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Abstract— Scientific literature lacks of countermeasures specif-
ically for fingerprint presentation attacks (PAs) realized with
non-cooperative methods; even though, in realistic scenarios,
it is unlikely that individuals would agree to duplicate their
fingerprints. For example, replicas can be created from finger
marks left on a surface without the person’s knowledge. Existing
anti-spoofing mechanisms are trained to detect presentation
attacks realized with cooperation of the user and are assumed
to be able to identify non-cooperative spoofs as well. In this
regard, latent prints are perceived to be of low quality and less
likely to succeed in gaining unauthorized access. Thus, they are
expected to be blocked without the need of a particular presenta-
tion attack detection system. Currently, the lowest Presentation
Attack Detection (PAD) error rates on spoofs from latent prints
are achieved using frameworks involving Convolutional Neural
Networks (CNNs) trained on cooperative PAs; however, the
computational requirement of these networks does not make
them easily portable for mobile applications. Therefore, the focus
of this paper is to investigate the degree of success of spoofs
made from latent fingerprints to improve the understanding of
their vitality features. Furthermore, we experimentally show the
performance drop of existing liveness detectors when dealing
with non-cooperative attacks and analyze the quality estimates
pertaining to such spoofs, which are commonly believed to be
of lower quality compared to the molds fabricated with user’s
consensus.
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I. INTRODUCTION

Biometric authentication based on fingerprint identification
has been successfully deployed in several high security ap-
plications such as border control, passports, visas and access
control systems. Therefore, protecting the security of finger-
print recognition systems is of paramount importance [1],
[2]. Attacks to these systems can be carried out using finger
marks left on random surfaces with the owner being unaware
that the print has been stolen and replicated. In Germany,
2008, a hacker group known as the Chaos Computer Club,
lifted the country’s minister’s fingerprint off a water glass
that he had left behind after delivering a public speech at a
local university. The print was then copied by the hackers
and reproduced in molded plastic 4,000 times 1. Similarly,
in 1970, Herm Wiggins, a San Diego police officer, decided

1http://www.slate.com/articles/technology/future_
tense/2015/02/future_crimes_excerpt_how_hackers_can_
steal_fingerprints_and_more.html

to create his own fingerprint file by using fingerprints that
where left on his patrol car after performing body searches on
people in the streets. In the literature on biometrics, several
vulnerabilities of fingerprint systems have been highlighted.
An artifact carrying a print of a legitimate user can be
presented to a sensor in order to gain unauthorized access
[3], [4]. Moreover, an attacker could also use an artificial
biometric trait to create a new identity [5]. Other scenarios,
involve the use of artificial fingers, where fingerprint ridges are
inscribed on materials such as gelatin, silicone, play-doh, etc
[5]. Multiple studies have shown that these type of artificial
fingers, when realized with cooperation of the individual, are
very effective in breaking commercial systems. Fabricating

Fig. 1. Acquisition process of fingerprints left on random surfaces.

effective spoofs from latent prints is much more complex than
obtaining them by users’ consensus. Thus, it is expected that
the quality of a replica from a latent fingerprint would be lower
than the one obtained with cooperative methods. However, a
presentation attack is more realistic if performed with such
spoofs since it is very unlikely that a person will consent to
produce a mold carrying his / her fingerprint. Moreover, none
have showed so far that a latent print can break a fingerprint
verification system, especially if such system is integrated
on mobile devices, where a very low False Rejection Rate
(FRR) must be considered. The lowest error rates reported for
Presentation Attack Detection (PAD) on spoofs from latent
currently involve frameworks based on CNNs [6], [7], [8].
However, the impracticality of using pre-trained networks on
smaller computational form factors necessitates the need to
learn smaller network architectures. The quandary now is
that smaller networks’ architectures cannot produce powerful
enough representations[9].

The problem faced in this paper pertains to a dataset and



algorithm bias of existing anti-spoofing countermeasures due
to the spoofing process (non-cooperative vs. cooperative).
The focus of this research is on liveness detectors trained
on cooperative spoofs and tested on non-cooperative ones.
We experimentally investigate the correlation pertaining to
matching spoofs realized based on latent fingerprints and
live fingerprints; we also analyze the related quality of fake
samples. We then examine the effectiveness of the attacks
when the matcher’s performance is set to be user-friendly and
has operational points set at 0% False Rejection Rate (FRR),
1% FRR, 5% FRR and 10% FRR. Starting from these results,
we want to propose, on the basis of statistical relationships,
the liveness score, match score, and quality score appropriately
modeled to integrate a verification-liveness detection model
that will strongly reduce the probability of spoof acceptance
and minimize the False Acceptance Rate (FAR) of the system,
and possibly its FRR as well. Moreover, we study some of
the current presentation attacks detection approaches and we
analyze their efficiency to detect and differentiate latent spoof
prints from live fingerprints.

Section 2, summarizes the related work in this field, and
the efforts made to enhance fingerprint detection mechanisms.
Section 3, discusses the experiments carried out to specifically
analyze fingerprint presentation attacks realized with non-
cooperative approaches. Last, Section 4, draws conclusions
and discusses future research.

II. RELATED WORK

Fingerprints are easily deposited on surfaces such as glass,
metal, or polished stone by the natural secretions of sweat from
the eccrine glands that are present in epidermal ridges [5].
Prints are left under supervised conditions while marks are left
in an uncontrolled environment. Often, prints are only partially
visible or not visible at all without the use of specialized
fingerprint processing methods and equipment. Three methods
for revealing fingerprints are commonly used:

• The first method is based on latent fingerprints lifted with
powder. The fingerprint left on a surface is placed on
a transparency and it is visualized by powdering with a
brush. The powder is removed from the background using
scotch tape2. This lifted print is placed on the sensor.

• The second method is based on a photolithographic PCB
(Printed Circuit Board) mold. The fingerprint is placed
on a transparency and enhanced by brushing with a black
powder. Then it is photographed by using a digital camera
and printed on a transparency to create a mask for etching
the PCB. The mask is placed on the circuit and exposed
to UV light. The plaster cast of the fingerprint is filled
with liquid silicon rubber to create a wafer thin gummy
and it is attached to a live finger before being placed on
a sensor.

• The third method is based on a recent advancement
that shows the unique ability to lift latent fingerprints

2https://www.youtube.com/watch?v=PPsRLONghAt = 102s

from various surfaces and visualize them under daylight
within 30 seconds. Such a fast recognition is based on
an electrospun nanofiber mat [10]. Fingerprint reactiva-
tion can be carried out with simple techniques such as
breathing on the sensor, placing a water filled plastic bag
or brushing graphite powder on the sensor have been used
to reactivate latent fingerprints deposited on a sensor.

Presentation Attacks (PAs) have been detected by either
gathering further evidence of vitality of the subject (e.g. sens-
ing blood circulation, or fluids - perspiration patterns - secreted
when touching surfaces) or by passive methods detecting the
presence of known materials (e.g. material structure, lack
of high-resolution detail) [11], [12]. Several software-based
methods, including Fourier Transform (FT), Local Binary
Patterns (LBP), Binarized Statistical Image Features (BSIF),
Local Phase Quantization (LPQ), Weber Local Image Descrip-
tor or Histograms of Invariant Gradients (HIG), have been
investigated for PAD [13], [14], [15], [16].

Recently, deep learning approaches have been applied; how-
ever, presented techniques were largely hybrid (combined with
other classification techniques) and no pure CNNs have been
evaluated for this task shedding light onto robustness to new
fabrication materials [17], [7], [18]. Previously, Menotti et al.
derived an efficient spoof detection system through deep repre-
sentations. They first learn a suitable CNN architecture, which
is determined through a random search procedure involving
hyper-parameter optimization of the network. Then, the candi-
date architecture is evaluated by executing linear SVM on the
deep representation obtained by the considered net. Frassetto et
al. have examined fingerprint liveness detection using CNNs
and LBPs, however they employ a hybrid approach feeding
the netâs output into an SVM rather than exploiting the
power of deep networks only with best reported accuracy of
95.2% using 50,000 samples for training using LivDet 2009,
2011 and 2013 datasets [6]. Apart from classical classification
nets, also metric-based deep Siamese networks have been
evaluated learning a distance metric enforcing live-spoof pairs
to be of higher distance than live-live pairs. This is useful
for attended enrollment scenarios where a live gallery image
is available (e.g. trusted-source fingerprint reference on the
passport chip). Experiments revealed remarkable accuracy for
all Convolutional Neural Networks (CNNs) CaffeNet (96.5%),
GoogLeNet (96.6%), Siamese (93.1%), good material robust-
ness (max. 5.6% diff.) but weak sensor-interoperability [19].

The methods discussed above do not specifically address
the problem of performance degradation of a liveness detector
trained on cooperative attacks and tested on non-cooperative
ones. Generally, current anti-spoofing measures tested on
spoofs made from latent in the testing databases made avail-
able from LivDet 2013 present very high error rates. In 2018,
reasonable error rates are reported by Chugh et al. where
Ferrfake is 0.34% on Biometrika LivDet 2013 and 0.68% on
Italdata LivDet 2013 both at Ferrlive of 1% [8]. This approach
uses CNNs trained on local patches centered and aligned
using minutiae location and orientation, respectively. However,



most of these networks require state-of the-art GPUs to work
even in simple feed forward modes [9]. The computational
requirement of these networks do not make them easily
portable. Beyond exploring deep networks, Frassetto et al.
reached a good accuracy through dataset augmentation [7].
However, sufficient computational power is required for the
augmented datasets [7].

III. LIVENESS OR PRESENTATION ATTACKS DETECTION
ALGORITHMS USED IN THIS ANALYSIS

We consider three different mechanisms to extract the live-
ness of the fingerprints and see if the latent replicas can break
the system when this detection mechanisms are in place. Bina-
rized Statistical Image Features (BSIF), is a textural analysis
algorithm where local image patches are linearly projected into
a subspace whose basis vectors are obtained from images by
using Independent Component Analysis (ICA); coordinates of
each pixel are thresholded and a binary code is computed. Such
a value represents the local descriptor of the image intensity
pattern in the neighborhood of the considered pixel [20]. The
set of filters is learned from a training set of natural image
patches via ICA by maximizing the statistical independence
of the filter responses [21]. The fingerprint representation is,
therefore, obtained by learning, instead of manually tuning,
based on statistical properties of the input signal; this pro-
cedure provides flexibility to the designed descriptor [13].
Local Binary Pattern (LBP), was originally developed for two-
dimensional texture analysis obtaining excellent results [22].
In a circular neighborhood of each pixel of a gray scale image,
it compares the surrounding pixels with the central pixel,
hence encoding a predefined set of texture templates or micro-
patterns. The histograms of these patterns are used as an image
descriptor. LBP combines structural (basically a filter capable
of identifying structures such as lines and borders) and statis-
tical (micro-structures distribution) information. Local Phase
Quantification (LPQ), is a blur-tolerant textural descriptor. It
works on the frequency domain but, unlike other algorithms
that analyze the image spectrum in high frequencies, LPQ
focuses on the lower frequencies [23]. Once the local spectrum
is computed using a short-term Fourier transform in a local
neighbourhood, the function values are sampled in four pre-set
frequency values. In the short-term Fourier transform, the filter
function is chosen to be a windowed complex exponential.
From the sign of the real and imaginary parts of these four
values, eight binary coefficients are derived. These allow to
represent the phase information with an integer value in the
range [0, 255]. The occurrences of these values are collected
into a histogram which is used as the LPQ feature vector [14],
[5].

IV. EXPERIMENTAL INVESTIGATION

We analyzed match scores between live fingerprints and
spoofs obtained using non-cooperative methods. The exper-
iments were carried out using the LiveDet 2013 Biometrika
Test Dataset (see Tab. 1), which contains 1000 live fingerprint

images and 1000 spoof images. The acquisition with this op-
tical sensor makes our analysis from an optimistic perspective
given that in mobile applications images would be of worst
quality. Spoofs were fabricated by materials such as ecoflex,
gelatine, latex, modasil, and wood glue, see Fig. 2 [24]. To the
best of our knowledge, databases for training and evaluation
of liveness detectors on images acquired through fingerprint
sensors embedded in mobiles have not been collected. This
research direction is currently challenging anti-spoofing solu-
tions. The data set used in this analysis includes only live
fingerprint images with corresponding spoofs for a total of
700 live images and 200 images per material. Match scores
were extracted with Neurotechnology VeriFinger 9. It was
unexpected that spoof replicas created from latent fingerprints
would obtain high match scores. In Fig. 3 (a), we notice that
setting a threshold that rejects all impostors’ scores would still
cause multiple spoof values pass the threshold and break the
system. Furthermore, we can also see that it is very difficult to
set a threshold that would discriminate the spoof prints without
affecting the acceptance of live genuine prints.

Based on Tab. 2, we observe a drop in performance of
the current identification mechanisms when spoof prints are
presented to the system; even when operational points are
set to 5% and 10% FRR, we still have a concerning False
Acceptance Rate of spoof prints.

In order to experimentally verify the common believe that
the quality of images coming from latent print-based spoofs
is low, we computed the quality scores pertaining to live
fingerprints versus those extracted from spoofs realized with
non-cooperative methods. Quality scores were estimated using
NFIQ 2.0, for all live print images and non cooperative
spoof images. NFIQ 2.0 is a classifier that uses global and
local features to predict the quality of an input. Some of the
features of this classifier includes minutiae count, orientation
coherence, orientation certainty, frequency analysis, quality at
minutiae locations, histogram of local features, and mean and
standard deviation of local features [25] 3.

Despite the fact that the quality score of spoof print repli-
cated from latent fingerprints are expected to be low, Fig. 3 b.
shows that the scores obtained from the spoofed replicas are
higher than the live prints. This can be explained by the fact
that spoofs from latent print must pass a preliminary process
of image improvement by hand and use appropriate image
processing tools. Therefore, the quality score as intended by
NIST and the research community is not able to detect or
adequately evaluate the correspondent quality of latent print-
based spoofs.

On the basis of what reported, image quality does not affect
the match score directly. This is shown in Fig. 4 (a) and (b).
Therefore, we can not use quality as a measure to differentiate
live from spoof prints. Fig.4 (c) and (d) compare the match
scores and the average of liveness scores obtained using

3NFIQ 2.0 Specifications: https://www.nist.gov/sites/default/files/documents
/2016/12/06/15olsen20160504ibpcnfiq2.0− featuresolsen.pdf



Dataset Description
Sensor Model No. Resolution

(dpi)
Image
size

No. of Images

Live Spoof
Biometrika FX2000 569 315 x 372 1000 1000
Italdata ET10 500 640 x 480 1000 1000

Table 1. LiveDet2013 Biometrika Dataset description.

Fig. 2. Materials used to fabricate the spoof samples taken from LivDet 2013 databases.

(a) (b)
Fig. 3. Using the LivDet2013 Biometrika Test Dataset we calculated: (a) Probability density distribution of genuine match scores using live and spoof prints
were compared with the scores obtained from impostors. The graph represents the behavior of the system without any liveness detectors, which results in an
overlap within the live match scores and the spoof prints. (b) Probability density distribution of the quality scores obtained from the live and spoof fingerprints
images using NIST NFIQ 2.0.The same experiment was replicated using the LivDet2013 Italdata Test Dataset, where we found similar results as the ones
represented above.

Performance of Fingerprint Detection System based on FAR

Material
0% FRR

(Score >0)
1% FRR

(Score >0.037)
5% FRR

(Score >0.069)
10% FRR

(Score 0.088)
Ecoflex 100 % 73.75 % 59.50 % 47.80 %
Gelatine 100 % 71.50 % 54.30 % 43.95 %

Latex 100 % 75.05 % 57.35 % 44.10 %
Modasil 100 % 76.99 % 62.25 % 50.65 %

Wood Glue 100 % 77.60 % 60.55 % 46.05 %

Table 2. False Acceptance Rate of user-friendly devices where the identification systems have operational points set to be 0% FRR, 1% FRR, 5% FRR and
10% FRR.

mechanisms such as BSIF, LPQ, and LBP. From the graph we
can see that materials like Gelatine and Wood Glue can reach
high Liveness scores; moreover, such spoofs will be able to
break the system even if we use these current mechanisms to
detect the liveness of the prints. Last, Fig.4 (e) and (f) show
the comparison within quality and liveness scores; here we

can observe that quality does not affect the liveness scores.
However, liveness scores of certain prints are very high,
which means that the liveness mechanisms being used are not
effectively able to identify the spoof prints from the live prints.
It is also important to acknowledge that certain live prints have
a very low liveness score, which may result in such prints



(a) (b)

(c) (d)

(e) (f)
Fig. 4. Comparison between Quality, Match, and Liveness scores of spoof and live fingerprints. Focused on critical cases involving materials like Gelatine
and Wood Glue specifically, as the prints made from these materials are more likely to deceive the identification system. Similarly, certain spoof prints made
of materials like modasil and latex also show and overlap with live prints; however the results were not as critical as the cases shown above. The liveness
scores were acquired using LPQ; algorithms such as LBP and BSIF presented similar results.

being labeled as spoofed and rejected by the system. Finally,
we estimated the pairwise correlation parameters between
genuine and spoofed prints for the match and quality scores.
The goal is to evaluate if a common behaviour can be identified
among couples of materials, so that the knowledge of a certain
one can cover the absence of knowledge about another one.
This is motivated by the fact that presentations attacks can
be intended as an arms-race problem, where the attacker is
expected to use never-seen-before material, as in the recent

edition of LivDet (2015 and 2017 editions)4. The spoofed print
materials include aforementioned Ecoflex, Gelatine, Latex,
Modasil, and WoodGlue. For continuous match scores, we
estimated Spearman’s correlation and conducted hypothesis
tests on the significance of the correlation. Since the NFIQ2
quality scores have many ties, we estimated Kendall’s tau and
conducted hypothesis tests on the correlation.
For the match scores, the correlation parameters are positive,

4See the LivDet website: http://livdet.diee.unica.it.



and the p-values for testing whether the correlation is zero
are much less than 0.05. This indicates significant positive
correlation among genuine prints and spoofed prints, and
positive correlation among different types of spoofed prints.
For the quality scores, genuine prints have significant positive
correlation with spoofed prints, except for wood glue. The
correlation between genuine and wood glue is not significant,
with the correlation of -0.0098 and the p-value of 0.52. The
correlation estimates between WoodGlue, Ecoflex, Gelatine,
Latex, or Modasil are 0.0138, -0.0305, 0.0365, and 0.0194, re-
spectively. The wood glue does not have significant correlation
with Ecoflex or Modasil. The wood glue has a marginally sig-
nificant correlation with Gelatine (p-value=0.047), and signifi-
cant correlation with Latex (p-value=0.018). To summarize the
results, for the match scores, there is a statistically significant
positive correlation among genuine prints and spoofed prints,
and among different types of spoofed prints. For the quality
scores, genuine prints have significant positive correlation with
spoofed prints, except for wood glue. Since the quality scores
were developed from genuine prints, more research needs to
be conducted regarding quality scores for matching spoofed
prints, especially spoofed prints from wood glue. The above
analysis allows us to conclude that fingerprint presentation
attacks detection can be strictly considered as an arms-race
problem, as expected: the knowledge about a certain material
is not relevant when dealing with never-seen-before materials.

V. CONCLUSIONS

In this paper, we investigated the statistical relationships
between match scores, quality scores and liveness scores
of fingerprint spoofs created from latent fingermarks. The
purpose of our analysis was to see at which extent a realistic
attack, using non-cooperative methods, would be able to
deceive the identification system. We challenged the claim
that spoofs from non-consensual methods are expected to be
of low quality, and that current liveness detectors should be
able to block such attacks. The results of our study led us to
three basic conclusions: (1) latent print-based spoofs are able
to break the current system, especially when the threshold is
set to user-friendly operational points (low FRR), (2) there is
no correlation between the quality and the effectiveness of the
spoof, (3) spoofs made from new materials can be difficult to
be detected by the system. These claims need to be further
investigated using a collection of data sets of non-consensual
spoofs larger than the ones used in this experiment.
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