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Abstract—Human identification from DNA is typically based
on 13 short-tandem repeat (STR) alleles. Commercial kits used
in forensic casework rely on the detection of these alleles in DNA
samples acquired from an individual. However, the process itself
is slow (it can take up to 2 days when conducting a laboratory
analysis or 1 hour when using Rapid DNA systems) and has
been designed to operate on pristine DNA samples. The need for
achieving fast and accurate DNA processing has spurred efforts
in developing portable systems that can reduce the processing
time to less than 1 hour. But such systems are expected to
operate on degraded DNA samples due to the architecture and
process used by the instrument. Consequently, detecting the
alleles in such degraded DNA samples can be a challenging
problem. In this paper, we present an algorithm to detected allelic
peaks from degraded DNA signals based on an adaptive signal-
processing scheme. The performance of the algorithm is evaluated
on two datasets: 1) data collected at the WVU Department of
Forensic and Investigative Sciences, obtained by performing a
controlled DNA degradation using ultraviolet radiation, 2) data
provided by NIST obtained by varying cycle counts for the
PCR processing step. Experiments indicate the efficacy of the
algorithm in allelic peak detection and reiterate the need for
approaching the problem in a systematic manner.

I. INTRODUCTION

In both battlefield (U.S. Title 10) and criminal justice
(U.S. Title 18) forensic scenarios, the importance of fast,
accurate DNA analysis has driven the development of portable
sequencing systems that can accept whole cells as input
and produce a high-base-pair-resolution allelic separation as
output [1],[2]. Major advancements have been leveraged by
miniaturization and/or procedural modification of well-known
bench-top processes, with interpretation of data performed
using standard fluorescence spectroscopy and human expert
data analysis. Current rapid DNA system development efforts
focus on identification based on the 13 human short-tandem
repeat (STR) alleles used in forensic casework for which com-
mercial kits are readily available. These technologies could be
viewed as first-generation molecular biometric systems that
have the potential to enhance current automated systems based
on physical and behavioral biometrics. Hardware development
has greatly outpaced efforts aimed at automated DNA signal
analysis. Novel approaches to DNA signal processing are
necessary to fully utilize any level of available information in
DNA signatures, either from pristine or degraded data both at
the allelic andgenomic level. Due to degradation, STR peaks
are often shifted in relation to the size standard, and either

present lower relative fluorescence unit (RFU) measures or
may be missing all together (i.e., drop-out). For example,
the DNA typically found in outdoor environments is often
severely degraded due to heat and ultraviolet radiation from
the sun. Exposing DNA to UV light (10-400nm) induces the
formation of cis-syn cyclobutane-pyrimidine dimers while heat
denatures it [3]. This degradation will typically result in a
sample that cannot be easily used for human identification
purposes. However, allele information can be inferred from
such purposefully degraded samples, amplified, and be made
suitable for use in human identification. Degraded samples
sometimes contain less than 100 picograms (pg) of template
DNA and the presence of such low copy number (LCN)
samples could be due to several factors including damaged or
degraded DNA. Recovery of DNA profiles from LCN samples
is difficult using standard STR methods, and such attempts
often result in total failure or recovery of partial profiles.
This is an expected outcome since commercial STR kits have
been optimized to produce good quality, balanced profiles with
1 nanogram (ng) of DNA subjected to 28-30 PCR cycles.
Hence, special LCN methods, based upon increasing the PCR
cycle number in order to enhance allelic signal intensity,
have been developed to permit profile recovery from limited
quantity samples [4],[5]. These lab methodologies could be
further strengthened if signal enhancement schemes are used
to improve the quality of the input signal.

This paper focuses on addressing the failure in detecting
drop-out STR peaks in degraded DNA samples. The proposed
approach is able to increase the number of correctly detected
peaks thereby facilitating human identification from LCN
DNA. This study compares the performance of the proposed
approach to that obtained using the commercial DNA analysis
software GeneMapper ID (currently adopted in most labs) on
challenging biological samples that contain less than 100pg
of template DNA or degraded with UV light. The paper is
organized as follows. In Section 2, we describe the current
methods for DNA typing. Section 3 presents the proposed
approach based on signal processing technology. Section 4 re-
ports the experimental procedure and compares results against
those obtained by GeneMapper ID. Section 5 presents our
conclusions.
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II. TRADITIONAL DNA ANALYSIS VIA SOFTWARE

Following the separation of amplified DNA products, the
information from the DNA separation must be converted
into a common language that is standard across laboratories
and instruments. Software programs provide the means to
perform the necessary data analysis and standardization of the
output. Data produced in the separation and characterization
of amplified DNA is displayed as fluorescence peaks (capillary
electrophoresis) or bands (slab gel electrophoresis) as seen in
Fig. 1. The steps for converting fluorescent data/peaks into

Fig. 1. The DNA fragments are sized, which includes an indirect assessment
of quantity present (loci peak area/height or band density), and genotypes are
assigned. The standard for conversion of sized DNA fragments to genotypes
is based on the CODIS system.

allele calls are shown in Fig. 2 along with the corresponding
software.

Fig. 2. The steps for converting fluorescent data/peaks into allele calls.

GeneScan is a sophisticated software program that converts
raw data to useful data through the application of a size
standard, a matrix file, and specific parameter settings. Based
on threshold values, GeneScan software determines peaks,
separates colors using the matrix file, and sizes peaks using the
internal size standard added to the sample prior to separation,
as shown in Fig. 3 and Fig. 4. Genotyper software converts
GeneScan sized peaks into genotype calls using macros, by

Fig. 3. DNA fragment peaks are sized based on the sizing curve produced
from the points on the internal size standard.

Fig. 4. Internal size standard.

comparing allele sizes in allelic ladder to sample alleles. Gen-
eMapper ID (GMID) combines both GeneScan and Genotyper
with the advantage of being 20%-40% faster than separately
using GeneScan and Genotyper. It is an automated genotyping
program that designates peaks in electropherograms by sizing,
and makes allele calls through size comparisons with an allelic
ladder. There are two analysis modes (classic Macintosh and
advanced Windows NT modes). The differences between these
modes are found in the sizing method and the flexibility of
peak sensitivity settings. In the classic mode, size calling is
performed by matching the actual size standard fragments of
the sample with a defined size standard that must be accurately
labeled; it utilizes scan number to assign sizes. In the advanced
mode, size calling is performed using a function known as
ratio matching. Ratio matching uses an algorithm to determine
the distance between the size fragments based on a set of
size fragment values, where sizing is based on the relative
distance between the neighboring loci. It is important to note
that the approach employed by these systems uses a fixed
threshold. Any peak falling below this threshold is considered
unusable in criminal justice applications1. Biometric appli-
cations of rapid DNA systems in tiered screening scenarios
may have a relaxed standard for acceptance of sub-threshold
peaks. The framework presented in this paper is aimed at
providing identification based on a variable matching threshold
accompanied by confidence measures (such as false positives

1http://www.statepolice.wv.gov/about/Documents/CrimeLab/9thmanual.pdf
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and false negatives) rather than a tight, fixed threshold.

III. THE PROPOSED APPROACH

The derivative signal processing technique has been widely
used to detect a pristine signal that is mixed with interfering
noisy signals [6]. In our problem, the signal represents a DNA
sample, referred to as DNA signal in which the x-axis indicates
the data point and the y-axis the amplitude; Fig. 5 shows
an example of a DNA signal corresponding to raw data for
blue and green dye, respectively. In the current analysis, we
denote a DNA signal as x(t) where t indicates the vector
of data points. A degraded DNA sample is represented by a

Fig. 5. A DNA signal representing raw data for blue and green dye.

weak signal confounded by several noise sources due to the
instrument and biological processes. These noise sources make
it difficult to measure the intensity of STR loci peaks. In this
paper, finding the location of peaks is formulated as a problem
of predicting the shape of signals using differentiation. Below,
we first draw some fundamental properties of derivatives
and then describe our procedure where such properties are
exploited.

A. Differentiation of signals

The first derivative of the signal represents the slope of a
given signal. It is positive corresponding to the points where
the signal slopes up, it is negative corresponding to the points
where the signal slopes down, and it is zero where the signal
has no slope. This basic property of differentiation helps in
predicting the shape of a signal. In our study, we focus on the
fact that the first derivative of a peak has a zero-crossing point
at the maximum. Let us consider the sigmoidal signal function
characterized by some very useful mathematical properties.
These include the presence of one inflection point which has
the maximum slope at the center of the x-axis range (see Fig.
6); this point corresponds to a peak in the first derivative of
the signal (see Fig. 7), and to a point where the signal crosses
the x-axis, referred to as zero-crossing point in the second
derivative (see Fig. 8) [7][8].

Further, an important property of the differentiation regards
the effect of the peak width on the amplitude of the derivative
signal. When considering peaks with the same height but

Fig. 6. The sigmoidal signal. It presents the maximum slope at the center
of the x-axis range; such a point is referred to as inflection point.

Fig. 7. First derivative of the sigmoidal signal. A peak in the first derivative
corresponds to a point where the original signal has the maximum slope; it
is the inflection point when considering the sigmoidal signal.

Fig. 8. Second derivative of the sigmoidal signal. The second derivative
crosses the x-axis when going from its maximum to its minimum at a point
referred to as zero-crossing point; the location of the zero-crossing point in
the second derivative corresponds to the location of the maximum in the first
derivative.
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different width, wider peaks such as those corresponding to
a noisy signal, present a lower derivative amplitude.

B. The proposed peak finding algorithm

Given a peak-type signal such as those used in STR analysis,
the location of the maximum can be computed as location of
the zero-crossing points in its first derivative. When dealing
with real scenarios, the presence of noise may cause the
detection of false zero-crossing points resulting in a number of
false peaks [9]. This problem is addressed by smoothing the
derivative of the signal, causing an attenuation of the amplitude
of the resulting signal. Because differentiation and smoothing
are both linear techniques, the amplitude of the smoothed
first derivative is exactly proportional to the amplitude of the
original signal [10]. The adopted technique detects peaks by
selecting zero-crossing points in the smoothed first derivative;
however, smoothing may distort the peak-type signal, reducing
peak height and increasing peak width. To address this, the
position, height and width of each peak are determined by
re-fitting a segment of the original unsmoothed signal in the
proximity of the selected zero-crossing point. So peak details
(i.e., position in the x-axis and height in the y-axis) are
determined using the proximity of the peak in the unsmoothed
signal and a curve fitting function which does not distort it 2.
The positive peaks are detected by looking for zero-crossing
points in the smoothed first derivative. The discrimination is
based on an adaptive amplitude threshold based on the loci
peak amplitude, which disregards any peaks with amplitude
less than a threshold η(x) computed as follows:

η(x) = µ(x) + 2σ(x) (1)

where µ and σ are, respectively, the mean and standard
deviation of the signal x. The defined threshold varies with
the input signal based on its mean and standard deviation.
When considering signals that do not have a very high standard
deviation on amplitude, the height value of the peaks is close to
the mean; thus, by setting the threshold to a value proportional
to the sum of the mean and standard deviation, true peaks are
detected and most of the noise peaks are discarded. The first
part of the DNA signal, corresponding to smaller x values,
may contain some high-amplitude noise peaks that arise due
to the byproducts of the amplification and labeling steps (see
Fig. 14); such peaks increase the standard deviation of the
signal. Therefore, in order to detect true STR loci peaks, it
is not convenient to use a threshold based on the standard
deviation value. Since we do not have to detect the capillary
noise present in the first part of the signal, we assume that the
mean of the true peak height a fraction of the maximum of the
signal and adopt a value proportional to that maximum as the
threshold. Given the maximum amplitude of the signal which
corresponds to the maximum peak height, we use a threshold
equal to a fraction of that maximum as follows:

η(x) = α ∗Max(x) (2)

2http://terpconnect.umd.edu/∼toh/spectrum/CurveFitting.html

where α was experimentally determined as the value that
results in the maximum number of true peaks based on the
ground truth provided in the positive control Gene Mapper
scans. The discrimination of the peaks also takes into account
the peak width, by selecting only those peaks whose slope in
the smoothed first derivative exceeds a fixed threshold. Such
a threshold is high enough to discard broad characteristics of
the signal. Further, since wider peaks have a smaller derivative
amplitude, the differentiation in general is able to discriminate
against wider peaks since noisy peaks are wider than true
peaks 3.

C. De-noising

In order to assist signal de-noising, the notion of a Negative
Control (NC) is used. The NC contains only reagents (Taq
polymerase, primers and buffer), and no DNA and Internal
Lane Standard. Passing this sample through the DNA analysis
instrument allows for the detection of contamination events
that may have affected the reagents used after the amplification
step. Since NC does not contain DNA, there should be no
amplification. If an amplified signal is present, it is most likely
due to some form of contamination in the reagents. Given a
degraded signal x, the NC signal is subtracted from it, as
follows:

yj = xj −NCj , j = 1 . . . N. (3)

This step improves the quality of the signal before peak
finding.

Algorithm A illustrates the process flow of the proposed
algorithm. Step 1 describes the de-noising of the signal; step
2 computes the first derivative of the latter portion of the
signal; step 3 smoothes the derivative of the signal to avoid
the detection of a large number of false peaks; step 4 gives
details about the discrimination of peaks based on a slope
threshold and an amplitude threshold; step 5 looks for zero-
crossing points in the derivative of the signal; step 6 re-fits a
segment of the original unsmoothed signal in the vicinity of
the detected zero-crossing points.

IV. EXPERIMENTAL RESULTS

A. Dataset

The performance of the proposed approach was evaluated
on two datasets. The first dataset was collected at the WVU
Department of Forensic and Investigative Sciences by perform-
ing a controlled DNA degradation using ultraviolet radiation.
Two types of DNA were used in this study. Initially the
DNA used was the AmpFlSTR Control DNA 9947A (Lot
number 1004074) from the Applied Biosystems AmpFlSTR
Identifiler Kit. After some initial results using the 9947A DNA,
three buccal swabs were collected from a Caucasian female.
The buccal swabs were extracted using phenol-chloroform
following the procedures of the West Virginia State Police
Forensic Laboratory (WVSPFL) DNA Analysis Manual (West
Virginia State Police Forensic Laboratory, 2009). The ex-
tracted DNA was then quantified using Real-time PCR and

3http://terpconnect.umd.edu/∼toh/spectrum/Differentiation.html

Appeared in Proc. of 4th International Conference on Bioinformatics and Computational Biology (BICoB), (Las Vegas, USA), March 2012.



Algorithm A. The proposed algorithm for peak detection
Let x = {xj}Nj=1 be the input DNA signal.
Let NC = {NCj}Nj=1 be the signal due to the Negative Control.
Let t = {tj}Nj=1 be the time instances in which the signals are
sampled.
Output: A list containing the number of peaks and the estimated
position, height and width of each detected peak.

1) De-noise the DNA signal x:

yj = xj −NCj , j = 1 . . . N. (4)

2) Compute the first derivative of the enhanced signal:

y. j =
yj+1 − yj
tj+1 − tj

(5)

for 2800 ≤ j ≤ N
3) Smooth the derivative of the signal by replacing each point in

the signal with the average of m:

sj =

∑m−1
2

j=−m−1
2

y. j
m

(6)

for 2800+ m−1
2

≤ j ≤ N − m−1
2

, where m is a positive odd
integer called the smooth factor.

4) Detect peaks:

Mj =


True, if sgn(sj) ≥ sgn(sj+1)

& (sj − sj+1 ≥ γ yj)
& (yj ≥ η(x))

False, otherwise

(7)

for 2800 + m ≤ j ≤ N − m, where γ = 0.5 ∗ w−2 is the
slope threshold, w = 50 is the average number of points in
half-width of peaks, η(x) = µ(x) + 2σ(x) is the amplitude
threshold, and µ and σ are the mean and the standard deviation,
respectively, of the signal x.

5) Compute the initial estimate of peak location and peak height:
k=0;
For j=1 to N

If Mj = True then
k = k + 1; pk = j; hk = yj
(pk is the peak location and hk is the peak height)

endif
endfor
K=k;

6) Recompute the location p′k, the height h′
k and the width w′

k

of these peaks as follows:
For k=1 to K

Fit a polynomial of degree 2, h = c0 + c1j + c2j
2,

through a set of points in the vicinity of peak pk and
estimate the coefficients c0, c1 and c2.
Let µP and σP be the mean and standard
deviation, respectively, of these set of points.

p′k = −σP

(
c1
2c2

)
− µP (8)

h′
k = exp

(
c0 − c2

(
c1
2c2

)2
)

(9)

w′
k = norm

(
σP

2.35703√
2 ∗

√
−c2

)
(10)

endfor

7) Output the list {(p′k, h′
k, w

′
k)}Kk=1.

Applied Biosystems Quantifiler Human DNA Quantification
Kit following WVSPFL procedures and diluted, using sterile
water, to the target range of 0.05-0.125 ng/uL needed for
amplification. Amplification was performed using the Applied
Biosystems AmpFlSTR Identifiler PCR Amplification Kit fol-
lowing manufacturer’s protocols with the thermal cycler set at
28 cycles. The DNA was then analyzed on a 3130 Genetic
Analyzer, following manufacturer’s protocols, to determine
the full profile of the DNA used for the experiments. The
3130 analysis used POP-4 Polymer, AmpFlSTR Identifiler Kit
Allelic Ladder, GeneScan-500 LIZ Size Standard, a 3.0 kV
injection voltage, 5 second injection time, 15.0 kV run voltage,
and a 1500 second run time[11]. All samples used in this study
were prepared in the following manner: 15µL of the extracted
DNA was placed into 0.5 mL yellow tube and then briefly
centrifuged to collect all liquid at the bottom of the tube.
The crosslinker is factory set at 254 nm which correlates to
an Intensity of 3500-4500 µW/cm2. The irradiance display
resolution is +/- 5 µW/cm2 over the entire range. Inner
chamber dimensions are 13.5 W x 7 H x 7.5 D in. There
are 5 8-watt UV tubes set at 254 nm. The energy per unit
area for each of the samples can be calculated as follows:

Energy(µJ/cm2) = Intensity(µW/cm2) ∗ Time(sec)
(11)

The intensity varies slightly but generally stays around 3700
µW/cm2. The intensity was checked each day before any
samples were irradiated to verify that it was within range. The

Fig. 9. DNA quantity (ng/µL) vs UV Exposure.

tubes were placed horizontally on the floor of the crosslinker
about 1 inch apart from each other and in the middle of
the chamber about 6.25 inches away from the UV lights
[3]. Fig. 9 illustrates DNA degradation as a function of UV
exposure time, indicating a sharp decrease after as little as 10s
exposure. After 80s, the quantity of DNA present does not
produce enough fluorescence to reach the RFU cut-off of the
instrument. Signal irregularities before 10s can be attributed
to the PCR amplification.

The second dataset was provided by NIST. Data were
obtained using standard Identifiler reagent kits and variable
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cycle counts for the PCR processing step. Positive controls at
1 ng/µL consist of 2 samples (MT and PT) with 10 replicates
at 100pg, 30pg, and 10pg of DNA using Identifiler at 28
cycles (normal conditions) and 2 samples (MT and PT) with 10
replicates at 100pg, 30pg, and 10pg of DNA using Identifiler
at 31 cycles (LCN conditions).

B. Results

For the purpose of our analysis, we considered each signal
from t=2800 onward, since the first part of the signal is
highly affected by the noise introduced by the amplification
phase, as discussed previously. The signal shown in Fig. 10
represents the Positive Control sample which is the output of a
reaction involving a pristine DNA sample of 1ng, reagents (Taq
polymerase, primers and buffer) and Internal Lane Standard.
It is taken from the first dataset. Fig. 11 shows an example

Fig. 10. Positive Control (Blue dye).

of degraded signal after exposing it to ultraviolet radiation
for 75 seconds. It shows that the degradation causes lower,
shifted and missing peaks. Fig. 12 reports the number of peaks

Fig. 11. Degraded signal after 75 seconds of ultraviolet radiation exposure
(Blue dye).

detected by GeneMapper typing system for different fixed

threshold values. In the presence of non-degraded samples,
the number of actual peaks correctly detected is high and it
remains constant even when decreasing the RFU value from
100 (value adopted by most of the laboratories) to 45, by
reporting a limited number of false positive ranging from 2
(th=100) to 4 (th=45). However, in the presence of degraded
samples, for standard threshold values (close to 100), the
number of detected peaks is 1 for a degradation level corre-
sponding to an UV exposure of 75 seconds and it becomes
0 for a degradation level corresponding to an exposure of
150 seconds onward. In the case of highly degraded samples
(i.e., 240 seconds of UV exposure), for low threshold values
the system detects only one or two actual peaks with a high
percentage of false positives (about 65%). Table I reports the

Fig. 12. Number of actual peaks correctly detected by GeneMapper at
different threshold values.

set of peaks detected by the proposed algorithm by employing
a threshold equal to 0.37 ∗ Max(x(t)) where x(t) is the
degraded data input. Results are reported for each DNA sample
starting from the non-degraded one by increasing its level of
degradation; peaks are defined by their label, position, height
and width. In the presence of highly degraded data, such
as those obtained after 150 seconds or 240 seconds of UV
exposure, the proposed peak finding algorithm is still able to
detect an acceptable number of actual peaks (7 peaks for the
sample obtained after an UV exposure of 150 seconds and 3
peaks for the sample obtained after an UV exposure of 240
seconds). For the DNA sample degraded with an UV exposure
of 150 secs, the corresponding signal presents peaks lower than
60; subsequently, by employing a fixed threshold greater than
60, those peaks are not detected by GeneMapper, while they
are detected by the proposed approach which uses an adaptive
threshold that assumes a lower value in the presence of a
signal having peaks with lower heights. The signal shown in
Fig. 13 represents the Positive Control taken from the second
dataset (NIST). The represented sample contains the amount
of DNA recommended by Applied Biosystems. Fig. 14 shows
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TABLE I
DETECTED PEAKS FOR DYE 1 BY RUNNING THE PROPOSED ALGORITHM

Sample Peaks Position Height Width
PC 1 4355.6 3157.0 10.9

2 5353.3 2505.8 10.283
3 6331.2 1004.8 12.031
4 6393.4 850.8 12.6
5 7073.7 1546.3 12.2
6 7195.7 1556.7 12.8

35sec 1 4044.1 242.85 12.0
2 4105.4 206.9 12.5
3 5061.4 180.1 12.78
4 5120.7 125.0 14.0
5 6770.2 130.5 14.7

75sec 1 4146.7 87.8 15.3
2 4209.8 94.3 14.7
3 5196.3 65.2 18.8
4 5258.4 56.4 19.1
5 6228 40.7 33.5

150sec 1 4127.4 47.4 16.4
2 4189.5 61.2 15.5
3 5158.3 57.0 17.3
4 5217.9 40,9 20.3
5 6771.5 32.3 22,5
6 6881.8 39.0 26.8
7 9089.8 31.1 20.5

240sec 1 4186.4 305.4 9.5
2 4250.3 211.1 10.1
3 5254.2 88.6 11.3

Fig. 13. Positive Control which contains 1 ng of DNA (Blue dye).

an example of low copy number samples with only 10 pg of
DNA.

Table II reports results obtained by using the GeneMapper
typing system with a threshold value equal to 100. It shows
that, the success rate of the typing system decreases when
decreasing the DNA amount present in the analyzed samples,
leading to 0 detected peaks in the presence of samples contain-
ing only 10pg of DNA. This result indicates that the effects
of DNA degradation on STR genotyping cannot be overcome
by simply adding more DNA template, but they are better
addressed by using the recommended 1 ng of DNA template.

Table III reports results of our peak finding algorithm. The
amount of DNA factoring the sample presents a non-significant
impact on the performance detection. We observed a false
positive increase in the presence of the samples with 10 pg

Fig. 14. Signal related to a Sample which contains 10 pg of DNA.

TABLE II
NUMBER OF PEAKS DETECTED BY THE GENEMAPPER SOFTWARE FOR

DIFFERENT DYES

Sample Number DNA O B G Y R
of cycles amount dye dye dye dye dye

MT PC 1 ng 16 18 28 34 11
PT PC 1 ng 13 14 23 17 10
MT 28 100 pg 12 7 9 6 4
PT 28 100 pg 12 8 10 8 3
MT 28 30 pg 12 0 0 1 1
PT 28 30 pg 12 3 6 5 4
MT 28 10 pg 12 0 0 0 0
PT 28 10 pg 12 0 0 0 0
MT 31 100 pg 13 13 27 24 9
PT 31 100 pg 12 8 10 8 3
MT 31 30 pg 13 8 10 8 6
PT 31 30 pg 12 3 6 5 4
MT 31 10 pg 12 0 0 0 0
PT 31 10 pg 12 0 0 0 0

TABLE III
NUMBER OF PEAKS DETECTED BY THE PROPOSED APPROACH FOR

DIFFERENT DYES

Sample Number DNA O B G Y R
of cycles amount dye dye dye dye dye

MT PC 1 ng 13 8 10 8 6
PT PC 1 ng 13 8 10 8 6
MT 28 100 pg 12 8 9 6 4
PT 28 100 pg 12 8 10 8 4
MT 28 30 pg 12 9 10 8 8
PT 28 30 pg 12 8 8 7 4
MT 28 10 pg 12 4 5 3 1
PT 28 10 pg 12 4 6 3 2
MT 31 100 pg 13 8 10 8 6
PT 31 100 pg 13 8 10 8 6
MT 31 30 pg 13 9 10 8 6
PT 31 30 pg 13 8 10 7 6
MT 31 10 pg 13 7 10 7 6
PT 31 10 pg 13 8 8 7 5
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of DNA; in particular, the number of false positive peaks
detected respectively for Blue, Green, Yellow and Red was
12, 3, 10, 13, in case of MT samples, while it was 1, 4, 8,
5 in case of a PT sample. For both datasets, in the presence
of high quality samples, the typing system works as well as
the GeneMapper software, while in the presence of degraded
samples, the proposed algorithm significantly improves the
true peak detection rate achieved by the GeneMapper software.
The peak finding algorithm has been designed to deal with
noisy signals, and the obtained results match our expectations.

V. CONCLUSIONS

We presented a method for peak detection when estimating
STR alleles in degraded DNA samples where variations in
peak height preclude a constant level of loci peak intensities
across the entire range of bp-values in STR profiles. The adap-
tive threshold utilized in our approach and the discrimination
power against wider peaks of the proposed algorithm allow
for a robust peak detection performance in the presence of low
DNA templates. Our experiments show that the success rate
achieved by our technique is similar in both scenarios when
dealing with high-quality samples which contain the recom-
mended DNA amount (1 ng) and when dealing with critical
amount of DNA (less than 100pg). Our experiments also show
the robustness of the proposed peak finding algorithm to high
level ultraviolet degradation. A limitation of the proposed peak
detection algorithm lies in the usage of a global threshold; a
future direction to extend this work will focus on designing
a local threshold. Further, since the adopted derivative was
first-order, we will carry out experiments with higher order
derivatives in future work. Finally, we will extend this research
by incorporating an additional procedure to automatically
adjust parameters (i.e., the amplitude threshold) to process
signals representing different DNA samples from different
instruments.
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