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Abstract—Fingerprint recognition for automated border con-
trol and other high-security applications needs robust integrated
anti-spoofing capability. Facing the threat of presentation attacks,
two key challenges to be solved are sensor interoperability and
robustness versus new fabrication materials. This paper proposes
convolutional neural networks for this task and presents an
exhaustive comparison on latest LivDet 2011 and 2013 databases.
Apart from classical classification nets, also metric-based deep
siamese networks are evaluated learning a distance metric en-
forcing live-spoof pairs to be of higher distance than live-live
pairs. This is useful for attended enrollment scenarios where
a live gallery image is available (e.g. trusted-source fingerprint
reference on the passport chip). Experiments reveal remarkable
accuracy for all Convolutional Neural Networks (CNNs) CaffeNet
(96.5%), GoogLeNet (96.6%), Siamese (93.1%), good material
robustness (max. 5.6% diff.) but weak sensor-interoperability.

I. INTRODUCTION

With their widespread use for biometric identification, fin-
gerprint systems are a key target for presentation attacks. Pre-
sentation Attack Detection (PAD) modules classify biometric
samples as either live (non-spoof) or fake (spoof), trying to
detect attempts to interfere with biometric systems’ operation
(ISO/IEC 30107-1). Due to covert acquisition and large variety
of materials for presentation attack instruments (fake fingers)
fingerprints are largely exposed. Since PAD algorithms are
typically based on features specific for the fabrication material
and sensor used for training, new fabrication materials and sen-
sor diversity generally degrade spoof detection performance
drastically [9]. Fabrication materials and live images likely
appear different across sensors, affecting PAD cross-sensor
performance and making robustness with regards to device
diversity a highly challenging problem [8]. Recent works are
looking at options to automatically adapt the PAD module to
unseen new spoofing materials [12]. For robustness to new
materials and sensor diversity, hand crafted features are not
easy to generalize and prone to overfitting.

This paper investigates and compares deep convolutional
neural networks (CNNs) [1] for PAD. Compared to previous
work in this direction [4], networks with boosted accuracy
are identified (CaffeNet [7] and GoogLeNet [14]), transfer-
learning (fine-tuning using a pre-trained model) concepts to
deal with limited amounts of training data are employed, and
new siamese configurations using evidence about the template
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Fig. 1: CaffeNet-based PAD Module mode of operation.
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Fig. 2: Siamese PAD Module integrating gallery sample.

in question (an idea illustrated in [15]) are examined, see
Figs.1,2. The paper presents an unseen evaluation focused
on assessing generalization of methods: tests with unseen
materials and sensor interoperability assessment.

The remainder is organised as follows: An introduction
to related work is given in Section II. Tested CNNs are
outlined in Section III. Exhaustive experiments conducted on
multiple sensor-/material-specific sets of LivDet are presented
in Section IV. Section V forms the conclusion.

II. RELATED WORK

Fake fingerprints can be made from a series of different
materials, including silicone, latex, gelatin, play-doh, waxes,
and wood glue, or even cadavers [8]. Presentation attack
success depends on the type of sensing technology (e.g.,
optical vs. capacitative). In the effort to improve the state-of-
the-art presentation attack detectors, several liveness detection
competitions (LivDet 2009, 2011 2013 and most recently,
2015) have been conducted [6]. Generally, presentation attacks
can be detected by either gathering further evidence of the
liveness of the subject (e.g. sensing blood circulation, or fluids



TABLE I: Public databases for fingerprint liveness detection.

Name Dataset Sensor Resolution Train Test Subjects Best Performance
Live Spoof Live Spoof APCER NPCER Ref

Biometrika’13 LivDet13 Biometrika Fx2000 569 dpi 1000 5x200 1000 5x200 75 0.1% 3.3% [6]
Italdata’13 LivDet13 Italdata ET10 500 dpi 1000 5x200 1000 5x200 50 1.0% 0.2% [6]
Sagem’11 LivDet11 Sagem MSO300 500 dpi 1000 5x200 1000 5x200 56 13.1% 13.8% [16]
Digital’11 LivDet11 Digital Persona 400B 500 dpi 1000 5x200 1000 5x200 100 11.6% 6.2 % [16]
Identix’09 LivDet09 Identix DFR2100 686 dpi 2250 3x750 750 3x250 160 1.4% 1.1% [5]

- perspiration patterns - secreted when touching surfaces) or
by passive methods detecting the presence of known materials
(e.g. material structure, lack of high-resolution detail). This
work focuses on the latter software-based methods, for which
several methods, including Fourier Transform (FT), Local
Binary Patterns (LBP), or Histograms of Invariant Gradients
(HIG), have been investigated. Good overviews of PAD meth-
ods in fingerprint recognition can be found in [13], [8].

Although deep learning approaches have been applied for
fingerprint liveness detection [4], presented techniques were
largly hybrid (combined with other classification techniques)
and no pure CNNs have been evaluated for this task sheding
light onto cross-sensor and robustness to new fabrication
materials. Previously, Menotti et al. derived an efficient spoof
detection system through deep representations [11]. They
first learn a suitable CNN architecture, which is determined
through a random search procedure involving hyperparameter
optimization of the network. The candidate architecture is
evaluated by executing linear SVM on the deep representation
obtained by the considered net. Filter weights are optimized
via back-propagation. Recently, Frassetto et al. [4] have ex-
amined fingerprint liveness detection using CNNs and LBPs,
however they employ a hybrid approach feeding the net’s
output into an SVM rather than exploiting the power of deep
networks only with best reported accuracy of 95.2% using
50,000 samples for training using LivDet 2009, 2011 and 2013
datasets.

The approach in this paper is even further enhancing accu-
racy with much less available training samples (adhering to
the strict LivDet 2013 protocol).

III. CNNS FOR PAD

CNNs as deep instances of neural networks use multiple
layers of non-linear processing units, each of which (sin-
gle perceptron) estimate an output hypothesis hw,b(x) =

f(wTx) = f(
n∑
i=1

wixi + b) using output vector x of the

preceding layer. Within a training phase, using k Training
samples (xi, yi), xi ∈ Rn, yi ∈ Rm a Matrix W (and
vector b) is learnt, such that hW,b(x) ≈ y when apply-
ing forward propagation. Weights are learned through back-
propagation, iteratively updating weights optimizing a cost

function J(W, b) = 1
m

m∑
i=0

(
1
2‖hW,b(x(i))− y(i)‖2

)
+ λ

2 δ(W ),

where δ(W ) is the weight decay term. CNNs exploit station-
arity in natural images using patch-wise convolution thereby

drastically reducing the number of weights. We follow a fine-
tuning strategy re-using pre-trained layers from these caffe1

reference models:
• CaffeNet [7]: This adapted Alexnet implementation fol-

lows the idea of establishing a large, deep CNN through
5 convolutional and 3 fully connected layers on 227x227
RGB image patches. The raw input image is transformed
into gradually higher levels of representation (e.g., edges,
local shapes, object parts). Higher levels of the hierarchy
are formed by composition of lower level features, see
Fig. 1. The layers of the CNN are organized such that
the first two are subdivided into four sublayers each: con-
volution (conv), max(x,0) rectified linear units (RELUs),
max pooling, and local response normalization.

• GoogLeNet [14]: This complex network of 22 layers (27
with pooling) for multi-scale Hebbian principle image
processing is the best-performing net of the ImageNet2

Large-Scale Visual Recognition Challenge 2014, tak-
ing 224x224 RGB image patches. It employs spatially
stacked inception modules with dimension reductions, ap-
proximating an optimal sparse structure by dense building
blocks.

A. Fine-tuning

Weights W (i) for different layers i can be learned using
different models, re-using weights as initial values for a differ-
ent model. Thereby learning speed is increased and overfitting
avoided, which is crucial for the limited amount of spoofing
images. Presented networks were pre-trained using 1.2 million
ImageNet natural images using the original 1000 classes
output layer (which was replaced to binary classification, as
in the Kaggle challenge3) and stochastic gradient descent to
optimize J(W, b). As key adaption we used a low learning
rate (10−4 to 10−6) running a stochastic gradient descent on
the target loss function for 5000 iterations. Supervised pre-
training and fine-tuning are especially effective when training
data is scarce.

B. Siamese Network

Siamese networks are neural networks where two branches
processing image patches share exactly the same setup and
weights [3], see also Fig. 2. The two branches’ outputs

1http://caffe.berkeleyvision.org/
2http://www.image-net.org/challenges/LSVRC/
3https://www.kaggle.com/c/dogs-vs-cats



are connected (concatenated) and processed in yet another
layer learning the similarity metric. Siamese networks are
particularly interesting for PAD as they allow to learns a
distance metric forcing low pairwise distance between live-
live samples and higher distance between live-spoof samples.
Input patterns are mapped into a target space by the function
Gw(X) parameterized by w, such that the similarity metric
Ew(X1, X2) = ||Gw(X1)−Gw(X2)|| is small if X1 and X2

are both live fingerprints, and large if X1 is a live fingerprint
and X2 is a spoof fingerprint. W is the shared parameter
vector that is subject to learning (ground truth Y = 0 for
live-live pairs (X1, X2) and Y = 1 for live-spoof pairs
(X1, X2). In training all possible combinations live-live and
live-spoof are considered. Instead of using final probability
layers indicating class memberships, Siamese networks can
be built by replacing these layers with a linear ”feature” layer
that produces a 2 dimensional vector “comparing” the two
vectors. The learning process minimizes a discriminative loss
function that drives the similarity metric to be small for pairs
of live fingeprints (in both intra- and cross-sensor) and large
for pairs live-spoof.

This approach reformulates the typical classification prob-
lem adopted for static fingerprint liveness detection which
processes a single fingerprint image. Specifically, the proposed
method assumes an attended enrollment scenario in which
there is access to live reference samples, for example the
passport holder’s fingerprint stored on the chip of an ICAO
9303 travel document. Note, this reduces the joint PAD-and-
recognition problem [2] from 8-classes (live/spoof template
vs. live-spoof sample with same/different source) to 4 classes.

IV. EXPERIMENTAL STUDY

This study focuses on (1) comparing the performance of
CNNs for PAD; (2) efficient parameter selection finding best
setup for learning rate, fine-tuning layers, and iteration count
in presence of a limited number of training samples; (3)
robustness with unseen materials leaving out materials at the
training stage; and (4) interoperability evaluating the impact
of changes in sensors.

A. Dataset

Our experiments were conducted on the publicly available
databases provided in the Fingerprint Liveness Detection Com-
petition4, LivDet 2009 [10], LivDet 2011 [16] and LivDet
2013 [6] keeping original Train and Test subdivisions, see
Table I. Examples of fingerprint images and in particular
material variability are illustrated in Fig. 3 and for sensor
variability in Fig 4. These databases come with different
sensors and spoofing materials, with a balanced 1:1 live/fake
fingerprint ratio.

B. Evaluation Procedure

In order to evaluate robustness to new fabrication materials
and device diversity, we closely followed the LivDet training

4http://prag.diee.unica.it/

and test set partition and employed latest ISO/IEC 30107
metrics for evaluating presentation attacks at sensor-level:

• APCER: Attack presentation classification error rate -
incorrectly as normal classified attack presentations (false
acceptance of spoof samples, ferrfake).

• NPCER: Normal presentation classification error rate -
incorrectly as attack classified normal presentations (false
rejection of live samples, ferrlive).

Rates refer to test set accuracy by choosing a threshold where
APCER ≈ NPCER for the training set. Further the AUC
(area under the curve) of the Receiver Operating Characteristic
(ROC) is reported. LivDet trains each sensor separately, and
by representing the spoof class with same set of fabrication
materials during both training and testing.

For robustness to new fabrication materials, we exclude
each of the fabrication materials from training which will
be used only for testing, i.e. for latex tests training includes
all the fabrication materials from training sets except latex,
while test involves either all or just the left-out material
(latex) for the particular sensor and database (Biometrika’13).
For interoperability assessment a similar approach is taken,
however fixing evaluations to one material (Gelatin). Training
uses 3 and 4 sensors, testing involves multiple or individual
sensors using the sets of LivDet11, LivDet13 as listed in Table
I.

C. Parameter Selection Results

With regards to parameter estimation, we employed the
separate Identix’09 database as validation set for the Siamese
net (CaffeNet in siamese configuration). Table III lists ex-
perimental results for this net: few features (25) in the last
layer before comparison are optimal and base learn rate (LR)
should ideally be larger than for the classical CaffeNet (best
result for LR 10−5), which makes sense given the much larger
amount of available training images. CaffeNet and GoogLeNet

(a) Live (b) Ecoflex (c) Gelatin

(d) Latex (e) Modasil (f) WoodGlue

Fig. 3: Fabrication materials used to realize spoof samples
with the Biometrika sensor (from LivDet13 [6]).



TABLE II: Robustness to unseen materials (All = Ecoflex, Gelatin, Latex, Modasil, WoodGlue) on Biometrika’13.

Training Testing Siamese CaffeNet GoogLeNet
AUC APCER NPCER AUC APCER NPCER AUC APCER NPCER

All All 0.971 6.1% 7.8% 0.991 4.2% 2.9% 0.992 4.3% 2.5%
All Ecoflex 0.997 4.9% 7.8% 0.998 0.5% 2.9% 0.999 0% 2.5%
All Gelatin 0.905 19.9% 7.8% 0.978 9% 2.9% 0.981 10% 2.5%
All Latex 0.986 2.1% 7.8% 0.994 3.5% 3% 0.992 4.5% 2.5%
All Modasil 0.991 1.9% 7.8% 0.995 2.5% 3% 0.991 3% 2.5%
All WoodGlue 0.976 7.8% 5.9% 0.991 4.5% 2.9% 0.996 4% 2.5%

All without Ecoflex All 0.982 6.1% 4.3% 0.999 1.1% 2.1% 0.993 3.2% 4.4%
All without Ecoflex Ecoflex 0.996 2.5% 4.3% 0.999 0% 2.1% 0.999 0% 4.4%

All without Gelatin All 0.986 4.7% 4.7% 0.998 4.6% 0.4% 0.991 7% 7.5%
All without Gelatin Gelatin 0.947 18.3% 5% 0.993 18% 0.4% 0.948 21% 2.2%

All without Latex All 0.938 17.7% 7.5% 0.997 1.3% 1.3% 0.995 5.5% 1.5%
All without Latex Latex 0.972 11.5% 7.5% 0.997 2% 3.5% 0.994 8% 1.6%

All without Modasil All 0.979 3.9% 2.8% 0.999 0% 4.7% 0.993 4.8% 2.6%
All without Modasil Modasil 0.999 0% 2.8% 0.999 0% 4.7% 0.993 3.5% 2.7%

All without WoodGlue All 0.960 10% 4.5% 0.997 1.3% 1.3% 0.995 3.4% 3.5%
All without WoodGlue WoodGlue 0.941 14.2% 4.5% 0.997 1% 2.2% 0.998 1.5% 3.5%

TABLE III: Finding the best configuration for Siamese using
validation set Identix’09.

Nr Net Base LR Features Iterations AUC

1 Siamese 10−7 50 7500 0.530
2 Siamese 10−4 50 7500 0.947
3 Siamese 10−4 50 5000 0.958
4 Siamese 10−4 25 5000 0.970

configurations were also tested on a separate validation set
(Biometrika’11). For CaffeNet the best performance on the
validation set was obtained at a base LR of 10−5 (and 10−4 for
GoogLeNet, respectively) and both nets used 2 output features
indicating spoof/live probabilities. Snapshots were taken after
5,000 iterations, however this parameter turned out to have
less impact than an inappropriate base LR. Note, that obtained
learning rates were lower than in original configuration due
to starting from pretrained versions from ImageNet (see Sct.
III-A).

D. Performance of CNNs for PAD

We tested material robustness on the Biometrika’13
database and with overall classification accuracy of 93.1%

(a) Biometrika’13 (b) Italdata’13 (c) Sagem’11

Fig. 4: Gelatin Spoof samples recorded with different optical
sensors (from LivDet11 [16] and LivDet13 [6]).

TABLE IV: Interoperability Evaluation (4 S = Biometrika’13,
Italdata’13, Sagem’11, Digital’11; 3 S = 4 S w/o Digital’11).

Train Test CaffeNet GoogLeNet
AUC APCER NPCER AUC APCER NPCER

3 S 3 Sensors 0.814 41% 8.5% 0.953 18% 7.3%
4 S 4 Sensors 0.809 55.9% 3.9% 0.911 25.8% 11%

3 S Biometrika’13 0.718 94.5% 5% 0.996 2.5% 3.5%
4 S Biometrika’13 0.610 96.5% 5.5% 0.991 2% 13.5%

4 S Italdata’13 0.972 4.5% 9.5% 0.932 8% 30.5%
4 S Sagem’11 0.910 54.5% 1.0% 0.922 41% 0.5%
4 S Digital’11 0.961 46.5% 0.5% 0.932 51.5% 0.5%

(Siamese), 96.5% (CaffeNet) and 96.6% (GoogLeNet) in
the 2-class problem, all three tested networks achieved high
performance in experimental tests, see Fig. 5. Table II lists
experimental results in detail. For the baseline performance
on different materials, it was interesting to see that there
was a clear observable trend for a relative order of materials
(Ecoflex, Modasil, Latex, WoodGlue, Gelatine) almost over
the entire ROC. Interestingly, CaffeNet delivers very high
EER performance while weakening a bit at the lower end of
the ROC. With this regards GoogLeNet performed best and
surprisingly even with relatively few images for finetuning
(2,000 images for “All” instead of more than 2 million pairs for
Siamese). This justified assumptions that nets adapt quite well
to new representative samples limiting the additional benefit
of pairwise-combinations.

E. Robustness to Unknown Materials

The test on unseen materials revealed, that AUC per-
formance on testing all materials stayed the same or even
slightly improved across different networks in 12/15 cases.
However, tests on the left-out material performance stayed in
the insignificant range of −3.6% to +4.6% of the original
AUC values for all nets. It is worth mentioning, that obtained
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Fig. 5: Biometrika’13 ROCs for different nets (Training: All
materials, Testing: specific material).

APCER and NPCER were further apart (comp. 21% APCER
vs. 2.2% NPCER for Gelatin on GoogLeNet) despite the
protocol trying to find a balanced threshold. When looking
at ROC performance in Fig. 6 curves are more scattered and
there is quite a drastic impact at low NPCER for GoogLeNet
pushing its performance slightly below CaffeNet for this task
(better or equal performance of CaffeNet in 4 of 5 cases).
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Fig. 6: Biometrika’13 ROCs for unseen materials (Training:
All without specific material, Testing: specific material).

F. Sensor Interoperability

Finally, we tested sensor interoperability training networks
with a single spoof-material for multiple sensors and testing
on both the unseen sensor and all sensors, see Table IV. With
AUCs as low as 0.814 for CaffeNet and 0.953 for GoogLeNet
for the 3 sensors case and 0.809 and 0.911 for the 4 sensor
case, respectively, it is evident that networks are less able to
adapt to changes in sensors and raising this interoperability



issue. A further fact stressing the difficulty in this scenario
is the limited number of training images that are generally
available for the cross-sensor case (comp. Table I). Especially
Biometrika 13 performance was much degraded in presence of
other less challenging data sets and in particular the inability
to detect attack presentations (high APCER) was evident for
the trained CaffeNet network.

V. CONCLUSION AND FUTURE WORK

Among the 3 tested CNNs for PAD, GoogLeNet showed
best performance learning fingerprint spoof materials with
4.3% APCER and 2.5% NPCER on Biometrika’13, closely
followed by CaffeNet and Siamese - especially with regards
to low NPCER. The successful ability to adapt to PAD prob-
lems using pre-training on ImageNet was shown, illustrating
optimal parameters for the adaption. All networks exhibit high
robustness to unseen materials ( −3.6% to +4.6% AUC devi-
ation). Sensor interoperability had a more pronounced effect
illustrating a slight advantage of CaffeNet over GoogLeNet.
Compared to the other two nets, Siamese’ performance was
inferior, yet it should be noted that for reasons of fairness the
experiment did not consider live-live pairs of the same identity
only, which could have boosted rates and is subject to future
work. Further, it is planned to further customize CNNs with
regards to processing speed.
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