we only
mutate one or the other.

Next, we predict that we ought to be able to learn a
genotype-to-phenotype map that allows us to effectively
solve arbitrary instances of T (Valley). This is serves as
a proof of concept for this approach to learning representa-
tions:

Hypothesis 2: Let R be a linear pleiotropic encod-
ing evolved to solve instances of the translation class
T (Valley). ThenR will perform competitively against
traditional bitstring encodings when applied to new in-
stances of T (Valley).

Provided that we succeed in learning a good mapping
for T (Valley), it would be useful if we could say some-
thing about why the learned linear pleiotropic representa-
tion works, rather than just whether it works. We may be
able to determine a pattern in the resulting map that corre-
sponds to features of the landscapes it was trained on:

Hypothesis 3: The linear pleiotropic encoding we
learn to solve T (Valley) will contain a concentration of
vectors that are aligned with the bottom of the valley.

Now, one might expect that since we are tailoring the
map to a specific problem class, that it will only be useful
for solving instances of that class. In some cases, however,
the implicit search heuristic encoded by R may be of more
general use, much like Gray code is useful on a wide diversity
of problems. Stated differently, the information we learn

about how to solve instances of T (f) may transfer to other
problem classes:

Hypothesis 4: Let R be a linear pleiotropic encod-
ing evolved to solve instances of the translation class
T (Valley). Then R will perform comparably to tra-
ditional bitstring encodings on new problems that do
not belong to T (Valley).

3. RESULTS

3.1 Learning
As specified in Table 1, we ran 50 independent runs of a

meta-EA with a population size of 50 for 500 generations.
Each run is initialized with an independent sample of 10
training problems from T (Valley). The fitness of a mapping
R is defined as the average best fitness that the sub-EA
achieves on the 10 training problems. The sub-EA stops
when it has gone 40 generations with no improvement in its
best fitness. We found that setting the meta-level population
much lower than 50 caused it to converge prematurely, while
increasing it beyond 50 did not measurably improve the final
best training fitness (not shown).

It is not clear a priori whether it ought to be beneficial to
mutate the si’s and weights wij , or whether only one or the
other need to vary for learning to occur. We ran experiments
for four different adaptation schemes (Figure 3): A) one in
which the scale factors (which control the magnitudes of the
vectors) were all fixed at a value of 1, while the weights wij
were mutated, B) the si’s were randomly initialized and then
held constant while the weights were mutated, C) the si’s
were mutated while the weights were held constant at their
initial random values, and finally D) both the si’s and the
wij ’s were allowed to mutate. The results confirm our Hy-
pothesis 1: mutating both is more effective than holding
one fixed. For the remainder of the paper all experiments
were conducted with both types of mutation enabled (D).

To determine whether we begin to over-fit as evolution
proceeds, an additional 20 instances of T (Valley) are re-
served as a validation set. Each run of the meta-EA took
several hours to execute on a sequential processor, even
though each sub-EA run took less than one second – so the
meta-EA represents a substantial investment of resources.
Because measuring the validation fitness of the population
is expensive and does not affect evolution, we only take val-
idation measurements every 20 generations.

10

20

0 50 100 150
Generation

M
ea

n
B

es
t−

S
o−

Fa
r

Tr
ai

ni
ng

 F
itn

es
s

Mutation Scheme

Mutate Weights, Fixed Scale Factors

Mutate Weights, Random Scale Factors

Random Weights, Mutate Scale Factors

Mutate Both

Varying Meta−EA Mutation Scheme on ValleyObjective

Figure 3: Meta-level fitness trajectories for differ-
ent mutation methods. Error bars denote standard
deviation.

Figure 4 shows the improvement in the mean training fit-
ness across the 50 runs for the meta-EA, compared an exper-
iment where the meta-EA was replaced by a random search
algorithm. The validation curve shows the mean fitness of
the best-of-generation individual with on the validation set.
In general, this is a different individual than the individual
with the best-so-far training fitness. We found that the in-
dividual with the best-so-far training fitness tended to be
very over-fit to the training set (not shown). The best-of-
generation validation fitness, however, consistently improves
for about the first two hundred generations before becoming
wildly unpredictable late in the run.

3.2 Testing on New Problem Instances
Our goal in the experiment in Figure 4 is to select a

mapping that will perform well on instances it hasn’t been
trained on. We obtained a high-quality mapping that was
not over-fit by selecting the individual that had the best val-
idation fitness of the run among the times validation fitness
was measured. So, we do not use information from the vali-
dation set during evolution, but at the end of the run we use
the validation set to choose which individual to select as our
trained genotype-to-phenotype mapping R∗. To evaluate
the performance of the mapping chosen from the validation
results, we construct a tertiary test set by taking 100 more
random instances of the translation class T (Valley). We
chose a learned encoding R∗ from a typical run of the meta-
EA, plugged it into a sub-EA, and ran the sub-EA once on
each function in the test set.

The left-hand side of Figure 5 shows the results, compared
against genetic algorithms that use Gray code and a stan-
dard binary encoding. The only difference between the three
algorithms is the encoding method used. We find that the
learned encoding’s average performance is statistically indis-
tinguishable from Gray code’s performance at solving new
instances of T (Valley), and that it performs better than the
standard encoding.

Now, it is well known that most common forms of recom-
bination struggle with rotated problems if the rotation in-
troduces interactions between variables that aren’t present
when the problem is aligned with the axes [13]. This is

0.05

0.10

0.15

0.20

0 100 200 300 400 500
Generation

M
ea

n
F

itn
es

s

Value

Random Search validation

Random Search training

Meta−EA validation

Meta−EA training

Meta−EA Performance on ValleyObjective

Figure 4: Training and validation fitness for 50 in-
dependent runs of the meta-EA. Error bars denote
standard deviation on the mean. Reported is the
mean best-so-far fitness on the training set and the
mean best-of-generation fitness on the validation
set.

known as epistasis, and is a well studied problem in EAs.
To see how our learned encoding R∗ handles epistasis, we
applied a π/6 radian rotation to every problem in our ter-
tiary test set. The result is shown in right-hand side of
Figure 5. The performance of the traditional encodings are
very poor on the rotated version of the valley landscape.
Because the mappings our meta-EA learns are pleiotropic,
however, the sub-EA often alters more than one trait at a
time when a single bit is flipped. As a result,it can deal with
epistasis much better than the traditional encodings are able
to. So we have confirmed Hypothesis 2 (the learned en-
coding performs competitively), and we have demonstrated
a simple form of transfer: the learned encoding is able to
generalize to solve problems with a rotation that it was not
trained on.

3.3 Analysis
Our third prediction was that the mappings we trained

on the instances of T (Valley) would hold a particular sig-
nature: We anticipate that the weight vectors 2si ~wi will be
pointed in a direction that aligns with the floor of the valley
(the line L in Equation 3).

We applied a π/6 radian rotation to the valley objec-
tive, and created a translation class of rotated valleys
Tπ/6(Valley). We ran 50 independent runs of the meta-EA
with training and validation sets drawn from Tπ/6(Valley).
We took the mappings R∗ with the best validation fitness
from each of the 50 runs, and analyzed the 40 vectors that
made up each mapping, for a total of 2,000 vectors.

The results (Figure 6) indicate that a large proportion of
the vectors are indeed aligned with the valley floor (indicated
by the dashed red line). This confirms Hypothesis 3: a
good pleiotropic mapping is one that permits mutations that
take it along the valley floor. No such rule seems to apply
to the larger vectors, however. This could indicate that the
learned bias is more important during the exploitation phase
of the search process than exploration.

5

10
15

0 100 200 300 400
generation

M
ea

n
B

S
F

Valley

5

10

15

0 100 200 300 400
generation

M
ea

n
B

S
F

Rotated Valley

Encoding Binary Gray Learned

Figure 5: Comparing the performance of a learned representation to Gray code and standard binary encoding
on instances of the non-rotated (Left) and rotated (Right) valley function. Error bars indicate the 95%
confidence interval on the mean over the 100 test problems.

3.4 Robustness Across Problem Classes
We have shown that the mappings we were able to learn on

the translation class of the valley objective perform as well
as Gray code on other instances of the same problem class.
But how does a learned encoding perform on problems unlike
anything it has seen before, such as multi-modal landscapes?

We took the same mapping R∗ that we trained on
T (Valley) in Section 3.2, and applied it to new test sets
of 100 instances each from the sphere, Rastrigin, Rosen-
brock and Ackley functions. We then applied a π/6 radian
rotation to those instances, and ran our learned encoding
on those too, for a total of 8 new translation classes. The
results show that the learned encoding performed as well
or better than Gray code on all 8 classes (Figure 7), even
though R∗ was not trained on functions of this sort.

4. CONCLUSION
We have introduced a new ‘representation for representa-

tions’ – the linear pleiotropic encodings – to facilitate learn-
ing genetic representations for classes of real-valued opti-
mization problems. Although this brief study was confined
to simple, synthetic problem classes, we have shown a proof
of concept that learned pleiotropic representations can pre-
form competitively with traditional bitstring encodings, that
they are robust to rotations of the landscape, and that in
some cases they may even be useful on problem classes that
they were not trained for.

The results of our final experiments in particular indicate
that not only does our representation learning scheme avoid
over-fitting to the specific problems we train it on, but it
also displays a remarkably general-purpose problem-solving
ability, akin to Gray code. We conjecture that this robust-
ness may be a result of the limited expressive power of linear
pleiotropic encodings, which may prevent them from being
over-fit to the environment they evolved for.

Overall, our results suggest that, while meta-evolution
remains a costly way to design algorithms, representation
learning may not be as intractable as is commonly believed.
The general approach we have presented here is not neces-
sarily specific to real-valued problems, either – pleiotropy is

a versatile concept, and a similar scheme could be adapted
to, for instance, pseudo-Boolean functions.

A limitation of the present work is that our meta-EA re-
quires a fixed number of genes m and number of phenotypic
dimensions n. In contrast to binary or Gray codes, which
scale easily, a linear pleiotropic mapping learned for one di-
mensionality n cannot be directly used on a problem with
a different number of dimensions, nor can the number of
bits be adjusted as needed without learning a new encoding
from scratch. Additionally, a possible threat to the validity
of our conclusions is that all of our experiments on tertiary
test sets of the various problem classes were conducted with
one learned mapping that was the result of a single run of
the meta-EA. While we believe these results are representa-
tive of the meta-EA’s typical learning behavior, future work
will need to confirm these conclusions with statistical rigor.

On a more general level, part of the reason that meta-
evolution is so expensive is because there is no obvious way
to do credit assignment. If one mapping is better than an-
other, which tuples in the meta-representation are respon-
sible for the difference in performance? Alcaraz et al. have
demonstrated the usefulness of using measures of ‘effective
fitness’ to predict which components of hyper-heuristics are
the most promising as evolution progresses [15]. One could
conceive of incorporating a similar credit-assignment mech-
anism into the evolution of EA representations.

5. REFERENCES
[1] L. Altenberg. Evolving better representations through

selective genome growth. In Proceedings of the First
IEEE Conference on Evolutionary Computation, pages
182–187. IEEE, 1994.

[2] J. K. Bassett. Methods for improving the Design and
Performance of Evolutionary Algorithms. PhD thesis,
George Mason University, Fairfax, VA, 2012.

[3] H.-G. Beyer and K. Deb. On self-adaptive features in
real-parameter evolutionary algorithms. IEEE
Transactions on Evolutionary Computation,
5(3):250–270, 2001.

−50

0

50

100

−50 0 50 100
0

0

Vectors from 50 Learned Mappings for ValleyObjective

−2

0

2

0 30 60 90 120
Length

D
ire

ct
io

n

Vector Directions and Lengths for 50 Learned Mappings

0

50

100

150

200

250

−2 0 2
theta

co
un

t

Histogram of Vector Directions

Figure 6: Three ways of summarizing the 2,000 vec-
tors that make up 50 learned mappings that were
trained on Tπ/6(Valley). The dashed line indicates
the angle of the valley floor, which lies at a −π/6
rotation from the axis in these figures.

[4] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and
S. Schulenburg. Hyper-heuristics: An emerging
direction in modern search technology. In Handbook of
metaheuristics, pages 457–474. Springer, 2003.

[5] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa,
E. Özcan, and J. R. Woodward. A classification of
hyper-heuristic approaches. In Handbook of
metaheuristics, pages 449–468. Springer, 2010.

[6] K. De Jong. Parameter setting in EAs: a 30 year
perspective. In Parameter Setting in Evolutionary
Algorithms, pages 1–18. Springer, 2007.

[7] K. A. De Jong. Evolutionary Computation: A Unified
Approach. MIT Press, Cambridge, Mass, 2006.

[8] W. De Landgraaf, A. Eiben, and V. Nannen.
Parameter calibration using meta-algorithms. In CEC
2007: IEEE Congress on Evolutionary Computation,
pages 71–78. IEEE, 2007.

[9] J. Gerhart and M. Kirschner. The theory of facilitated
variation. Proceedings of the National Academy of
Sciences, 104(suppl. 1):8582–8589, May 2007.

[10] J. J. Grefenstette. Optimization of control parameters
for genetic algorithms. IEEE Transactions on
Systems, Man and Cybernetics, 16(1):122–128, 1986.

[11] G. Karafotias, M. Hoogendoorn, and A. Eiben.
Parameter control in evolutionary algorithms: Trends
and challenges. IEEE Transactions on Evolutionary
Computation, 19(2):167–187, April 2015.

[12] S. Luke and A. Talukder. Is the meta-EA a viable
optimization method? In GECCO ’13: Proceedings of
the 15th annual conference on Genetic and
Evolutionary Computation, pages 1533–1540. ACM,
2013.

[13] R. Salomon. Re-evaluating genetic algorithm
performance under coordinate rotation of benchmark
functions. A survey of some theoretical and practical
aspects of genetic algorithms. BioSystems,
39(3):263–278, 1996.

[14] L. F. Simões, D. Izzo, E. Haasdijk, and A. E. Eiben.
Self-adaptive genotype-phenotype maps: Neural
networks as a meta-representation. In
T. Bartz-Beielstein, J. Branke, B. Filipič, and
J. Smith, editors, Parallel Problem Solving from
Nature – PPSN XIII, volume 8672 of Lecture Notes in
Computer Science, pages 110–119. Springer, 2014.

[15] J. A. Soria Alcaraz, G. Ochoa, M. Carpio, and
H. Puga. Evolvability metrics in adaptive operator
selection. In GECCO ’14: Proceedings of the 2014
Conference on Genetic and Evolutionary
Computation, pages 1327–1334. ACM, 2014.

5
1015

0 100 200 300 400
generation

M
ea

n
B

S
F

Sphere

5
1015

0 100 200 300 400
generation

M
ea

n
B

S
F

Rotated Sphere

5

10
15

0 100 200 300 400
generation

M
ea

n
B

S
F

Rastrigin

5

10
15

0 100 200 300 400
generation

M
ea

n
B

S
F

Rotated Rastrigin

5
10
15

0 100 200 300 400
generation

M
ea

n
B

S
F

Rosenbrock

5

10
15

0 100 200 300 400
generation

M
ea

n
B

S
F

Rotated Rosenbrock

5
10
15

0 100 200 300 400
generation

M
ea

n
B

S
F

Ackley

5
10
15

0 100 200 300 400
generation

M
ea

n
B

S
F

Rotated Ackley

Encoding Binary Gray Learned

Figure 7: When we train a pleiotropic encoding on the class of valley objectives and then use it on instances
of other functions, it performs as well or better than a traditional binary encoding. Shown is the sub-EA BSF
averaged over 50 instances of each problem class. Error bars denote 95% confident intervals on the mean.

	Introduction
	Methodology
	Meta-Evolution of Representations
	Problem Class
	Predictions

	Results
	Learning
	Testing on New Problem Instances
	Analysis
	Robustness Across Problem Classes

	Conclusion
	References

