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ABSTRACT
In many applications of evolutionary algorithms, the time
required to evaluate the fitness of individuals is long and
variable. When the variance in individual evaluation times
is non-negligible, traditional, synchronous master-slave EAs
incur idle time in CPU resources. An asynchronous ap-
proach to parallelization of EAs promises to eliminate idle
time and thereby to reduce the amount of wall-clock time
it takes to solve a problem. However, the behavior of asyn-
chronous evolutionary algorithms is not well understood. In
particular, it is not clear exactly how much faster the asyn-
chronous algorithm will tend to run, or whether its evolu-
tionary trajectory may follow a sub-optimal search path that
cancels out the promised benefits. This paper presents a pre-
liminary analysis of simple asynchronous EA performance in
terms of speed and problem-solving ability.

Categories and Subject Descriptors
I.2 [Computing Methdologies]: ARTIFICIAL INTELLI-
GENCE—Problem Solving, Control Methods, and Search

Keywords
Evolutionary Algorithms, Parallel Algorithms, Asyn-
chronous Algorithms

1. INTRODUCTION
Evolutionary algorithms are increasingly being used to

tune the parameters of large, complex and stochastic simu-
lation models in various domains of science and engineering.
In these applications, evaluating the fitness of an individual
may take on the order of minutes or hours of CPU time.
Parallel evaluation is thus essential to obtaining EA results
from these models in a tolerable amount of“wall-clock”time.

In the neuroscience and agent-based modeling applica-
tions we are involved with, we observe a non-negligible
amount of parameter-dependent variance in the evalua-
tion times of the simulation models being tuned. At any
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Figure 1: When there is variance in individual eval-
uation times, a parallelized generational EA suffers
idle time.

given generation, the slowest individual in the population
may take several times longer to evaluate than the fastest-
evaluating individuals.

This poses a problem for the ‘generational’ master-slave
EAs which practitioners often use to parallelize the solution
of optimization and design problems. Traditional master-
slave EAs synchronize their threads at each generation, in
imitation of the sequential EAs they are derived from. As
all the CPUs must wait for the individual with the longest
evaluation time to complete before moving to the next gen-
eration, a significant amount of CPU idle time may result.
Figure 1 illustrates this with 10 simulated evaluation times
sampled uniformly from [0.5, 1.0]. The lightly shaded region
shows the idle CPU time induced as 9 of the 10 nodes wait
for the next generation.

A natural alternative, which we analyze in this paper, is
to abandon the (µ, λ) generational scheme and turn to a
(µ + 1)-style EA with asynchronous evaluation. Here, new
individuals are generated one-at-a-time by the selection and
reproduction operators as CPUs become available, and are
integrated into the population immediately when they fin-
ish having their fitness evaluated. As the processing nodes
never wait for a generation boundary, idle time is virtually
eliminated. We refer to algorithms that follow this approach



as simple asynchronous evolutionary algorithms (the details
of which will be given in Section 1.2).

Simple asynchronous EAs promise to eliminate the perfor-
mance impediment that eval-time variance induces in gener-
ational master-slave EAs, thereby increasing throughput in
terms of the number of individuals evaluated per unit time.
One contribution we offer in this paper is a model (under
simplified assumptions) of just how much extra throughput
a simple asynchronous EA gains over a generational EA.
This increase in computational efficiency is purchased, how-
ever, at the cost of a significant change in EA behavior. It
could be that, on some problems, the increased throughput
in fitness evaluations is offset by slower evolutionary conver-
gence.

The aim of this paper is to further our understanding of
that potential trade-off. The practitioner would like to know
whether she can reliably expect beneficial results from a sim-
ple asynchronous EA, as compared to a parallel (µ, λ)-style
EA. Little to no such guidance currently exists in the liter-
ature.

The remainder of this section gives some background on
parallel and asynchronous EAs that have been studied, in-
troduces the simple asynchronous evolutionary algorithm up
close, and details concerns that may arise about its perfor-
mance. Sections 2, 3 and 4 proceed with theoretical and
empirical analysis of the algorithm’s speed and behavior,
and we conclude with a summary in Section 5.

1.1 Background
In general, evolutionary algorithms use either a global

population model (panmixia), in which selection and repro-
duction operators apply to a single monolithic population,
or they use a structured population model that decomposes
the population into components that interact locally. Struc-
tured models can be further divided into the ‘course-grained’
island models and ‘fine-grained’ cellular EAs, respectively,
yielding three broad families of EA (four if you count hybrid
approaches separately). Parallelization of all three families
has been studied extensively (cf. surveys in [1, 4, 17]).

Asynchronous communication appears only occasionally
in the parallel EA literature. Island models have been cre-
ated that permit asynchronous migrations between subpop-
ulations [2, 13], and asynchronous cell updating has been
studied in cellular EAs [10], but in general asynchronous
mechanisms have not been advertised as promising major
performance advantages for structured population models.
Recent work on ‘pool-based’ EAs allows subsets of a cen-
tralized population to be farmed out asynchronously to slave
processors for evolution, as a sort of intermediate between
panmictic and structured population models (ex. [15]). The
purely panmictic (global) population model, however, is by
far the easiest kind of EA to parallelize, and is thus the most
widely used parallel EA in practice.

Panmictic parallel EAs typically take the form of a (µ, λ)-
style generational EA, in which fitness evaluation is per-
formed in parallel, either on a shared-memory machine or
over a distributed cluster [5]. Selection and reproduction
operators typically operate sequentially on the master pro-
cessor (though these can sometimes be parallelized as well).
These master-slave EAs are especially effective when the ex-
ecution time of fitness evaluation dwarfs the cost of selection
and reproduction. Thanks to its synchronization at each
generation (cf. Figure 2), the generational master-slave EA

Figure 2: A generational master-slave EA synchro-
nizes after each population has been evaluated in
parallel.

is also well-understood: its evolutionary behavior is iden-
tical to its slower, sequential counterpart. The potential
drawback of synchronization, and the primary motivation
for turning to an asynchronous approach, is the idle time
already pointed out by Figure 1.

Asynchronous algorithms based on the (µ + 1)-style
steady-state EA have been used intermittently by practi-
tioners for decades as an easy-to-implement means of re-
ducing idle CPU resources (e.g. [5, 20]). First used in ge-
netic algorithms [32], asynchronous evaluation was intro-
duced into multi-objective EA (MOEA) applications as early
as 1995 (ex. [24, 26]), and similar approaches have been used
in master-slave implementations of ant colony optimization
[25], differential evolution [18], and particle swarm optimiza-
tion [12, 16, 27].

Interest in the asynchronous master-slave scheme (which
we describe in more detail below) has grown in recent years
as EA applications involving computationally expensive sim-
ulations become more common. For instance, Churchhill et
al. apply an asynchronous MOEA to a tool-sequence op-
timization problem for automatic milling machine simula-
tions, finding that both the synchronous and asynchronous
methods achieve solutions that are comparable in quality
after a fixed number of evaluations, but that the asyn-
chronous method completes those evaluations in 30-50% less
wall-clock time [6]. Yagoubi et al. similarly apply an asyn-
chronous MOEA to the design of an engine part in a sim-
ulation of diesel combustion, with favorable results after a
fixed number of evaluations [29].

While several successful applications of asynchronous
master-slave EAs are attested in the literature, few studies
have attempted to tease out a theoretical or empirical un-
derstanding of what kinds of problems they may be poorly-
or well-suited for. As we will see below, the performance
of the asynchronous EA depends in a readily evident but
poorly understood way on the number of slave processors
and the distribution of individual evaluation times.

Zeigler and Kim were among the first to suggest the ben-
efits of asynchrony in master-slave EAs and to perform pre-
liminary analysis of their throughput and problem solving
capacity [11, 32]. They observed that, with an asynchronous
EA, an unlimited number of threads may be used to keep
a cluster fully utilized, even when the number of available
processors is greater than the population size. Runarsson
has shown empirically, however, that as the number of slave
processors is increased, more function evaluations are needed
for his asynchronous evolution strategy to make progress on
unimodal functions [21]. The extra throughput is thus ap-
parently purchased at the cost of making the algorithm less
greedy than a non-parallelized steady-state EA.

This is caused by what Depolli et al. call the selection
lag, defined as “the number of solutions created while an



observed solution is being evaluated” [8]. The selection lag
describes the key behavioral difference between the asyn-
chronous EA and the steady-state EA.

While our focus in this paper is on single-objective prob-
lems, most recent analysis of the asynchronous master-slave
model has taken place in the context of multi-objective opti-
mization, using MOEA approaches that are inspired by the
steady-state EA. In empirical studies on small test suites,
Durillo et al. and Zăvoianu et al. each find that the asyn-
chronous approach performs well at finding good Pareto
fronts in less time than other approaches [9, 31]. Zăvoianu
et al. also use an argument based on Amdahl’s law to put
a lower bound on the speedup in evaluations-per-unit-time
that the asynchronous approach provides as compared to a
generational approach. They suggest that the asynchronous
EA can provide some improvement in computational capac-
ity even when evaluation times are very short and have neg-
ligible variance. When evaluation times are much longer
than the EA’s sequential operations (i.e. reproduction, se-
lection), negligible speedup is predicted unless there is vari-
ation in evaluation times. Their analysis applies unmodified
to single-objective EAs.

A concern that we give considerable attention to in this
paper is how the distribution of evaluation times changes
over the course of an evolutionary run, and how this may
impact performance. In particular, in some applications, so-
lutions that lie close to the optimum may take much longer
(or shorter) to evaluate than poor solutions. It’s not clear
how the relationship between the fitness landscape and her-
itable evaluation time traits may affect EA performance.
The only prior work we know that has raised this question
is Yagoubi et al.’s empirical analysis of a multi-objective
test suite in [30], which found that an asynchronous MOEA
had a harder time finding good solutions when they were
located in a region of the search space that was artificially
configured to have slower evaluation times. This raises the
concern that asynchronous EAs may in general have a bias
toward fast-evaluating individuals.

1.2 The Simple Asynchronous EA
The key notion behind asynchronous master-slave EAs is

that we integrate an individual into the population as soon
as it finishes evaluating, and immediately generate a new in-
dividual to take its place on the open CPU resource. There
seems to be no way to accomplish this without abandon-
ing the generational model, which is inherently synchronous,
and instead introducing a generation gap (cf. [23]), so as to
allow a continuous evolutionary process.1 The simplest gen-
eration gap algorithm is the (µ + 1)-style steady-state EA,
and almost all asynchronous master-slave EAs are based on
the steady-state EA.

Figure 3 illustrates the difference between traditional
steady-state evolution and the simple asynchronous EA. In
the steady-state model, a single individual i is generated by
selecting parents from the population P (t) at step t. The
new individual has its fitness evaluated, and then competes
for a place in the population. How that competition takes
place is a design decision, but a typical approach (and the
one we take in this paper) is to choose a random individual
in P (t), and have i replace it in the population iff i has
a fitness strictly better than the randomly chosen individ-

1That said, we note that Durillo et al. have created a hybrid
approach in [9] that they call ‘asynchronous generational.’

Figure 3: In steady-state evolution, individuals com-
pete for a space in the population at the subsequent
step (Top). In the simple asynchronous EA, several
evolutionary steps may pass before an individual en-
ters the population (Bottom).

ual. The result of this replacement is the new population
P (t + 1). By convention, we say that one ‘generation’ has
passed in a steady-state or simple asynchronous EA when µ
individuals have been generated, where µ is the population
size.

In the asynchronous model, at any given time more than
one individual is having its fitness evaluated. In the bot-
tom of Figure 3, T = 2 slave processors are in use. As the
population is initialized, T − 1 extra initial individuals are
created to keep the slaves busy while the first evolutionary
step executes. From that point on, individuals that are being
evaluated on the slaves compete for a place in the popula-
tion as soon as they finish evaluating. As a result, several
evolutionary steps may take place while an individual eval-
uates.

The simple asynchronous EA we use in this work is de-
tailed from the perspective of the master processor in Al-
gorithm 1. The first loop initializes the population by
sending randomly generated individuals to a free node for
evaluation (send()). When this while loop terminates,
there are n individuals in the population that have had
their fitness evaluated, there are T − 1 randomly gener-
ated individuals currently being evaluated on the T slaves,
and there is one free slave node. We then breed one
individual from the population and send it off for eval-
uation to fill the free node (breedOne() represents both
parent selection and reproductive operators). Evolution
then proceeds in the for loop, which waits for an individ-
ual to complete evaluating and thus free up a slave pro-
cessor (nextEvaluatedIndividual()). Each newly evalu-
ated individual competes against an individual chosen by
selectOne() for a place in the population. Finally, a new
individual is generated and sent off to fill the free slave node,
and the cycle continues.

In our experiments below, we use tournament selection of
size 2 to select parents in breedOne(), and we use random
selection for survival selection (selectOne()), as parent se-
lection already provides ample selection pressure. Practi-
tioners (for instance, [19]) also sometimes choose to use a
FIFO replacement strategy, amongst others, instead of ran-
dom replacement, since Sarma and De Jong have shown in
[22] that using a FIFO strategy in (µ + λ)-style EAs leads
to search behavior that is more like the (µ, λ)-style EA. See
[28] for a study of survival selection strategies in a simple
asynchronous EA.



Algorithm 1 The Simple Asynchronous EA

1: function AsynchronousEvolution(n, gens)
2: P ← ∅
3: while |P | < n do
4: if ¬nodeAvailable() then
5: wait()

6: while nodeAvailable() do
7: ind← randomIndividual()
8: send(ind)

9: finishedInd← nextEvaluatedIndividual()
10: P ← P ∪ {finishedInd}
11: newInd← breedOne(P )
12: send(newInd)
13: for i← 0 to (n · gens) do
14: finishedInd← nextEvaluatedIndividual()
15: replaceInd← selectOne(P )
16: if betterThan(finishedInd, replaceInd) then
17: P ← (P − replaceInd) ∪ finishedInd

18: newInd← breedOne(P )
19: send(newInd)

Once the asynchronous dynamics depicted in Figure 3 are
understood, several concerns about the algorithm’s behavior
become readily apparent.

As Rasheed and Davison observe with their application of
a similar asynchronous EA,“the creation of a new individual
may not be affected by individuals created one or two steps
ago because they have not yet been placed into the popula-
tion” [20]. That is, the parallelism introduces selection lag,
which (as mentioned above) is the number of evolutionary
steps that go by while an individual is being evaluated. Se-
lection lag occurs whether or not there is variance in individ-
ual evaluation times. A sequential steady-state EA always
has a selection lag of 0, but Depolli et al. prove that, even
in the presence of evaluation-time variance, the average se-
lection lag in (µ+ 1)-style asynchronous EAs is T − 1 steps,
where T is the number of slave processors [8].

“Even worse,” continue Rasheed and Davison, variance in
evaluation times induces a re-ordering effect : the algorithm
“may get back individuals in a different order than origi-
nally created, as some processors/processes may complete
their evaluations faster than others (such as a result of het-
erogeneous processing environments, external loads, etc.).”

Variance in individual evaluation times may originate in
a heritable component and/or a non-heritable component.

• Non-Heritable eval-time variance may arise from
heterogenous CPU resources, load conditions, and pro-
cess scheduling effects – but it can be especially pro-
nounced in cases where fitness evaluation involves ex-
ecuting a stochastic simulation.

• Heritable eval-time variance arises where there is a
dependency between the parameters of the simulation
and the time it takes to execute. Heritable variance
may be independent of fitness, or there may be a rela-
tionship between fitness and evaluation time.

We would like to understand how these sources of variance
impact both an asynchronous EA’s throughput (the number
of individuals evaluated per unit time) and its ability to
converge to an optimal solution to a problem. In particular,

in the remainder of this paper we investigate three research
questions, treated now below.

First, we are concerned about the role that the re-ordering
effect described above may play in altering the EA’s search
trajectory. When evaluation time is a heritable trait, many
fast-evaluating individuals may be born, evaluated, and
compete for a place in the population in the time it takes
for a single slower individual to evaluate. This raises the
concern that simple asynchronous EAs may be biased
away from slow-evaluating regions of the search space. As
mentioned in Section 1.1, Yagoubi et al. observe evidence
that this does in fact occur in a multi-objective context [30].
They found that on at least one test problem, an evaluation-
time bias helped to prevent premature convergence. An
evaluation-time bias could just as easily cause premature
convergence in other problems, however, so if eval-time
bias is a significant aspect of asynchronous EA behavior,
then it is something practitioners ought to be made aware of.

RQ 1: When individual evaluation times are a herita-
ble trait, does the asynchronous EA give a reproductive
advantage to faster-evaluating individuals? That is, is
the EA biased toward individuals with lower evaluation
times?

After studying evaluation-time bias, we turn to the more
basic question of how much idle CPU resources a simple
asynchronous EA can reclaim, compared to a generational
EA.

RQ 2: How great an increase in throughput does the
simple asynchronous EA offer over a parallelized gen-
erational EA? How does it depend on the population
size, number of processors, and the distribution of eval-
uation times? How does it depend on how the distri-
bution of evaluation times changes over the course of
the evolutionary run?

Doing more fitness evaluations in the same amount of
time is only beneficial if those extra evaluations can be put
to work to make progress toward the optimum. It’s not
obvious how the asynchronous and generational EAs differ
in balancing exploration and exploitation, so we compare
the two algorithms’ performance on single- and multi-modal
test functions.

RQ 3: How does the convergence time of an asyn-
chronous EA compare to what we would expect from
the increase in throughput? Can we be both fast and
smart? How does the asynchronous EA’s performance
depend on the relationship between evaluation time
and fitness?

In the next three sections we address RQ 1, RQ 2 and
RQ 3 in turn. The evolutionary behavior of the asyn-
chronous EA is complex and difficult to describe in a purely
analytical way. For instance, the replicator dynamics of the
system are (perhaps not surprisingly) non-Markovian. As
such, while we use some preliminary analytical results where
possible, this paper relies heavily on empirical studies to be-



gin improving our understanding of asynchronous EAs. All
our experiments use the asynchronous EA implementation
provided by the ECJ evolutionary computation toolkit [14],
which closely follows Algorithm 1.

2. EVALUATION-TIME BIAS
The intuition depicted in Figure 3 would seem to indicate

that when evaluation time is a heritable trait, fast-evaluating
individuals may obtain a reproductive advantage in an asyn-
chronous EA. This can be worrying in some applications,
such as when scientific simulations are being tuned so that
their results match some experimental data. The goal of
such parameter tuning is to find the best-fitting model –
not a model that runs faster than the alternatives!

The simplest way to study a possible bias toward fast-
evaluating genotypes is in isolation from other evolutionary
effects. We define a heritable runtime trait by a gene that
can take on one of two alleles: fast and slow, where slow

takes 10 times longer to evaluate. Further assume that there
is no reproductive variation (offspring are generated only by
cloning), and that the fitness landscape is flat – i.e. every
individual has an equal chance of being selected as a par-
ent. Each cloned offspring replaces a random individual in
the population with 100% probability. In this scenario, any
systematic change in genotype frequency can only be due to
some implicit selection acting on the evaluation-time trait.

Now, given a number of evolutionary steps, will a dis-
proportionate number of fast-type individuals be produced
on average? We can approach this by letting the random
variable X denote the number of fast-type individuals that
complete evaluation during a fixed interval of m evolution-
ary steps. Then define Xi as the indicator random variable

Xi = I{The individual evaluated at step i is fast-type},
(1)

which evaluates to 1 if the proposition is true and 0 other-
wise. Now, the linearity of expectation shows that we can
answer our question by considering each Xi independently
of any other part of the evolutionary trajectory:

E[X] = E

[
m∑
i=1

Xi

]
(2)

=

m∑
i=1

E[Xi] (3)

=

m∑
i=1

p(Xi = 1) (4)

=

m∑
i=1

fi, (5)

where fi is the probability that the processor that completed
evaluation at step i contained a fast-type individual. But
since individuals are cloned from a randomly selected parent,
fi is simply the expected frequency of fast-type alleles that
existed when the individual was first cloned and sent off for
evaluation.

For large populations we know that fi will not change very
quickly. Empirically, we find that, apart from a very short
transient period at initialization, the expected value of the
fi’s is roughly constant on a flat landscape with a population
size of 100 (Figure 4). We seeded the initial population with
random genotypes that were drawn with equal probability
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Figure 4: Each point represents the fraction of in-
dividuals out of 50 independent runs that finished
evaluating with slow type at that step. Since the
fraction hovers around 0.5, the frequency of each
genotype does not change very much.

from both fast and slow alleles, so that the initial fast-type
frequency averaged f = 0.5. We then ran the asynchronous
EA with 10 slave processors for a total of 50 independent
runs. This allows us to estimate the expected value of fi at
any step i. We find that in all but just the first few steps, fi
consistently hovers around f = 0.5 without any systematic
trend up or down.

By Equation 5, then, E[X] reduces to mf for any value
of m. That is, if f = 0.5 and m = 10 evolutionary steps,
we expect to see 5 fast-type individuals and 5 slow-type
individuals produced, for no net change in the population
genotype. By this analysis, we do not anticipate any change
in the expected genotype frequencies on flat landscapes out-
side the brief transient phase.

This is confirmed in our experiments (Figure 5). We mea-
sured the genotype frequency over time in 50 independent
runs and found no evidence of selection pressure favoring
either allele. At least on flat landscapes, we have a clear
indication that there is no selective advantage for fast fit-
ness evaluations. Similar results were obtained for the case
where individual runtimes are allowed to vary continuously
along an interval, and for population sizes of 10 and 500 (not
shown).

Expected value models like the one we just derived are use-
ful in characterizing the ensemble averages of a sufficiently
large number of finite-population models, but not the behav-
ior of individual runs. Notice that in Figure 5 the variance
in genotype frequency over the 50 independent runs contin-
ues to increase over time. This is an indication that there
are in fact significant changes in the slow/fast ratios on
individual runs. This is due to the well-studied problem of
genetic drift in finite populations (see, for example, [7]). Al-
leles are lost simply due to sampling variance occurring in
the random parent and survival selection steps. This drift
occurs even if the evaluation times of fast and slow-type
individuals are set to be equal.



0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
generation

F
re

qu
en

cy
 o

f S
lo

w
−

Ty
pe

 A
lle

le

Mean

95% Conf.

Std. Dev.

Genetic Drift on Flat Landscape

Figure 5: Frequency of slow-type individuals on a
flat fitness landscape, averaged over 50 runs. No
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We have thus answered RQ 1 in the negative on flat fit-
ness landscapes with cloning: there is no independent selec-
tion pressure that favors fast-evaluating individuals. This
does not, however, rule out an evaluation-time bias that
emerges from a combination of reproduction, variation and
selection, so our results do not contradict the bias observed
in practice by Yagoubi et al. [30].

3. SPEEDUP IN THROUGHPUT
Asynchronous EAs are interesting primarily because they

promises to increase the total number of individuals that
complete evaluation per unit of wall-clock time – i.e. through-
put. We measure throughput by considering the time it takes
for an EA to execute a fixed number of evaluations. We call
the ratio between two algorithms’ throughput the improve-
ment in throughput, or the throughput speedup. It is im-
portant to distinguish throughput improvement from true
speedup, which would take the quality of the resulting so-
lution into account.2 In this section we are concerned with
the throughput improvement of the simple asynchronous EA
over the parallel generational EA. We defer consideration of
true speedup – i.e. convergence time – to Section 4.

3.1 A Model of Throughput Improvement
As we stated in the opening to this paper, we have as-

sumed that the evaluation time of individuals dwarfs all
other EA overhead, and thus that an asynchronous EA has
near-zero idle time. Under this assumption, the speedup in
throughput that the asynchronous EA offers is completely
described by the amount of idle CPU resources it recovers.
Algebraically, the throughput speedup is thus expressed as
the ratio

S =
1

1− Î
, (6)

where Î is the fraction of CPU resources that the genera-
tional EA would have left idle.

2In [31], Zăvoianu et al. use the term ‘structural improve-
ment’ for what we call ‘throughput speedup.’

To get a quantitative handle on what actual values for
the throughput speedup S might look like, consider the case
where individual evaluation times are independent and iden-
tically distributed according to some distribution. Further-
more, assume for simplicity that the ratio of CPUs available
to the population size T/n = 1, i.e. there is one CPU for
each individual in the population. We will now analyze the
expected value of S.

Let P = {Y1, Y2, . . . , Yn} be a set of values drawn i.i.d.
from some distribution, where Yi ∈ R+ represents the eval-
uation time of the ith individual in the population. Then, as
illustrated in Figure 1, the absolute idle time suffered by the
generational EA is the total number of CPU-seconds proces-
sors spend waiting for the longest-evaluating individual to
complete:

I =

n∑
i=1

(max[P ]− Yi). (7)

To express idle time as a normalized value between 0 and 1,
Î, we divide I by the total number of CPU-seconds available
to the algorithm during the generation, which is nmax[P ].

Î =
I

nmax[P ]
. (8)

Computing the expected value of this ratio distribution is
difficult for most distributions, in part because max[P ] and
I are not independent. We can derive a lower bound on the
expectation, however, if we confine our attention to the case
where the Yi’s are sampled from a uniform distribution over
the interval [a, b].

E[Î] = E
[

I

nmax[P ]

]
(9)

≥ E
[
I

nb

]
(10)

=
1

nb
E

[
n∑

i=1

(max[P ]− Yi)

]
(11)

=
1

b
(E[max[P ]]− E[Y ]) , (12)

where the last step follows by the linearity of expectation.
Since max[P ] quickly approaches b as n → ∞, this lower

bound on E[Î] will be tight for large n.
Finally, in Appendix A we show by some straightforward

calculus that for the uniform distribution,

E[max[P ]] = b− 1

n+ 1
(b− a). (13)

Therefore, in the case where all runtimes are uniformly dis-
tributed between a and b, we have the following lower bound
on the expected normalized idle time:

E[Î] ≥ 1

b

[
b− 1

n+ 1
(b− a)−

(
a+

b− a
2

)]
(14)

=

(
b− a
b

)(
1

2
− 1

n+ 1

)
, (15)

where n is population size, which we have assumed is equal
to the number of processors.

We can see from Equation 15 that the expected idle time
is determined entirely by the population size n and the ratio
of the standard deviation (which is related to (b − a) by a
constant factor) to its maximum value b. Moreover, the
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Figure 6: Observed throughput improvement,
shown along with theoretical lower bounds predicted
by Equation 15 (bold lines).

maximum attainable speedup is determined by the limit of
the idle time as n grows:

lim
n→∞

E[Î] =
1

2

(
b− a
b

)
. (16)

This result indicates that the generational EA will never
incur an idleness greater than 50% when evaluation times
follow a uniform distribution, and consequently an asyn-
chronous EA can never provide a throughput improvement
of greater than 2. We note in passing that for other distri-
butions, such as the Gaussian, a speedup of much greater
than 2 is possible.

3.2 Experimental Validation
We used Equation 15 to predict the idle time of the gener-

ational EA, and converted this into a prediction of speedup
via Equation 6. Figure 6 compares the result against simu-
lation experiments.

Each data point represents the speedup in throughput
measured by pairing 50 independent runs of an asynchronous
EA against 50 runs of a generational EA. Each algorithm
was run for as close as possible to 500 fitness evaluations.3

For the lower curve, individual evaluation times were non-
heritable and sampled uniformly from the interval [ t

4
, t],

where t is a sufficiently long time that EA overhead is negli-
gible. The upper curve is a similar experiment with a larger
amount of variance – evaluation times were sampled from
[0, t]. Since evaluation times were independent of fitness,
the objective function is irrelevant to throughput. To sim-
ulate specific evaluation times, individuals were configured
to simply wait a period of time. Since this was not resource
intensive, we were able to simulate large numbers of proces-
sors on a shared-memory machine that had just a few cores.
The thin error bars indicate the standard deviation in the
speedup across the 50 runs. Tighter, wide error bars show-
ing the 95% confident interval on the mean are barely visible

3We say “as close as possible” only because 500 does not
divide evenly into an integral number of generations for some
population sizes.
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Figure 7: Observed throughput improvement when
the number of slave processors is fixed at 10 and the
population size varies.

in the figure, indicating that we obtained a precise estimate
of the expected speedup.

The results confirm that Equation 15 provides a reason-
ably tight estimate of the throughput improvement. For
large numbers of processors (T = n > 20), however, the
prediction no longer serves as an accurate lower bound. We
found that the degree to which the results conform to the
prediction vary somewhat depending on the architecture of
the computer we run the experiments on. We surmise that
the deviation from the prediction at high n is an artifact
of our experimental setup, which simulates more processors
than we actually have available.

The assumption that T = n simplified our analytical ap-
proach to throughput, but in practice our population size
will typically be significantly greater than the number of pro-
cessors. Figure 7 shows the effect of holding the number of
processors fixed at T = 10, and varying the population size
while individual evaluation times are sampled non-heritably
from [0, t] (50 independent runs of 250 generations each).
As n increases, each processor becomes responsible for eval-
uating a larger share of the population, and the throughput
improvement quickly decreases.

In the experiments shown so far, the variance in through-
put improvement from run to run is very small. When eval-
uation time is a heritable trait, this is no longer the case,
as genetic drift and/or selection can significantly alter the
distribution of evaluation times as evolution progresses. The
amount of throughput improvement we attain over the entire
run depends heavily on how the magnitude and variation of
evaluation times expands or shrinks over time. How that
change occurs depends in turn on how the heritable compo-
nent of evaluation time is related to an individual’s fitness.
We return to these nuances (which form the remainder of
RQ 1) in Section 4, where we consider several scenarios in
which the evaluation-time trait is heritable in some way (ex.
Figure 9).

The specific results in this subsection are limited to evalu-
ation times that are uniformly distributed and non-heritable.
Qualitatively, however, we expect similar results for other



simple distributions: asynchronous parallelization is espe-
cially advantageous over the generational EA when the num-
ber of slave processors is large and the ratio T/n of proces-
sors to the population size is high. Decreasing returns ap-
pear to set in quickly, however, so it is important to have
realistic expectations about how much of an advantage asyn-
chrony will offer.

4. PROBLEM SOLVING
The throughput improvement an asynchronous EA offers

over a generational alternative is an intuitively appealing
metric, because we are inclined to believe that progress to-
ward the solution can be measured by the number of fitness
evaluations an algorithm has completed. In his early anal-
ysis of asynchronous master-slave EAs, Kim called this the
requisite sample set hypothesis, and used it to express the
importance of throughput [11]:

“Given an [algorithm] for which the invariance of
the requisite sample set size holds, search speed
is determined by the throughput of fitness eval-
uation. The greater the number of processors
dedicated to the evaluation of individuals, and
the higher the utilization of these processors, the
faster the global optimum will be located.”

When the number of samples an asynchronous EA needs to
find a high quality solution on the given problem is equal
to the number of samples a generational EA requires, then
throughput improvement is an accurate predictor of true
speedup. This assumption is unlikely to hold in practice. In
principle, on some problems the asynchronous EA could re-
quire so many more samples that it takes longer to converge
than the generational EA, despite the increase in through-
put.

In this section we continue our approach of simulating
various kinds of evaluation-time distributions, but now on
non-flat fitness landscapes. The aim is to gain a preliminary
understanding of how gains in throughput combine with the
evolutionary trajectory of the asynchronous EA to produce
true speedup.

4.1 Methods
The performance of an asynchronous EA depends not only

on the fitness landscape of the problem at hand, but also
on the how an individual’s location in the search space is
related to its evaluation time. As such, we used four dis-
tinct simulated scenarios on each test function to see how
the asynchronous EA performs on real-valued minimization
problems. In all four scenarios, we represented individual
genomes as vectors in Rl, used a Gaussian mutation opera-
tor at a per-gene probability of 0.05, and used a 100% rate
of two-point crossover. The population size was fixed at
n = 10 in each case, and the number of slave processors was
also T = 10.

1. In the Non-Heritable scenario, individual evaluation
times are uniformly sampled from the interval [0, tmax].

2. In the Heritable, fitness-independent scenario, we
define a special gene to represent the individual’s
evaluation-time trait. The trait is randomly initialized
on [0, tmax], and undergoes Gaussian mutation within
these bounds with a standard deviation of 0.05 · tmax.
This gene is ignored during the calculation of fitness.

Figure 8: The Hölder table function.

3. In the Positive fitness-correlated scenario, the evalu-
ation time t(~x) of an individual ~x is a linear function
of fitness with a positive slope m and zero intercept:

t(~x) = mf(~x) (17)

This simulates the case where evaluation becomes
faster as we approach the optimum.

4. In the Negative fitness-correlated scenario, evaluation
time is a linear function of fitness with a negative slope
and a non-zero intercept:

t(~x) = max (0,−mf(~x) + tmax) . (18)

In this case, evaluation becomes slower as we approach
the optimum (up to a maximum of tmax seconds).

We tested all four scenarios on the 2-dimensional Rastrigin
function, the Hölder table function, and the venerable 10-
dimensional sphere function. While the Rastrigin function
has many local optima, it is linearly separable and has a
quadratic macro-structure which makes the global optimum
relatively easy to find:

f(~x) = 10l +

l∑
i=1

[x2i − 10 cos(2πxi)]. (19)

The Hölder table function (Figure 8) is also highly multi-
modal:

f(~x) = −

∣∣∣∣∣sin(x1) cos(x2) exp

(∣∣∣∣∣1−
√
x21 + x22
π

∣∣∣∣∣
)∣∣∣∣∣+19.2085,

(20)
where we have added the non-traditional constant 19.2085
so that the global optima have a fitness of approximately
zero. We select the Hölder table because it is moderately
difficult, in the sense that the EAs we are studying some-
times converge on a local optimum, and fail to converge on
a global optimum after several hundred generations.

During both initialization and the application of repro-
ductive operators, we bound each gene between -10 and 10
on all three objectives, and we set the standard deviation
of the Gaussian mutation operator to 0.5. For the fitness-
correlated scenarios, we set the parameter m to 1 for the



sphere function and 5 on the Rastrigin and Hölder table.
We ran each EA for 250 generations on the sphere func-
tion, 500 on the Hölder function, and 1000 on the Rastrigin
function.

4.2 Results

4.2.1 Sphere and Rastrigin Functions
Our first observation on non-flat fitness landscapes relates

back to Section 2, where we found no evidence of a selective
bias toward fast-evaluating individuals on flat landscapes.
That result does not preclude the possibility that a special
kind of bias could still exist on non-flat landscapes.

In particular, we might anticipate that in the positively
correlated scenario, where evaluation time decreases as fit-
ness improves, a preference for fast-evaluating individuals
may cause the population to be “accelerated” toward the
optimum. Conversely, we might also expect the population
to be more reluctant to move into areas of better fitness
when evaluation time is negatively correlated with fitness.
In fact, however, we observe no statistically significant (p
< 0.05) difference among the four scenarios in the number
of fitness evaluations it takes for the asynchronous EA to
converge on the sphere function (not shown). This indicates
that as Gaussian mutation leads the population to exploit
a unimodal function, the effect of evaluation-time bias is
negligible.

Secondly, we would like to know how well the näıve
promises of throughput improvement serve as a predictor of
true speedup on these simple objectives. Figures 9 and 10
show the true speedup and throughput improvement for each
of the four scenarios on the sphere and Rastrigin functions,
respectively. The true speedup is measured by considering
the amount of wall-clock time it takes each algorithm to
reach a fitness value of less than the threshold value η = 2.
Each scenario was tested by pairing 50 independent runs of
each algorithm and measuring the resulting speedup distri-
bution.

The asynchronous EA converges in less time than the gen-
erational EA in all four scenarios on both functions. On
the Rastrigin, but not the sphere, the true speedups are
remarkably high. All of them average over 2.0, which is
the maximum attainable expected value for throughput im-
provement as determined by Equation 16, and outliers are
visible in Figure 10 with true speedup values in excess of 20
or 30. This is possible because the asynchronous EA requires
fewer fitness evaluations to solve the Rastrigin function than
the generational EA.

On the sphere function, most of the true speedup is more
readily explained by an increase in throughput: We find
at p < 0.05 with the Bonferroni correction for testing four
simultaneous hypotheses that there is no statistically sig-
nificant difference between the means of the throughput
speedup and true speedup in the non-heritable, heritable,
and positive scenarios. We reject the hypothesis, however,
that the mean true speedup in the negative scenario is
equal to the mean of its throughput improvement: the true
speedup is higher on average.

When evaluation time is negatively correlated with fitness
on a minimization problem, the majority of the processing
time is spent in the later stages of the run, where the popula-
tion consists primarily of high-quality individuals with long
evaluation times. The late stages of the run are also where
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Figure 9: Speedup in throughput (Top) and conver-
gence time (Bottom) of the asynchronous EA on the
sphere function.

genetic variation is low in the population, so there is very
little evaluation-time variance. As we saw in Section 3, low
evaluation-time variance translates to very little difference
in throughput between the two algorithms – when there is
no eval-time variance, there is no idle time to eliminate. As
such, we predict that the throughput improvement in the
negative scenario will be very close to 1 on any objective
function, provided that the algorithm is run for a sufficiently
long period of time.

The true speedup in the negative scenario is observed at
an average of 1.23 +/- 0.05 (95% confidence interval) for the
sphere function and 3.09 +/- 0.58 for the Rastrigin. The
fact that the true speedup is greater than 1 for both func-
tions indicates that it is the evolutionary trajectory of the
asynchronous EA, not the elimination of idle time, that is
producing the true speedup.

In fact, the asynchronous EA is fundamentally greedier
than the generational EA. This can be seen in Figure 11,
which depicts average best-so-far trajectories on the sphere
function for the non-heritable scenario. (µ + λ)-style EAs
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Figure 10: Speedup in throughput (Top) and con-
vergence time (Bottom) of the asynchronous EA on
the Rastrigin function.
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are known to be greedier than (µ, λ)-style EAs in general,
and the simple asynchronous EA is no exception. In all
four scenarios on both the sphere and Rastrigin functions,
the asynchronous EA converges in fewer fitness evaluations
than the generational EA, not just fewer seconds. Part of
the true speedup in Figures 9 and 10, then, is attributable
to an increase in throughput (working “faster”), but a ma-
jor component is due to the fact that the asynchronous EA
takes a different search trajectory than the generational EA.
Because the asynchronous EA requires fewer fitness evalu-
ations to reach the optimum, in these cases we can say it
works both faster and “smarter.”

4.2.2 Hölder Table Function
Both algorithms frequently fail to converge to a global

minimum on the Hölder table function. Since many of our
runs fail to converge, we cannot fully describe the run-length
distribution, which we used to compute the distribution of
speedups on the other objectives. Instead, we characterize
just part of the run-length distribution by measuring the
success ratio of each algorithm after a fixed amount of re-
sources have been expended (such as wall-clock time). We
define the success ratio as the fraction of 50 independent
runs that achieved a fitness of less than η = 2. Cf. [3] for
a discussion of run-length distributions, success ratios and
related measures.

In all four scenarios, the asynchronous EA is able to find
a global optimum on the Hölder table function much more
frequently than the generational EA does. When both al-
gorithms do find a solution, the asynchronous EA finds it
at least as quickly as the generational EA does. This can
be seen for the heritable and negative scenarios in Figure 12
(the results for the other two scenarios are qualitatively sim-
ilar).

On all three test functions, then, we have found that
the asynchronous EA does not exhibit any particularly
adverse performance. To the contrary, it does a good job of
delivering the promised speedup in time-to-convergence on
the two more tractable problems, and it allows us a much
smaller risk of premature convergence on the more difficult
Hölder table problem. These results are, of course, problem-
dependent, and performance may vary on other objective
functions. What this preliminary study has confirmed is
that, on a few simple functions, the idiosyncrasies of the
asynchronous EA’s behavior did not undermine it’s ability
to improve EA performance. We have learned something
about where asynchronous EAs can succeed, even if we do
not yet understand how they might fail.

5. DISCUSSION
The potential benefits of asynchronous master-slave EAs

were first recognized at least twenty years ago [32]. The
growing prevalence of evolutionary computation applica-
tions that involve resource-intensive simulations, however,
pushes evaluation time to a higher position on the list of
pertinent concerns in the EA community than it was in the
1990’s. This makes the throughput-enhancing advantages of
asynchronous master-slave EAs especially relevant.

In this paper, we have made a number of observations
that we hope can save practitioners some confusion as they
turn to asynchrony to improve their EA performance. Us-
ing the assumption of uniformly distributed evaluation-time
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variance as an example, we have quantitatively explained
how the amount of throughput you gain by choosing a sim-
ple asynchronous EA over a generational one depends on the
number of slave processors, the size of the population, and
the variance of the eval-time distribution.

Throughput improvement merely quantifies how much
“faster” the algorithm is working, though, not other im-
plications of its evolutionary behavior, such as how much
“smarter” (or not) it is at traversing the search space. We
were concerned that asynchronous EAs may have a perni-
cious bias toward fast-evaluating individuals. The evidence
we have presented, however, has ruled out evaluation-time
bias that is independent of selection and reproductive vari-
ation, and further suggests that evaluation-time bias does
not affect the EA’s ability to exploit a basin of attraction.

We have clarified the distinction between non-heritable
and heritable components of evaluation-time variance, and
demonstrated that the latter has different implications on
performance depending on whether it is negatively corre-
lated with fitness, positively correlated with fitness, or in-
dependent. We also found that when individual evaluation
times have a deterministic negative correlation with fitness,
the variance in evaluation time quickly drops off, and the
asynchronous EA ceases to provide an increase in through-
put over the generational competition. Finally, we have em-
phasized the distinction between throughput improvement
and true speedup, and in our experiments we found that the
true speedup was often far greater than what the reduction
in idle time can account for by itself.

5.1 Threats to Validity
This work isolates several interesting properties of asyn-

chronous EA behavior, but was based entirely on simplifying
assumptions about evaluation-time variance, its heritability
and its relation to fitness. In our experience with tuning
the parameters of spiking neural network simulations, it is
not uncommon to observe evaluation times that follow a
highly skewed or multi-modal distribution, even in just the
non-heritable component that arises from changing the sim-
ulator’s pseudo-random number seed. The relationship be-
tween fitness and heritable evaluation time is also much less
straightforward than the linear models in Section 4 imply.
Furthermore, most of our experiments in this paper used
very small population sizes (n = 10), assumed a uniform
distribution of evaluation times, and were limited to a real
vector genetic representation and Gaussian mutation oper-
ator. All these are good reasons to question the extent to
which our results will generalize to practical applications.

5.2 Future Work
We have ruled out some kinds of evaluation-time bias, but

we know from [30] that evaluation-time bias does exist in
some asynchronous EA applications. Further work is needed
to understand what kinds of problems may exhibit a bias
against slow-evaluating parts of the search space.

The model of throughput improvement we presented for
the uniform distribution can be extended to produce similar
predictions for evaluation-time distributions that are more
likely to be encountered in practice. More challenging, the
simple asynchronous EA is quite complex from a dynami-
cal systems perspective. The question of whether and when
an asynchronous EA might exhibit a selection effect on the
evaluation-time trait could benefit from a better theoret-

ical understanding of how evolution and evaluation times
interact. We also may need a better understanding of asyn-
chronous EA dynamics before we can competently describe
what kinds of functions they are prone to fail on. What
would an ‘asynchronous-deceptive’ function look like?

Our discrimination between the selection lag and the re-
ordering caused by eval-time variance raises the possibil-
ity of constructing an order-preserving parallel EA, that al-
lows a selection lag but does not allow re-ordering. Such an
algorithm could preserve some of the throughput improve-
ment offered by the asynchronous EA while eliminating its
evaluation-time bias.
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[4] E. Cantú-Paz. A survey of parallel genetic algorithms.
Calculateurs paralleles, reseaux et systems repartis,
10(2):141–171, 1998.

[5] E. Cantu-Paz. Efficient and accurate parallel genetic
algorithms. Springer, 2000.

[6] A. W. Churchill, P. Husbands, and A. Philippides.
Tool sequence optimization using synchronous and
asynchronous parallel multi-objective evolutionary
algorithms with heterogeneous evaluations. In IEEE
Congress on Evolutionary Computation (CEC) 2013,
pages 2924–2931. IEEE, 2013.

[7] K. A. De Jong. Evolutionary Computation: A Unified
Approach. MIT Press, Cambridge, MA, 2001.

[8] M. Depolli, R. Trobec, and B. Filipič. Asynchronous
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Esparcia-Alcázar. Designing and testing a pool-based
evolutionary algorithm. Natural Computing,
12(2):149–162, 2013.

[16] L. Mussi, Y. S. Nashed, and S. Cagnoni. Gpu-based
asynchronous particle swarm optimization. In
Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation (GECCO), pages
1555–1562. ACM, 2011.

[17] M. Nowostawski and R. Poli. Parallel genetic
algorithm taxonomy. In Third International
Conference on Knowledge-Based Intelligent
Information Engineering Systems, pages 88–92. IEEE,
1999.
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APPENDIX
A. EXPECTED MAXIMUM OF UNIFORM

SAMPLES
Let P = {Y1, Y2, . . . , Yn} be a set of random variables,

with the Yi’s i.i.d. from some distribution. Then, from the
theory of order statistics, the probability that the maximum
value in P obtains a given value is characterized by the cu-
mulative distribution

p(max[P ] ≤ x) =

n∏
i=1

p(Yi ≤ x). (21)

Differentiating both sides yields the p.d.f.

p(max[P ] = x) =
d

dx

n∏
i=1

p(Yi ≤ x). (22)

We can combine this definition with integration by parts
to express the expected value of the maximum value as a
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function of the c.d.f. of the Yi’s:

E [max[P ]] =

∫ ∞
−∞

x · p(max[P ] = x)dx (23)

=

∫ ∞
−∞

x
d

dx

n∏
i=1

p(Yi ≤ x)dx (24)

=

[
x

n∏
i=1

p(Yi ≤ x)−
∫ n∏

i=1

p(Yi ≤ x)dx

∣∣∣∣∣
∞

−∞
(25)

This expression cannot be solved in closed form for most
distributions. The c.d.f. of a uniform distribution over the
interval [a, b], however, is given by

p(Yi ≤ x) =

∫ x

a

1

b− ady =
x− a
b− a . (26)

Substituting into Equation 25, we have

E [max[P ]] =

[
x

(
x− a
b− a

)n

−
∫ (

x− a
b− a

)n

dx

∣∣∣∣b
a

(27)

= b− 1

n+ 1
(b− a). (28)
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