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Several issues related to the vulnerability of fingerprint recognition systems to attacks have been high-
lighted in the biometrics literature. One such vulnerability involves the use of artificial fingers, where mate-
rials such as play-doh, silicone, and gelatin are inscribed with fingerprint ridges. Researchers have demon-
strated that some commercial fingerprint recognition systems can be deceived when these artificial fingers
are placed on the sensor, i.e., the system successfully processes the ensuing fingerprint images thereby al-
lowing an adversary to spoof the fingerprints of another individual. However, at the same time, several coun-
termeasures that discriminate between live fingerprints and spoof artifacts have been proposed. While some
of these anti-spoofing schemes are hardware-based, several software-based approaches have been proposed
as well. In this paper, we review the literature and present the state-of-the-art in fingerprint anti-spoofing.
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1. INTRODUCTION
Biometrics is the automated recognition of individuals based on their biological and be-
havioral characteristics such as fingerprints, face, iris, gait and voice [Jain et al. 2011].
The use of fingerprints as a biometric attribute has been extensively discussed in the
scientific literature, and a variety of techniques have been developed for performing
fingerprint recognition. Fingerprint recognition systems have been incorporated into a
number of forensic, civilian and commercial applications [Maltoni et al. 2003].

Given its widespread usage, researchers have analyzed the vulnerability of these
systems to different types of adversary attacks [Ratha et al. 2001], including finger-
print obfuscation and impersonation. Fingerprint obfuscation [Feng et al. 2009; Yoon
et al. 2010] refers to the deliberate alteration of the fingerprint pattern (e.g., cutting
or burning the fingertips) by an individual who wants to avoid being recognized by
the system. For example, a person in a watch-list may attempt to modify their finger-
print pattern to prevent being matched against their entry in the watch-list. Mutilated
fingerprints have been encountered in both law enforcement and large-scale national
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identification or border control systems [Feng et al. 2009]. In December 2009, it was
determined that a Chinese woman who had been previously deported from Japan had
re-entered the country after surgically swapping her right hand fingerprints with those
of her left hand1; consequently, the fingerprint recognition system deployed at the
Japanese immigration checkpoint had failed to match her fingerprints against those in
the deportee-database. Fingerprints can also be obliterated by burning, cutting, abrad-
ing or by simply removing a portion of the skin from the fingertip; additionally, they
can be imitated, by removing a portion of the skin from the fingertip, then filling the
removed part with skin from other parts of the body [Yoon et al. 2012].

“What about Impersonation?” is also a common question people ask about finger-
print recognition systems [Miller 1994]. Well-duplicated artificial fingerprints, referred
to as spoof artifacts, can be presented to a fingerprint sensor in order to deceive the
recognition system [Schuckers 2002]. This corresponds to a sensor-level attack where
an adversary intends to gain unauthorized access to a system by using the biomet-
ric traits of someone who is legitimately enrolled in the system [Nixon et al. 2007]
[Holland-Minkley 2006]. Furthermore, an attacker may create a new “identity” us-
ing an artificial biometric trait that can be enrolled in the system and then shared
between different people [Kluz 2005; Valencia and Horn 2003]. Several spoofing tech-
niques have been reported, including the use of artificial fingerprints made of gelatin,
moldable plastic, play-doh and silicon, produced by using a mold obtained from a live
finger or from a latent fingerprint [Abhyankar and Schuckers 2009] [Stén et al. 2003b].
Since fingerprint systems that control access to devices where confidential informa-
tion is kept are expected to be highly reliable (e.g., laptops, tablets, smartphones, etc.),
spoof attacks represent an important concern. In March 2013, a Brazilian doctor was
accused of using spoof fingers to “check-in” co-workers who were not present at the
work place2. In September 2013, only a few days after the iPhone5S equipped with the
Touch ID fingerprint sensor was released, a German group announced that the sensor
could be fooled by using a sheet of latex or wood glue hosting the fingerprint ridges
of a person3. In order to minimize this vulnerability, different spoof detection methods
have been suggested. Spoof detection refers to the capability of the system to deter-
mine whether the object being placed on the sensor corresponds to a live finger or not
[Sepasian et al. 2010].

The importance of spoof detection has been further highlighted by the TABULA
RASA (Trusted Biometrics under Spoof Attacks) project4 funded by the European Com-
mission (7th Framework Program) which is playing a significant role in increasing the
robustness of biometric systems to spoof attacks by developing effective countermea-
sures. Further, the Biometrics Vulnerability Assessment Expert Group (BVAEG)5 was
formed by the Biometrics Institute to raise awareness about the vulnerability of bio-
metric systems to various types of attacks and to encourage vendors to develop efficient
solutions for detecting and deflecting these attacks. Its overall mission is to reduce vul-
nerabilities in biometrics including those due to spoof attacks.

1.1. Fingerprint features
A fingerprint refers to a flowing pattern on the fingertip of an individual consisting of
ridges and valleys (see Fig. 1) [Maltoni et al. 2003]. Fingerprints can be represented

1http://abcnews.go.com/Technology/GadgetGuide/surgically-altered-fingerprints-woman-evade-
immigration/story?id=9302505
2http://nexidbiometrics.com/brazilian-doctor-arrested-for-using-fake-fingerprints/
3http://secureidnews.com/news-item/apples-touch-id-spoofed/
4http://pralab.diee.unica.it/it/TabulaRasaEuroproject
5http://www.biometricsinstitute.org/pages/biometric-vulnerability-assessment-expert-group-bvaeg.html
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by using global information (e.g., finger ridges) or local information (characteristics
derived from the ridges). Ridge details are generally described in hierarchical order at
three different levels. At global level (Level 1), macro details such as the pattern type
of ridges and valleys can be detected. Ridges exhibit one or more regions where they
assume a distinctive shape which can be classified as loop, delta or whorl (see Fig. 2).
At local level (Level 2), the details consist of different anomalies like ridge ending and
ridge bifurcation, referred to as minutiae points or Galton characteristics (see Fig. 3).
Each minutia included in a fingerprint image is represented by its location (x,y) and
the ridge direction at that location (θ). At a very fine level (Level 3), details such as
sweat pores and incipient ridges can be detected in the fingerprint pattern (see Fig. 4)
acquired by high resolution scanners (1000 dpi) [Maltoni et al. 2003]. Based on their
position on the ridges, pores can be considered open or closed. A closed pore is entirely
enclosed by a ridge while an open pore intersects the valley [Jain et al. 2007].

Fig. 1. The image shows the discontinuities that interrupt the flow of ridges which are the basis for most
fingerprint authentication methods. Ridge endings are the points at which a ridge stops, and bifurcations
are the points at which a ridge divides into two. Many types of minutiae exist, including dots (very small
ridges), islands (ridges slightly longer than dots, occupying a middle space between two temporarily diver-
gent ridges), ponds or lakes (empty spaces between two temporarily divergent ridges), spurs (a notch pro-
truding from a ridge), bridges (small ridges joining two longer adjacent ridges), and crossovers (two ridges
which cross each other). Image taken from http://cnx.org/content/m12574/latest/ [Harrison et al. 2004], with
permission of OpenStax CNX.

Fig. 2. Level 1 fingerprint details. Level 1 (pattern) refers to macro detail such as ridge flow and pat-
tern type. Image taken from http://cnx.org/content/m12574/latest/ [Harrison et al. 2004], with permission of
OpenStax CNX.
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Fig. 3. Level 2 fingerprint details. Level 2 (points) refers to the Galton characteristics, or minutiae points,
such as bifurcations and endings. Image taken from http://cnx.org/content/m12574/latest/ [Harrison et al.
2004], with permission of OpenStax CNX.

Fig. 4. Level 3 fingerprint details. The image on the left shows a photo-graphical example of pores. The
image on the right is output from a high resolution sensor (1000 dpi) that captures the location of pores in
detail. Both images are from [H. Choi and Kim 2007], with permission of Waset Team International Science
Council. ©Waset

1.2. Fingerprint Sensing
Fingerprints can be acquired by using different technologies [Maltoni et al. 2003]. In
optical sensors, the finger is placed on a transparent prism and the image is obtained
through a camera. In total internal reflection (TIR) sensors, ridges and valleys are
imaged in contrast: ridges are in contact with a glass platen and when the surface is
illuminated through one side of the prism, the light entering the prism is reflected at
the valleys and absorbed at the ridges. In general, sensors based on this technology
are vulnerable to spoof artifacts developed using materials having a light reflectivity
similar to that of the skin. Moreover, optical devices produced by different manufac-
turers usually present physical differences between units (i.e., lenses). Subsequently,
fake fingerprint detection rates can vary across units. In particular, devices which use
micro-prisms embedded in a thin plastic are robust to spoof attacks [Willis and Lee
1998].

In capacitive devices, the finger is modeled as the upper electrode of a capacitor,
while a metal plate is modeled as the lower electrode. Given the difference in terms of
capacitive values between skin-sensor and air-sensor contact, the variation in capac-
itance between valleys and ridges can be measured when the finger is placed on the
sensor. Capacitive sensors are vulnerable to soft artificial fingerprints commonly made
of gelatin.

In thermal sensors, the finger is placed on pyro-electric material which converts vari-
ations in temperature into voltage. The contact of the ridges with the sensing material
causes a change in temperature, while the temperature remains constant under the
valleys that are not in direct contact with the material. The signal (image) disappears
once a thermal equilibrium is reached between the finger and the chip [Han et al. 1999;
Han et al. 2005].
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In ultrasound sensors, the difference in terms of acoustic impedance between the
skin of the ridges and the air in the valleys is exploited. Acoustic waves are trans-
mitted towards the fingertip surface and the reflected signal is captured by a receiver.
This category of sensors is more vulnerable to artificial fingerprints when materials
possessing the same echoing properties of fingers are used to circumvent the scanner.

2. FINGERPRINT SYSTEM SECURITY
Between acquiring biometric data and delivering a result, there are various points
where attacks may occur and compromise the overall security of a biometric system.
Several weak links and vulnerabilities are identified by Ratha et al. in [Ratha et al.
2001] (see Fig. 5):

Fig. 5. Vulnerable points of attacks in a biometric system.

(1) Presentation Attack. A reproduction of the biometric modality is presented as in-
put to the sensor [Uludag and Jain 2004].

(2) Biometric Signal Replication. The sensor is bypassed and biometric data previously
stored or intercepted is resubmitted (e.g., copy of a fingerprint image).

(3) Feature Modification. The feature extractor is substituted with a trojan horse in
which features are preselected by the attacker.

(4) Replacing Features. The set of features extracted from the input biometric trait is
replaced with a fraudulent set of features.

(5) Overriding the Matcher. The matcher is corrupted and forced to output match
scores preselected by the attacker.

(6) Replacing Templates. One or more templates are modified by an attacker such that
an authorized identity is associated with a fraudulent template.

(7) Modifying Data through the Channel. The templates transmitted through the
channel are intercepted and corrupted.

(8) Altering the Decision. The final match result is overridden by an attacker.

This paper focuses on presentation attacks which do not require specific knowledge
about the system operation [Galbally et al. 2007].
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2.1. Artificial Fingerprints
Artificial fingerprints are usually made of materials which can be scanned by existing
commercial fingerprint scanners. Items like play-doh and clay are good materials for
spoofing due to their moisture-based texture [Toth 2005; Galbally et al. 2007]; however,
this may not be true across different types of scanners employing different principles
for sensing the fingerprint. An attacker who wishes to manufacture an artificial fin-
gerprint must have a representation of the original fingerprint [Franco and Maltoni
2008]. The duplication of a fingerprint can be a cooperative process, where the real
owner participates in the creation of the artificial fingerprint, or a non-cooperative
process (see Fig. 6 and 7). In a realistic scenario, it is highly unlikely that a person
will agree to produce a mold of his finger; in this case duplication can be done us-
ing latent fingerprints. Matsumoto et al. in [Matsumoto et al. 2002] described how to
make molds from live fingers and the corresponding artificial clones based on these
molds. They evaluate 11 different fingerprint sensors, both capacitive and optical, in
the presence of gelatin-based artificial fingerprints. Reported results showed a high
spoof acceptance rate (which is undesirable from the system’s perspective). Although
high resolution scanners (1000 dpi) have become commercially available [Imamverdiev
et al. 2009], most Automated Fingerprint Identification Systems (AFIS) employ only
Level 1 and Level 2 features [Brislawn et al. 1996; Garris and McCabe 2000; Jain et al.
1997]. This means spoofing methods have to primarily reproduce only first and second
level information [Jain et al. 2007]. Techniques employed for spoofing are categorized
in Fig. 9 and described below [Geller et al. 1999; Geller et al. 2001; Wiehe et al. 2004;
Fladsrud and Sollie 2004].

Fig. 6. Making an artificial fingerprint directly from a live finger: plastic is used to obtain the mold and
gelatin to obtain the cast. Image taken from [http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.
pdf], with permission of Dr. T. Matsumoto.

2.1.1. Cooperative Duplication

— Direct mold. The spoof is created from a live finger mold. The finger of the subject
is pressed on the surface of a dental impression material or plaster; the negative
impression of the fingerprint is fixed on it and a mold is obtained. The mold is then
filled with a moisture-based material (e.g., gelatin or liquid silicon) and the spoof is
produced 6.

6http://www.journalofaestheticsandprotest.org/4/fingerprint/fingerprint.pdf
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Fig. 7. Making an artificial fingerprint from residual fingerprint using Printed Circuit Board (PCB). Image
taken from [Matsumoto et al. 2002; Stén et al. 2003a], with permission of Dr. T. Matsumoto.

Fig. 8. A dead human finger. The sample is taken from the dataset collected at Clarkson University
[http://middleware.internet2.edu/idtrust/2011/slides/04-biometrics-schuckers.ppt], with permission of Dr. S.
Schuckers.

Fig. 9. A taxonomy of existing methods employed for creating artificial fingerprints.

2.1.2. Non-Cooperative Duplication

— Latent fingerprints. There are several methods for revealing latent fingerprints.
Here we briefly describe only three methods in the context of spoofing [Bowden-
Peters et al. 2012]. The first method is based on latent fingerprint lifted with pow-
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der. The fingerprint left on a surface is placed on a transparency and it is visual-
ized by powdering with a brush. The powder is removed from the background using
scotch tape. This lifted print is placed on the sensor. The second method is based
on a photolithographic PCB (Printed Circuit Board) mold. The fingerprint is placed
on a transparency and enhanced by brushing with a black powder. Then it is pho-
tographed by using a digital camera and printed on a transparency to create a mask
for etching the PCB. The mask is placed on the circuit and exposed to UV light. The
plaster cast of the fingerprint is filled with liquid silicon rubber to create a wafer-
thin gummy and it is attached to a live finger before being placed on a sensor. The
third method is based on a recent advancement that shows the unique ability to lift
latent fingerprints from various surfaces and visualize them under daylight within
30 seconds. Such an ultrafast recognition is based on an electrospun nanofiber mat
[Yang et al. 2011].

— Fingerprint reactivation. Simple techniques such as breathing on the sensor, placing
a water filled plastic bag or brushing graphite powder on the sensor have been used
to reactivate latent fingerprints deposited on a sensor.

— Cadaver. This refers to the usage of a dead finger (Fig. 8).
— Fingerprint synthesis. A fingerprint image is reconstructed from a fingerprint tem-

plate (e.g., minutiae points) of a user enrolled in the system [Franco and Maltoni
2008]. Reversibility of minutiae templates has been demonstrated in several works
[Ross et al. 2007; Maltoni et al. 2003; Hill 2001; Galbally et al. 2008; Franco and
Maltoni 2008]. Once a digital image of the fingerprint is derived from the minutiae
template, it can then be transferred to a spoof artifact.

Additionally, there are methods for depositing viscous materials, including the oily
substance known as sebum found in human fingerprints. The deposition method has
been tested using an artificial sebum material which is a soft wax-like mixture having
a solid state at room temperature [Staymates et al. 2013]. An array is created to print
a square containing ten rows and ten columns of single dots of sebum as can be seen
in Fig. 10.

Fig. 10. Micrograph of sebum dots on painted metal surface [Staymates et al. 2013], reproduced by permis-
sion of The Royal Society of Chemistry

When the owner cooperates, the spoof fingerprint is of usually better quality com-
pared to the case with no cooperation. However, the quality of the reproduced finger-
print image may be affected by the confluence of different factors such as the initial
pressure of the finger on the cast and the contact of the stamp on the sensor acquisi-
tion surface, which may alter the fingerprint shape [Coli et al. 2007b]. Furthermore,
rates of successful spoof attacks are influenced by the nature of both the mold and the
spoof [Espinoza and Champod 2011a]. First, the mold material impacts the quality of
the spoof; some molds are more amenable for reproducing the fingerprint pattern than
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others. The efficiency of a mold depends also on how many times it has been used: in-
creased usage will lead to deterioration resulting in poor quality artificial fingerprints.
For example, repeated use of gelatin fingers will result in a rapid degradation of the
quality of the prints provided [Elliott et al. 2007]. Additionally, the quality of the spoof
varies based on their thickness, drying time spent and potential defects due to the cre-
ation process. Poor quality spoofs can be obtained when reproducing the fingerprint
pattern pertaining to subjects with thin ridges.

The submission of a “good” spoof increases the probability of being accepted as a
live sample. Performance can be affected by factors related to the right amount of
moisture and the humidity conditions of the acquisition environment. The nature of
human interaction impacts spoof acceptance rate as well [Yamada et al. 2000]. Prac-
tical techniques for defeating biometric devices were discussed in [Lane and Lordan
2009]. After testing 15 different materials for molding, they reported that clay, plas-
ticine and blutac are the best materials to create an accurate mold since they are easy
to use and fast to create. In particular, clay performs excellently well when reproduc-
ing details of the fingerprint at all the three levels: ridge, minutiae and pores. They
also tested eight materials for casting and reported that PVA glue is both easier to use
and faster to obtain. The best combinations of materials found are clay or blutac with
gelatine or latex. Spoof acceptance rate also depends on the deployed sensing tech-
nology. Both capacitive and optical devices are more vulnerable to the aforementioned
spoofing techniques compared to thermal sensors. Moreover, silicone fingerprints are
usually rejected by capacitive sensors but they pose a threat to optical sensors, while
the behavior of these two sensors is opposite in the case of gelatin fingerprints [Sepa-
sian et al. 2010]. A risk analysis is reported in Table I.

3. ANTI-SPOOFING METHODS FOR FINGERPRINTS
Liveness detection techniques represent a common countermeasure to address the is-
sue of spoofing and they can be hardware-based or software-based (see Fig. 11).

Fig. 11. A taxonomy of the existing anti-spoofing approaches.
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Table I. Spoofing methods and materials used for duplicating fingerprints

Method Reference Cast Mold Sensor SFAR
material type tested

cooperative [Matsumoto et al. 2002] gelatin moldable optical 68% - 100%
et al. plastic capacitive

non-cooperative [Matsumoto et al. 2002] gelatin PCB optical 67%
et al. capacitive

cooperative [van der Putte and Keuning 2001] silicone plaster optical 83%7

rubber capacitive
non-cooperative [van der Putte and Keuning 2001] silicone PCB optical 83%

waterproof cement capacitive
non-cooperative [Matsumoto 2002] [Endo et al. 2003] conductive plastic optical 81.82%8

silicon capacitive
non-cooperative [Thalheim et al. 2002] breathing - capacitive -

on the sensor
non-cooperative [Thalheim et al. 2002] water-filled

plastic bag
non-cooperative [Thalheim et al. 2002] powder

adhesive
non-cooperative [Thalheim et al. 2002] powder - optical -

adhesive
cooperative [Barral and Tria 2009] glycerin wax optical ease to

gelatin silicone capacitive succeed
cooperative [Barral and Tria 2009] glycerin wax thermal few successes

gelatin silicone swipe out of 10 trials
cooperative [Schuckers 2002] play-doh dental capacitive DC 12%

impression opto-electric 27%
optical 58%

capacitive AC 70%
cooperative [Schuckers 2002] cadaver capacitive DC 90%

opto-electric 41%
optical 85%

cooperative [Sandstrom 2004] gelatin silicone optical 66%9

capacitive 70%
capacitive-swipe 0%

cooperative [Espinoza et al. 2011] silicone Siligum10 optical11 distribution
thermoplastic of scores12

non-cooperative [Espinoza et al. 2011] white glue Siligum optical distribution
latex of scores13

cooperative [Elliott et al. 2007] gelatin silicone optical 90.7%
cooperative [Blommé 2003] gelatin silicone capacitive 55.4%

paste optical 33.4%

Hardware-based solutions exploit characteristics of vitality such as temperature of
the finger, electrical conductivity of the skin, pulse oximetry, skin resistance [Nixon
et al. 2004] [Reddy et al. 2008; 2007]. These methods require additional hardware in
conjunction with the biometric sensor and this makes the device expensive. To make
matters worse, an improper integration of the additional hardware can result in a
vulnerable scenario where a spoof artifact is placed on the fingerprint sensor and a
live finger is placed on the added hardware [Al-Ajlan 2013; Singh and Singh 2013; Coli
et al. 2007b]. In the challenge/response liveness detection technique, an electro-tactile
pattern is observed as response to electric pulses transmitted into the fingertip during
authentication [Sousedik and Busch 2014; Yau et al. 2008; Memon et al. 2012]. In the
odor-based spoof detection, an acquisition system made of an array of chemical sensors
designed to detect characteristic pattern of an odor is employed; experiments showed
that when the odor sensors are exposed to skin or gelatin the voltage decreases, while
it increases when sensors are exposed to silicon or latex [Baldisserra et al. 2005]. Some
research investigated the application of optical coherence tomography (OCT) to detect
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Table II. Dynamic software-based anti-spoofing approaches. The performance metrics used are False Live Rejection (FLR), False Spoof
Acceptance (FSA), and Equal Error Rate (EER)

Dynamic Category/ Database Sensor Error Rates
Algorithm Technique

[Abhyankar 2004] Perspiration/ WVU04 Capacitive FLR=0%; FSA=0% (Th=40.74)
Wavelet Optical FLR=0%; FSA=0% (Th=44.55)

Electro-optical FLR=0%; FSA=0% (Th=31.60)
[Antonelli et al. 2006] Distortion/ BSL Optical EER=11.24%

Optical Flow
[Jia and Cai 2007] Distortion; Tsinghua Capacitive EER=4.78%

Perspiration/
Statistics

[Zhang et al. 2007] Distortion/ CAS Optical EER=4.5%
Thin-Plate Spline

[Abhyankar and Schuckers 2010] Perspiration/ Clarkson10 -#1 Optical EER=6.7%
Wavelet

Table III. Hybrid (dynamic and static) software-based anti-spoofing approaches for fingerprints. The performance metrics used are False
Live Rejection (FLR), False Spoof Acceptance (FSA) and Equal Error Rate (EER)

Hybrid Category/ Database Sensor Error rates
Algorithm Technique

[Derakhshani et al. 2001] Perspiration/ WVU01 Capacitive EER=11.11%a

[Derakhshani et al. 2003a] Statistics;
Fourier

[Parthasaradhi et al. 2004] Perspiration/ WVU04 Optical FLR=0%; FSA=0%-18.2%
Statistics; Capacitive

Fourier
[Parthasaradhi et al. 2005] Perspiration/ WVU05 Capacitive FLR=6.77%-20%; FSA=5%-20%

Statistics; Optical FLR=0%-26.9%; FSA=4.6%-14.3%
Fourier Electro-optical FLR=6.9%-38.5%; FSA=0%-19%

[Tan and Schuckers 2005] Perspiration; Clarkson05 Optical FLR=0%; FSA=8.3%
Statistics Capacitive FLR=6.7%; FSA=0%

Electro-optical FLR=7.7%; FSA=5.3%

aEvaluation performed across diverse populations.

artificial materials commonly used for spoofing optical fingerprint scanners [Cheng
and Larin 2006; Chang et al. 2008; Bossen et al. 2010; Dubey et al. 2007; Nasiri-
Avanaki et al. 2011]. OCT allows to image some of the subsurface characteristics of
the skin and extract the internal features of multilayered tissues; this method can
penetrate the surface to a maximum depth of 3 mm. Sub-surface information about
the finger can also be collected with a multi-spectral imager operating in conjunction
with the sensor; properties such as spectral qualities of live skin, chromatic texture of
skin and blanching on contact have been exploited [Nixon and Rowe 2005].

In this paper, we focus on the second category of anti-spoofing approaches where the
digital image acquired by the sensor is further processed in order to distinguish a live
from a spoof [Schuckers et al. 2006]. Software-based solutions may exploit dynamic
behaviors of live fingertips (e.g., ridge distortion, perspiration) or static characteris-
tics (e.g., textural characteristics, ridge frequencies, elastic properties of the skin) [Jin
et al. 2007]. A sample of software-based approaches to fingerprint liveness detection is
reported in Tables II, III and IV.

3.1. Dynamic Features
Dynamic features are derived by processing multiple frames of the same fingerprint.
In general, two successive images captured over a time interval of 2 or 5 seconds are
analyzed (see Fig. 12).
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Table IV. Static software-based anti-spoofing approaches. The performance metrics used are False Live Rejection (FLR), False Spoof
Acceptance (FSA), Equal Error Rate (EER) and Total Error Rate (TER)

Static Category/ Database Sensor Error Rates
Algorithm Technique

[Moon et al. 2005] Texture/ Hong Kong Opticala FLR=0%; FSA=0% (Th=25)
Wavelet

[Schuckers and Tan 2006] Perspiration/ Clarkson06; Optical FLR=8%-20%; FSA=8%-20%
Wavelet MSU Capacitive FLR=0%-10%; FSA=0%-10%

[Abhyankar and Schuckers 2006] Texture/ Clarkson06 Optical EER=2.7%
Statistics Capacitive EER=3.5%

Electro-optical EER=7.7%
[Choi et al. 2007] Pores; Texture/ Yonsei Optical TER=14.89%

Wavelet
[Coli et al. 2007a] Texture/ Cagliari Optical FLR=0.4%; FSA=0%

Fourier
[Jin et al. 2007] Texture/ INHA07 Optical FLR=23%; FSA=12%

Fourier
[Nikam and Agarwal 2008b] Texture/ MNNIT Optical TER=3%-6%

LBP; Wavelet
[Nikam and Agarwal 2008a] Texture/ MNNIT Optical TER=1.82%-5.65%

[Nikam 2009] Curvelet
[Nikam and Agarwal 2009a] Texture/ MNNIT Optical TER=1.82%-5.65%

Co-occurrence
[DeCann et al. 2009] Perspiration/ Clarkson09 -#1 Optical TER=4.5%

Statistics
[Abhyankar and Schuckers 2009] Perspiration/ Clarkson09 -#2 Optical EER=13.85%

Wavelet
[Galbally et al. 2009] Quality/ ATVS Optical TER=7%

Gabor Filters
[Nikam and Agarwal 2009c] Texture/ MNNIT Optical TER=4.94%-7.53%

Ridgelet
[Lee et al. 2009] Texture/ KPU Optical TER=11.4%

Fourier
[Nikam and Agarwal 2009b] Texture/ MNNIT Optical TER=1.78%-5.65%

Curvelet
[Yau et al. 2009] Color change/ Optical FLR=0%; FSA=20%

Distance
[Marasco and Sansone 2010] Texture; LivDet09 Optical FLR=12.6%; FSA=12.3%

Perspiration/
Fourier; Wavelet

[Tan and Schuckers 2010] Perspiration/ Clarkson10 -#2 Optical TER=0.9%
Fourier; Wavelet

[Jin et al. 2011] Quality INHA11 Optical TER=6.5%
Butterworth

[Memon et al. 2011] Pores/ Lausanne11 Optical FLR=8.3%; FSA=21.2%
Number of Pores

[Galbally et al. 2012] Quality/ ATVS Optical TER=10%
Gabor Filters;

Direction Field;
Intensity; Fourier

[Marasco and Sansone 2012] Texture; LivDet09 Optical FLR=12.6%; FSA=12.3%b

Perspiration/
Fourier; Wavelet

[Ghiani et al. 2012a] Texture/ LivDet11 Optical EER=12.3%
LPQ

[Gragnaniello et al. 2013] Texture/ LivDet09; Optical FLR=0.20%; FSA=0.41%
Weber Descriptor LivDet11 FLR=4.9%; FSA=2.41%

[Ghiani et al. 2013] Texture/ LivDet11 Optical TER=7.22%
BSIF

aHigh resolution (1000 dpi)
bResults on LivDet09 and LivDet11 are average error rates on the different sensor datasets; the minimum is reported.
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Fig. 12. The image shows multiple frames of both live and spoof fingerprints [Parthasaradhi et al. 2005]
©IEEE.

3.1.1. Perspiration-based. Perspiration is a phenomenon typical of live fingers. The
sweat starts from pores and diffuses in time along ridges making regions between
pores darker in the image (see Fig. 13). The spatial moisture pattern can be captured
by observing multiple fingerprint images acquired over a short span of time.

Fig. 13. The image shows a macro photography of a live fingerprint [http://www.flickr.com/photos/
72100379@N05/6544784445], with permission of B. Hoffman.

Several methods based on perspiration changes have been proposed [Schuckers et al.
2004]. Live fingerprints exhibit non-uniformity of gray level along ridges due to perspi-
ration which propagates along sweat pores; this is accentuated when viewed over time.
Spoof fingerprints show high uniformity even over time. Since perspiration is a phys-
iological phenomenon, it is variable across subjects. Additionally, it presents a certain
sensitivity to the environment, the pressure of the finger, the time interval and the ini-
tial moisture content of the skin [Derakhshani et al. 2003b]. Its effectiveness requires
an efficient extraction of the evolving pattern from images. Dynamically, perspiration
can be quantified by temporal changes in the ridge signal. The change in gray-level
between the first and last images in a sequence can be measured by considering the lo-
cal maxima and minima of the ridge signal. The swing in live fingerprints is generally
higher than that in spoof artifact and it is smaller in the last image compared to the
first since moisture creates peaks in the fingerprint ridge signal. The temporal pattern
of moisture is measured by computing features such as the percentage change in the
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standard deviations of the first and last fingerprint signals, the total fluctuation ratio
(see Eqn. (1)) and the min/max growth (see Eqn. (2)) [Derakhshani et al. 2003a]. More-
over, the simple mean of the signal difference (last - first) has been efficiently exploited
since its value is less for a finger with no life.

∆ =

∑m
i=1 C1i − C1i−1∑m
i=1 C2i − C2i−1

(1)

where m refers to the length of the ridge signal and C1i and C2i to the ith pixel gray-
level value in the first and second capture, respectively.

∆ =

∑m
i=1(C

min
2i − Cmin

1i )∑m
i=1(C

max
2i − Cmax

1i )
(2)

where Cmin
1i , Cmin

2i , Cmax
1i and Cmax

2i are the minima and maxima of the first and last
images, respectively. Parthasaradhi et al. [Parthasaradhi et al. 2005] introduced two
additional dynamic features, viz., the dry and wet saturation percentage changes
which measure how fast the dry saturation disappears and how fast the moist
saturation appears, respectively. These measures account for the time taken for the
propagation of moisture from pores. They speculated that the use of these measures
will lead to a more robust technique across diverse populations.

Abhyankar and Schuckers proposed an interesting method where the changing per-
spiration pattern is isolated through a wavelet analysis of the entire fingerprint image
[Abhyankar and Schuckers 2009]. Firstly, both images acquired by the biometric scan-
ner (2 seconds apart) are enhanced by using median filtering and histogram equaliza-
tion. Then, wavelet analysis is performed by computing wavelet packets to focus on
high frequency components that capture the circular transitions from dark to white
around pores, and multi-resolution analysis (MRA) to focus on low frequency com-
ponents that capture the periodicity of pore locations. For each sub-band, changing
wavelet coefficients from the first to the second image are considered and the vitality
measure is computed based on the total energy associated with them. Coefficients that
do not change by more than 40% are not considered.

3.1.2. Ridge Distortion-based. A study of skin distortion was performed by Antonelli et
al. in [Antonelli et al. 2006]. When pressing and moving a real finger on a scanner
surface, the distortion produced is much more significant than that produced by a
spoof. Skin distortion is analyzed by processing a sequence of frames acquired at a high
frame rate while the user rotates his finger on the sensor surface whilst applying some
pressure. The finger is assumed to be non-distorted at the beginning of the sequence.
Movements of single blocks are detected and modeled using optical flow. The resulting
Distortion Code sequences are compared [Cappelli et al. 2001].

Jia et al. analyzed the human skin elasticity by using a sequence of fingerprint im-
ages to capture the finger deformation process [Jia and Cai 2007]. Live fingerprints are
discriminated from spoofs based on the observation that, for live fingers, an increase of
pressure causes an increase of both fingerprint area (see Eqn. (3)) and signal intensity
(see Eqn. (4)). A positive value of the correlation coefficient of these features has been
shown be a good indicator of fingerprint liveness.

Si = Ni ×W ×W (3)
where Si is the fingerprint area of the ith frame and Ni is the number of blocks whose
variance is greater than a certain threshold. The variance is computed for each block
of size W ×W (= 16× 16).

ACM Computing Surveys, Vol. 47, No. 2, Article A, Publication date: September 2014.



A Survey on Anti-Spoofing Schemes for Fingerprint Recognition Systems A:15

Inti =

∑
I(x,y)≥ϵ I(x, y)

Si
(4)

where Inti is the intensity signal of the ith frame, I(x, y) is the intensity of the fin-
gerprint area Si, and ϵ is the threshold used to separate pixels corresponding to the
fingerprint from those in the background.

Zhang et al. modeled the distortion of live and spoof fingerprints using a Thin-plate
Spline (TPS) [Zhang et al. 2007]. The elasticity of the human skin impacts how live
fingers distort. Spoof materials are typically much more rigid compared to the human
skin. Subsequently, under the same distortion condition caused by the same direc-
tional pressure, their deformation is lower. The global distortion is represented by the
minutiae displacement, and parameters of the TPS model are computed using a series
of paired minutiae obtained before and after distortion. The discrimination is made
based on the bending energy vector of the TPS model. The performance of this ap-
proach relies on the precision of minutiae extraction and pairing.

3.2. Static Features
Static features can be extracted from a single fingerprint impression and, compared to
other approaches based on a single impression, are cheaper and faster. Static features
may concern textural characteristics, skin elasticity, perspiration-based features or a
combination of these.

3.2.1. Texture-based. Spoof and live fingerprint images exhibit different textural prop-
erties such as morphology, smoothness and orientation. Thus, texture can be exploited
for spoof detection.

Texture coarseness. Residual noise of the fingerprint image indicates the difference
between an original and de-noised image, in which the noise components are due to
the coarseness of the fake finger surface [Abhyankar and Schuckers 2006]. Materials
used to make fake fingers such as silicon or gelatin consist of organic molecules which
tend to agglomerate and, thus, the surface of a live finger is generally smoother than
an artificial one [Moon et al. 2005]. The standard deviation of the residual noise is
a good indicator of texture coarseness since the pixel value fluctuation in the noise
residue of a coarser surface texture is generally stronger. The surface coarseness is
treated as a kind of Gaussian white noise added to the image. The amount of residual
noise is computed by using a wavelet-based filter which allows for analyzing the im-
age at different scales. This helps reduce the coarseness inherent in the ridge/valley
pattern that does not represent the information of interest. In particular, the image
is de-noised with a Symlet by applying a soft-threshold for wavelet shrinkage. Spoof
detection methods based on texture coarseness work well on high resolution (1000 dpi)
fingerprint images; but common commercial sensors present a resolution of about 500
dpi [Coli et al. 2007b].

First order statistics. The likelihood of observing a certain gray value at a randomly-
chosen location in the image can be computed from the histogram of pixel intensities
related to the image. Let H(n) indicate the normalized histogram value and let N
be the number of bins. The set of first order statistical properties is defined by the
following equations [Abhyankar and Schuckers 2006]:

— Mean:

µ =
1

N

N−1∑
n=0

H(n) (5)
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— Energy:

e =
N−1∑
n=0

H(n)2 (6)

— Entropy:

s = −
N−1∑
n=0

H(n)logH(n) (7)

— Median:

M = argmin
a

∑
n

H(n)|n− a| (8)

— Variance:

σ2 =
N∑

n=0

(n− µ)2H(n) (9)

— Skewness:

γ1 =
1

σ3

N−1∑
n=0

(n− µ)3H(n) (10)

— Kurtosis:

γ2 =
1

σ4

N−1∑
n=0

(n− µ)4H(n) (11)

— Coefficient of variation:

cv =
σ

µ
(12)

Second Order Statistics. The joint gray level function between pairs of pixels in a
single fingerprint image is a texture-based approach used by Nikam et al. [Nikam and
Agarwal 2009b]. Due to the presence of sweat pores and the perspiration phenomenon,
authentic fingerprints exhibit non-uniformity of gray levels along ridges, while due to
the surface characteristics of the fabrication material used, such as gelatin or sili-
con, spoof fingers show high uniformity of gray levels along ridges. The gray level
distribution of the pixels is modeled using first order statistics, while the joint gray
level function between pair of pixels is modeled using second order statistics. The au-
thors proposed the use Gabor filter-based features, since fingerprints exhibit oriented
texture-like pattern and Gabor filters can optimally capture both local frequency and
orientation information.

Local-Ridge Frequency Analysis. A promising approach based on multi-resolution
texture analysis and the inter-ridge frequency analysis was proposed by Abhyankar
and Schuckers [Abhyankar and Schuckers 2006]. They used different texture features
to quantify how the gray level distribution in a fingerprint image changes when the
physical structure changes. Two secondary features were used, Cluster Shade and
Cluster Prominence, based on the co-occurrence matrix. These features derived from
a multi-resolution texture analysis were combined with features derived from a ridge-
frequency analysis, and a Fuzzy-C-means classifier was used to distinguish between
live prints and spoofs. This method does not depend on the perspiration phenomenon
and is able to overcome dependence on more than one fingerprint image. However, it
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presents limitations in realistic scenarios, since the computation of the local-ridge fre-
quencies may be affected by cold weather and different skin conditions, including dirt
and moisture.

Local Phase Quantization (LPQ) Analysis. Earlier works focused on simply analyz-
ing the spectrum of a fingerprint image. Given that the fingerprint can present differ-
ent orientations, a rotation invariant Local Phase Quantization (LPQ) technique can
point out the differences in the spectrum between live fingerprints and spoof artifacts.
A novel set of features for detecting liveness based on the LPQ of the fingerprint image
were defined by Ghiani et al. [Ghiani et al. 2012b] [Ojansivu et al. 2008] [Ojansivu and
Heikkilä 2008] [Martins et al. 2012]. The approach measures the difference between
live and spoof fingerprints in terms of high frequency information loss. One important
property of the LPQ is its robustness to the blurring effect. Thus, such a technique is
believed to be particularly effective when dealing with images acquired from artificial
fingerprints.

Power Spectrum Analysis. The fabrication process alters frequency details between
ridges and valleys. For spoofs, most of the energy in the Fourier domain is present
in the center of the image which corresponds to low frequency data in the image do-
main [Coli et al. 2007a]. Fig. 14 illustrates the power spectrum of both live and spoof
(gelatin) fingerprint images. A fingerprint image produces a ring pattern around the
center in the power Fourier spectrum due to the ridge-valley texture [Jin et al. 2007].
In live fingerprints, micro-characteristics such as those due to ridge line discontinu-
ity or transverse cuts on ridge lines increase their thickness. Thus, in the Fourier
domain live fingerprint images typically exhibit more high frequency characteristics
than spoofs. The strength of the power spectrum amplitude reflects the strength of
the ridge-valley texture. The amount of residual spectrum on the high frequencies is
computed as indicated in Eqn. (13).

e =

∫ ∫
S

|F (u, v)|2dudv (13)

where F(u,v) is the Fourier Transform of the input fingerprint image and S the
integration region which is given in terms of a circular region centered around the
zero frequency. Spoof and live images are then separated using statistics computed on
the values of the radius of the region [Marcialis et al. 2012a].

(a) (b)

Fig. 14. (a) Live fingerprint image and corresponding power spectrum; (b) spoof (gelatin) fingerprint image
and corresponding power spectrum. Both images are taken from the CrossMatch database of LivDet09
[Marcialis et al. 2009], with permission of G. Marcialis.

Local Binary Pattern (LBP). LBP characterizes the spatial variation of local image
texture and has been used for spoof detection. The texture is defined as the joint dis-

ACM Computing Surveys, Vol. 47, No. 2, Article A, Publication date: September 2014.



A:18 Emanuela Marasco and Arun Ross

tribution of gray values in a circularly symmetric neighbor set of P image pixels on a
circle of radius R (see Eqn. (14)).

T = t(gc, g0, ..., gP−1) (14)

where gc is the gray value of the center pixel of the local neighborhood and g0, ..., gP−1

are the gray values of P equally spaced pixels on the considered circular symmet-
ric neighbor set. First, the gray value of the center pixel of the circularly symmetric
neighbor set is subtracted from the gray values of the circularly symmetric neighbor-
hood [Nikam and Agarwal 2008b] [Martins et al. 2012]. Then, features are extracted
from the histograms of LBP images computed as indicated in Eqn. (15) [Ojala et al.
2002; Mäenpää 2003].

LBP =
∑

p=0,...,P−1

s(gp − gc)2p (15)

where s(x) = 1 if x ≥ 0, else s(x) = 0.

Weber Local Descriptor (WLD). This descriptor consists of two components: the differ-
ential excitation and the orientation [Chen et al. 2010; Chen et al. 2008]. It is based on
the Weber’s law and it states that the human perception of a pattern does not depend
only on the change of a stimulus such as lighting, but also on the original intensity
of the stimulus. The just-noticeable-difference, δI, between two stimuli is proportional
to the initial stimulus intensity, I. Changes of a pixel are expressed as differences be-
tween its neighbors and the pixel. The differential excitation ϵ(x) of a current pixel x
is computed as indicated in Eqn. (16), where x is the target pixel in a 3× 3 patch. The
orientation corresponds to the gradient orientation.

ϵ(x) = arctan
7∑

i=0

xi − x

x
(16)

Combining WLD with LPQ resulted in a better spoof detection performance compared
to using only WLD [Gragnaniello et al. 2013].

Binarized Statistical Image Features (BSIF). Local image patches are linearly pro-
jected into a subspace whose basis vectors are obtained from images by using Inde-
pendent Component Analysis (ICA); coordinates of each pixel are thresholded and a
binary code is computed. Such a value represents the local descriptor of the image in-
tensity pattern in the neighborhood of the considered pixel [Kannala and Rahtu 2012].
Let X be an image patch of l× l pixels and Wi a linear filter of the same size. The filter
response is obtained as:

si =
∑
u,v

Wi(u, v)X(u, v) (17)

The binarized feature bi is obtained by setting bi = 1 if si > 0, and 0 otherwise. The set
of filters is learned from a training set of natural image patches via ICA by maximizing
the statistical independence of the filter responses [Hyvärinen et al. 2009]. The finger-
print representation is, therefore, obtained by learning, instead of manually tuning,
based on statistical properties of the input signal; this procedure provides flexibility to
the designed descriptor [Ghiani et al. 2013].

3.2.2. Perspiration-based. Individual Pore Spacing. The presence of active perspiration
around pores can be captured by studying the regular periodicity of pores on the ridges.
The occurrence of pores causes a certain gray-level variability in the fingerprint image.
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The gray-level variations correspond to variations in moisture due to the pores and the
presence of perspiration. Such a variability in gray level can be analyzed in the Fourier
domain after mapping the two-dimensional fingerprint image into a one-dimensional
signal representing the gray level values along the ridge and referred to as ridge sig-
nal [Derakhshani et al. 2003b]. Spatial frequencies of pores can be analyzed through
Fourier Transform [Derakhshani et al. 2003a]. First, the image is processed to remove
noise and it is converted into a binary image. Then, a thinning routine is applied to
determine the fingerprint ridge paths. Finally, the FFT of the main ridge is computed.
The swing of the signal decreases in time as the moisture spreads; the general oscil-
lation is higher for live fingerprint signals where the maxima are almost constant but
the minima increase, due to the spread of moisture in time. Fourier coefficients of in-
terest are from 11 to 33, since these values correspond to spatial frequencies (0.4 - 1.2
mm) of pores. The formula for this static measure, SM, is defined as follows:

SM =

33∑
k=11

f(k)2 (18)

where f(k) is expressed by the following:

f(k) =

∑n
i=1 |

∑256
p=1 S

a
0i(p)e

−j2π(k−1)(p−1)/256|
n

(19)

Sa
0i = S0i −mean(S0i) (20)

where n is the total number of individual ridges and S0i is the ith ridge.
Intensity-based features. In [Tan and Schuckers 2005], an intensity-based approach

was proposed. The number of pixels at each gray level is analyzed using image his-
tograms. The following features are then used: i) Gray Level 1 Ratio, corresponding
to the ratio between the number of pixels having a gray level belonging to the range
(150, 253) and the number of pixels having a gray level belonging to the range (1, 149);
ii) Gray Level 2 Ratio, corresponding to the ratio between the number of pixels hav-
ing a gray level belonging to the range (246, 256) and the number of pixels having a
gray level belonging to the range (1, 245). Moreover, the uniformity of gray levels along
ridge lines and the valley/ridge contrast have been observed to have high discrimina-
tive power. In particular, as shown in Fig. 15, real fingerprints exhibit non-uniformity
of gray levels and high ridge/valley contrast values. It has also been observed that the
general variation in gray-level values of spoof fingerprints is less than those in live
images (although this can change based on the fabrication material used). This infor-
mation can be captured by computing the gray-level matrix gradient of the image.

3.2.3. Quality-based. In anti-spoofing algorithms, fingerprint quality measures such as
strength, continuity and clarity of ridges have been considered. The ridge strength
can be computed in two ways: i) using the energy concentration along the dominant
direction of the ridges which can be obtained as a ratio between the two eigenvalues of
the covariance matrix and the gradient vector, and ii) using the energy concentration
in the power spectrum since in high quality images energy is concentrated in a few
bands while in low quality images the energy is spread across bands. Ridge continuity
is captured by measuring the continuity of the orientation field; high quality images
typically have a smooth flow of ridges in a local constant direction [Galbally et al.
2012]. The ridge clarity is obtained by measuring the mean and the standard deviation
of the foreground image. Furthermore, a local clarity score is computed based on the
overlap area between the gray level distributions of ridges and valley which has to be
very small for high clarity ridges/valleys. Quality measures that have been effectively
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Fig. 15. Grey-level uniformity analysis in real and spoof fingerprint images. Images taken from the LivDet
2009 database, with permission of G. Marcialis.

used for spoof detection are spectral band energy, middle ridge line and middle valley
line [Jin et al. 2011]. Due to the difficulty of copying pores along the ridges during the
spoof creation process, the middle ridge line signals of spoof have fewer periodic peaks
compared to live fingerprints. Additionally, due to low elasticity and valley depths, the
gray-scale values of spoofs are generally lower compared to live fingerprints.

3.2.4. Pore-based. Manivanan et al. proposed a method to detect pores by applying two
filtering techniques: high-pass filters and correlation filters [Manivanan et al. 2010a;
2010b]. A high-pass filter was used to extract active sweat pores, and a correlation
filter was used for locating the position of pores: see Fig. 16. Marcialis et al. analyzed
pore distribution and number of pores in three regions around the fingerprint core
[Marcialis et al. 2010] [Tidu 2010]. Memon et al. extended Manivanan’s study by at-
tempting to determine the optimum threshold value to detect the correlation peaks
corresponding to active pores [Memon et al. 2011; Memon 2012]. Espinoza et al. pro-
posed a spoof detection method based on comparing pore quantity between spoof and
live fingerprint images [Espinoza and Champod 2011b].

Fig. 16. A 150x150 segment of a high resolution (1000 dpi) fingerprint image showing ridges, valleys, active
and closed pores. Image taken from [Memon 2012] ©Memon, with permission of Dr. S. Memon.

4. DATABASES
Development and evaluation of robust liveness detection (or spoof detection) algo-
rithms require the assembling of databases of sufficient size (many subjects, different
samples per subject, etc.) corresponding to different fabrication materials and finger-
print sensing technologies. In this section, we review several databases that have been
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used in the literature. In particular, we describe the publicly available dataset pro-
vided by the Fingerprint Liveness Detection Competition14: LivDet 2009 [Marcialis
et al. 2009], LivDet 2011 [Yambay et al. 2012], LivDet 2013 [Ghiani et al. 2013]; and, a
dataset assembled at the Biometric Recognition Group ATVS15 [Galbally et al. 2011].
Details are provided in Table V and examples of images are shown in Figs. 17, 18 and
19.

Fig. 17. Examples of live (a) and silicone spoof (b) fingerprint images from the dataset assembled by ATVS,
reprinted from ATVS database with permission [Galbally et al. 2012].

According to the protocol established for the competitions, liveness detection algo-
rithms are first trained on a dataset consisting of live and spoof samples where the
spoof fingerprints are realized with different fabrication materials using both cooper-
ative and non-cooperative methods. The testing is carried out on a different dataset
having the same number of samples as the training set [Ghiani et al. 2013]. In Table
VI, we report the lowest total error rates achieved by the algorithms submitted to the
fingerprint liveness detection competitions for each available database.

4.0.5. Assessment and Performance Metrics. Metrics for assessing liveness detection per-
formance are different than those used for assessing matching performance [Adler and
Schuckers 2009; Shin et al. 2009; Schuckers et al. 2002]. In the Liveness Detection
Competitions [Marcialis et al. 2009; Yambay et al. 2012; Ghiani et al. 2013], perfor-
mance was computed as follows:

e =
Ferrlive+ Ferrfake

2
(21)

where Ferrlive is the rate of misclassified live fingerprints and Ferrfake the rate of
misclassified fake fingerprints. In some literature, the terms False Live Rejection Rate
(FLRR) and False Spoof Acceptance Rate (FSAR) have been used as well: FLRR de-
notes the percentage of live fingerprint samples that are misclassified as spoofs while

14http://prag.diee.unica.it/
15http://atvs.iiuam.es/
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Table V. Public datasets that are available for evaluating fingerprint liveness detection (or spoof detection) algorithms

Dataset Sensor Technology Model Resolution Live Spoof Subjects
WVU01 Veridicom Capacitive SFPS 100 500 dpi 36 36a 33
WVU04 Precise Capacitive SC 100 500 dpi 30 30 33

Ethentica Electro-optical USB2500 500 dpi 30 30 total
Secugen Optical FDU01 500 dpi 30 30

WVU05 Precise Capacitive SC 100 500 dpi 31 30 33
Ethentica Electro-optical USB2500 500 dpi 30 30 total
Secugen Optical HFDU01A 500 dpi 31 30

Hong Kong Fuji Optical S2 (DSLR) 1000 dpi 100 100 23
MSU Identix Optical DFR 200 380 dpi 330 330 33

Clarkson05 Precise Capacitive SC 100 500 dpi 30 30b 33
Ethentica Electro-optical USB2500 500 dpi 30 30 total
Secugen Optical HFDU01A 500 dpi 31 30

Clarkson06 Precise Capacitive SC 100 500 dpi 58 80 33
Ethentica Electro-optical USB2500 500 dpi 55 80 total
Secugen Optical HFDU01A 500 dpi 58 80

BSLc Biometrika Optical Fx2000 569 dpi 900 400 45
Tsinghua Veridicom Capacitive Fps200 500 dpi 300 470 15

Yonsei NITGEN Optical - 500 dpi 1100 1100 110
INHA07 - Optical - 500 dpi 1350 4050 30

Cagliari Biometrika Optical Fx2000 500 dpi 720 720 36
CAS CrossMatch Optical V300 500 dpi 120 120 20

MNNIT Secugen Optical HFDU01 500 dpi 185 240 -
Clarkson09 -#1 Identix Optical DFR2100 500 dpi 1526 1588 150
Clarkson09 -#2 Precise Capacitive PS 100 500 dpi 58 93 33

Ethentica Electro-optical USB2500 500 dpi 55 82 total
Secugen Optical FDU01 500 dpi 58 90

KPU Optical 750 3000 15
Clarkson10 -#1 Precise Capacitive PS 100 500 dpi 58 50 33

Ethentica Electro-optical USB2500 500 dpi 55 50 total
Secugen Optical FDU01 500 dpi 58 52

Clarkson10 -#2 Identix Optical DFR2100 686 dpi 644 570 81
ATVS Biometrika Optical Fx2000 569 dpi 272 272 17

Precise Capacitive SC 100 500 dpi 272 272 17
Yubee Sweeping Fingerchip 500 dpi 272 272 17

LivDet09 CrossMatch Optical 300CL 500 dpi 2000 2000 254
Biometrika Optical Fx2000 569 dpi 2000 2000 50

Identix Optical DFR2100 686 dpi 1500 1500 160
LivDet11 Biometrika Optical Fx2000 500 dpi 2000 2000 50

Sagem Optical MSO300 500 dpi 2000 2000 56
Digital Persona Optical 400B 500 dpi 2000 2000 100

Italdata Optical ET10 500 dpi 2000 2000 50
INHA11 - Optical - 500 dpi 690 1380 46

Lausanne CrossMatch Optical LScan 1000T 1000 dpi 156 13
LivDet13 Biometrika Optical Fx2000 569 dpi 2000 2000 75

CrossMatch Optical LScan Guardian 500 dpi 2500 2500 235
Swipe - - 96 dpi 2500 2500 250

Italdata Optical ET10 500 dpi 2000 2000 75

aAdditionally, WVU01 is made up of 36 cadaver fingers; WVU04 and WVU05 of 8, 12 and 14 cadaver fingers, respectively, for
the three sensors used for capture.
bAdditionally, Clarkson05 is made up of 14 cadaver fingers; Clarkson06 and Clarkson10 of 33, 22 and 25 and 33, 22 and 28
cadaver fingers, respectively, for the three sensors used for capture.
cBiometric System Laboratory, University of Bologna
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Fig. 18. Examples of live (a) and spoof (b) fingerprint images from the dataset assembled by the organizers
of the LivDet competition. Spoof are realized using latex, gelatin and ecoflex, respectively. With permission
of G. Marcialis.

(a) (b)

(c) (d)

Fig. 19. Fingerprint images taken from the LivDet13 dataset: (a) and (b) spoof samples realized using a
non-cooperative method; (c) and (d) spoof samples realized using a cooperative method.

FSAR denotes the percentage of spoof samples that are misclassified as live. Since the
spoof detection problem is typical posed as a two-class pattern recognition problem, it
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Table VI. Lowest total error rates achieved by the algorithms submitted to three LivDet
competitions

LivDet 2009
Error Rates Identix CrossMatch Biometrika -

FerrLive 2.7% 7.4% 15.6%
FerrFake 2.8% 11.4% 1.9%

LivDet 2011
Error Rates Biometrika ItalData Sagem Identix

FerrLive 29.2% 28.5% 13.1% 11.6%
FerrFake 10.9% 15.1% 13.8% 6.2

LivDet 2013
Error Rates Biometrika ItalData CrossMatch Swipe

FerrLive 0.1% 0.2% 0% 3.2%
FerrFake 1.1% 0% 31.3% 11.5%

is possible to generate a Receiver Operating Characteristic (ROC) curve based on the
trade-off between the Type I and Type II errors.

Recently, a dedicated set of performance metrics quantifying the ability of a bio-
metric system to correctly detect spoof attacks were discussed by NIST [Johnson
et al. 2012; NIST 2012]. Current criteria used for assessing performance of biomet-
ric systems do not include well-defined metrics for evaluating anti-spoofing methods
[Simoens et al. 2012]. Therefore, technical efforts for the definition of evaluation crite-
ria, metrics and testing methodologies are needed. They should be also contextualized
in a standardized reference architecture. The stability of the performance and the de-
gree to which the performance curve varies with respect to influential factors or the
range of the algorithm parameters, need to be analyzed as well.

4.0.6. Scientific Reproducibility and Certification. Numerical reproducibility of published
results and a standard framework for comparing different anti-spoofing methods are
necessary to promote scientific rigor in this field. The current academic and industrial
research in anti-spoofing places emphasis on publications and project results, and lit-
tle on development of community-established standards and replication of experiments
and studies (although this is now slowly changing due to the efforts of the TABULA
RASA project and BVAEG). Additionally, product certification is required in sensitive
applications where a failure could have serious consequences such as a border control
system or access to a nuclear facility. Protection Profile (PP) by the Federal Office for
Information Security (BSI) in Germany defines a set of requirements for computer and
communication security [BSI 2010; Roberts 2007]. It includes the evaluation of Fin-
gerprint Spoof Detection Protection Profile. In particular, an assessment referred to as
Vulnerability Assessment was designed to determine whether potential vulnerabilities
that have been identified will allow unauthorized access to data and functionality that
interfere with authorized capabilities of other users. In July 2013, Morpho (Safran)
announced that it was the first company to achieve Common Criteria certification by
the BSI for fingerprint spoof detection in a biometric device - the MorphoSmart Optic
301 fingerprint reader.

5. INCORPORATING ANTI-SPOOFING MEASURES INTO A FINGERPRINT MATCHER
Very often it is necessary to integrate an anti-spoofing scheme with the fingerprint
matcher in a very explicit manner. In this regard, it may be necessary to fuse the
liveness values output by the liveness detector with the match scores output by the
matcher. [Marasco et al. 2012] proposed four different architectures to perform this
fusion. In three of these methods - two sequential and one based on a conventional
classifier - no assumptions were made about the interaction between liveness values
and match scores. In the fourth method, a Bayesian Belief Network (BBN) is employed
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to explicitly model the influence of liveness values on match scores. Beyond determin-
ing whether the two samples being compared belong to the same identity, the overall
system determines if the gallery and probe images are both live.

In their work, they view the fingerprint matcher and the liveness detector as “clas-
sifiers”. The inputs to the matcher are two fingerprint samples (e.g., gallery and probe
images). The output is a match score that indicates the similarity between the two
samples. A threshold is applied to this match score in order to determine if the sam-
ples correspond to the same identity (“Genuine (G)”) or different identities (“Impostor
(I)”). Thus, the verification stage has two output classes: G and I. The input to the
liveness detector is a fingerprint sample (e.g., gallery or probe image). The output is a
liveness value indicating the degree of liveness of the sample. A threshold is applied
to this liveness value in order to determine if the sample is “Live (L)” or “Spoof (S)”.
Since there are two fingerprint samples, the liveness detector has four output classes:
LL, LS, SL, SS (see Table A).

Table A: Notations used when combining match scores with liveness values.
Inputs:
Let m be the match score between the gallery and probe samples as computed by the matcher.
Let lg be the liveness measure value assigned by the liveness detector to the gallery sample.
Let lp be the liveness measure value assigned by the liveness detector to the probe sample.
Events:
Let I = 0 (1) denote a genuine (impostor) user.
Let Sg = 0 (1) denote the presence of a live (spoof) biometric presentation at enrollment time.
Let Sp = 0 (1) denote the presence of a live (spoof) biometric presentation at verification time.
Output classes:
Live-Live-Genuine (LLG): the gallery image and the probe are both live and they have the same
identity.
Live-Spoof-Genuine (LSG): the gallery image is live, the probe is spoofed but they correspond to
the same identity.
Spoof-Live-Genuine (SLG): the gallery image is spoofed, the probe is live but they correspond to
the same identity.
Spoof-Spoof-Genuine (SSG): the gallery image and the probe are both spoofed and they are of
the same identity.
Live-Live-Impostor (LLI): the gallery image and the probe are both live but they correspond to
different identities.
Live-Spoof-Impostor (LSI): the gallery image is live, the probe is spoofed and they correspond to
different identities.
Spoof-Live-Impostor (SLI): the gallery image is spoofed, the probe is live and they correspond to
different identities.
Spoof-Spoof-Impostor (SSI): the gallery image and the probe are both spoofed and they corre-
spond to different identities.

— In Method 1, the matcher is invoked before the liveness detector as seen in Fig.
20. The matcher in the first stage is used to distinguish genuine from impostor
based only on match scores. In the liveness detection stage there are two pairs of
classifiers: one pair that is invoked if the input samples are deemed to belong to the
Genuine (G) class and another that is invoked if they are deemed to belong to the
Impostor (I) class. This arrangement may be redundant (i.e., the use of four different
liveness detectors may not be necessary).

— In Method 2, the liveness detector is invoked before the matcher as seen in Fig. 21.
Depending upon the output of the two liveness classifiers in the first stage (LL, LS,
SL or SS), one of four matchers in the verification stage is invoked. For example, the
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Fig. 20. Architecture of Method 1. Here, the matcher is invoked before the liveness detector. The classifier
in the first stage (classifier 1) is used to distinguish genuine from impostor based only on match scores. In
the spoof detection stage there are two pairs of classifiers: one pair (classifier 2 and 3) that is invoked if the
input samples are deemed by the matcher to belong to the Genuine (G) class and another pair (classifier
4 and 5) that is invoked if they are deemed to belong to the Impostor (I) class. This arrangement may be
redundant (i.e., the use of four different liveness classifiers may not be necessary). See Table A for notations.

Fig. 21. Architecture of Method 2. Here, the liveness detector is invoked before the matcher. Depending
upon the output of classifier 1 and 2 (LL, LS, SL or SS), one of four classifiers in the verification stage is
invoked. For example, classifier 3 operates only on input scores between gallery and probe samples that are
both classified as Live, while classifier 6 operates only on scores between gallery and probe samples that are
both classified as Spoof. See Table A for notations.

Fig. 22. Architecture of Method 3. Here, the classifier has three inputs: match score, liveness value of
gallery sample and liveness value of probe sample. All 3 inputs are used simultaneously in order to deter-
mine the output class. See Table A for notation.
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first matcher (Classifier 3) operates only on gallery and probe samples that are both
classified as Live, while the fourth matcher (Classifier 6) operates only on gallery
and probe samples that are both classified as Spoof.

— In Method 3 (see Fig. 22), the match score and the liveness values are provided as
inputs to a single classifier. This classifier has one of eight possible outputs: LLG,
LSG, SLG, SSG, LLI, LSI, SLI, SSI. This is an example of a multi label problem. For
each class label, the first two letters denote the liveness state of the samples, while
the third letter denotes whether the samples correspond to the Genuine or Impostor
class (see Table A). In this method, no explicit assumption is made regarding a
possible relationship between liveness values and match scores.

— The three methods described above do not explicitly model the relationship between
liveness values and match scores. A powerful framework for modeling causal rela-
tionships among a set of variables X is offered by graphical models such as Bayesian
Belief Networks. A graph is able to capture the way in which the joint distribution
over all of the random variables can be decomposed into a product of factors each
depending only on a subset of the involved variables. Fig. 23 shows a BBN-based
representation, referred to as Method 4. The variable I denotes the event related
to the presence or absence of a genuine user. It assumes value equal to ‘0’ when
the samples belong to the Genuine class and ‘1’ when the samples belong to the Im-
postor class. The variable m denotes the match score between the two samples (e.g.,
gallery and probe) whose value is affected by the state of the variable I. For example,
a match score between two samples of different individuals (I=1) is likely to be lower
than that of samples coming from the same individual (I=0). The variables Sg and
Sp represent the events related to the presence of a spoof biometric presentation at
enrollment and verification times, respectively. Each assumes the value ‘1’ when the
presentation characteristic is a spoof and the value ‘0’ when it is live. The variables
lg and lp denote the liveness values of the gallery and probe samples, respectively.
In this method, it is assumed that the liveness values lg and lp influence the corre-
sponding match score, m. The interactions among the involved variables are based
on the idea that the events Sg, Sp and I influence a common effect, i.e., the decision
made by the biometric system, through variables lg, lp and m. This approach has
one of eight possible outputs: LLG, LSG, SLG, SSG, LLI, LSI, SLI, SSI (see Table
A).

Fig. 23. Architecture of Method 4. The Bayesian Network combines match scores and the corresponding
liveness measure values. In this configuration, the liveness measure is assumed to influence match scores.
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Rattani and Poh [Rattani and Poh 2013] used fusion schemes based on Gaussian
Mixture Model (GMM), Gaussian Copula (GC) and Quadratic Discriminant Analysis
(QDA) to combine quality measures with liveness values and match scores. They con-
sidered both zero-effort and non-zero effort attacks in their evaluation scheme. [Rat-
tani et al. 2013], incorporated the influence of sensors on the liveness values, quality
and match scores using a Bayesian Graphical Model. They demonstrated that incor-
porating quality (besides liveness values and match scores) into the fusion framework
improves overall recognition accuracy; further, the Bayesian model accounted for dif-
ferences in sensor used during the training and test stages.

6. IMPACT OF SPOOFING ON MULTIMODAL SYSTEMS
Recent investigations demonstrated that, multimodal systems can be deceived when
only a subset of the fused modalities is spoofed [Rodrigues et al. 2010] [Rodrigues et al.
2009] [Akhtar et al. 2011a] [Marasco and Sansone 2011b] [Marasco 2010]. Rodrigues
et al. empirically showed that even if only one modality is spoofed in a bimodal biomet-
ric system, the probability of deceiving the multimodal system dramatically increases
[Rodrigues et al. 2010]. In particular, they evaluated three different fusion schemes:
weighted sum, likelihood ratio and Bayesian likelihood ratio. The vulnerability of mul-
timodal biometric systems to partial spoof attacks was also explored by Johnson et al.
in [Johnson et al. 2010]. They described a framework for evaluating fusion algorithms
by focusing on their security risk when one or a subset of the combined modalities
is spoofed. They analyzed the simple sum rule which is the top performer amongst
several rule-based strategies. They used a dataset composed of match scores corre-
sponding to three modalities (i.e., face, fingerprint and iris) belonging to 240 subjects.
Their study involved a scenario where one of the three modalities is spoofed and a sce-
nario where two of the three modalities are spoofed. The SFAR increased sharply in
the second scenario where two modalities were spoofed.

The investigation about how well real spoof attacks can be simulated using match
scores has been carried out on different datasets by [Biggio et al. 2012] and [Akhtar
et al. 2011b]. They showed that the worst-case scenario - where the genuine match
score distribution corresponding to spoof attacks is assumed to be similar to that of live
fingerprints - can be too pessimistic. The approach proposed in [Marasco et al. 2011]
demonstrated that a more robust fusion can be realized by incorporating a fingerprint
liveness detection algorithm in the combination scheme. In general, liveness-based
fusion rules make multibiometric systems more robust to spoof attacks [Marfella et al.
2012].

7. CHALLENGES AND OPEN ISSUES
There are several challenges and open issues in the field of anti-spoofing:

— Most spoof (or liveness) detection algorithms proposed in the literature are learning-
based, i.e., they learn a decision policy to distinguish real fingerprints from fake ones
based on a set of training samples consisting of both live and spoof fingerprints. In
most cases, the spoofs encountered in the test set are made from materials previ-
ously encountered in the training set. This can optimistically bias the performance
of spoof detection algorithms; in fact, it has been demonstrated that the performance
of spoof detection algorithms can decrease when the materials used in the training
and test sets are different [Marasco and Sansone 2011a]. It is, therefore, necessary
to develop generalized countermeasures that are not impacted by the fabrication
material used to create the spoofs [Rattani and Ross 2014b; 2014a].

— Learning-based spoof detection schemes are often impacted by the fingerprint sen-
sor used to capture the images (see Fig. 24). Consequently, when a different sensor
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is used during testing, it is likely that the spoof detection algorithm will be unsuc-
cessful in detecting spoofs. Additionally, human factors such as placement, pressure
and physiology, and environmental conditions such as temperature and humidity
can degrade spoof detection performance [Tan et al. 2010; Marcialis et al. 2012b].
Developing interoperable spoof detection algorithms is of paramount importance
[Gottschlich et al. 2014].

— It is necessary to design effective methods for integrating spoof detection into a
fingerprint verification system. Further, the influence of spoof artifacts on match
scores has to be systematically studied. Such a study would assist in the design of
effective fusion schemes for consolidating match scores, liveness values and qual-
ity measures. Ideally, the system should immediately reject a fingerprint that it is
deemed to be a spoof; however, due to the large error rates demonstrated by spoof de-
tection algorithms, summarily rejecting a fingerprint based on liveness values only
may result in an increased False Non-Match Rate (FNMR). A robust fusion scheme
can judiciously use liveness scores in conjunction with match scores (and quality
values) to render a final decision.

— Methods for certifying the level of security of a fingerprint system against spoof at-
tacks has to be developed and rigorously implemented [Sébastien et al. ]. However,
such a certification scheme is not easy to develop due to the large number of fab-
rication materials that can be used to generate spoofs; further, it may be difficult
to predict the types of spoofs attacks that can be launched in the future. The de-
velopment of new sensors for fingerprint acquisition can also change the types of
materials that are relevant for spoof attacks.

— The advent of mobile biometrics has highlighted the need for designing anti-spoofing
methods that can be incorporated in resource-constrained devices such as smart-
phones. This means, existing countermeasures (both hardware-based and software-
based) have to be modified in order to ensure that they can be used in diverse com-
puting platforms.

Fig. 24. Spoof fingerprints obtained using the same material (silicone) but scanned by two different optical
devices (CrossMatch and Biometrika respectively) taken from LivDet09, with permission of G. Marcialis.

8. CONCLUSIONS
The art of attacking a biometric system has gained sophistication over the past sev-
eral years. One such attack involves the use of fake fingers or spoofs in order to defeat
the biometric recognition system. The success of spoof attacks has been demonstrated
by several researchers. Artificial fingerprints are usually made of materials which can
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be scanned by existing commercial fingerprint scanners. Thus, there is a need for de-
veloping robust liveness detection or anti-spoofing schemes in order to maintain the
integrity of fingerprint recognition systems.

In this paper, we reviewed different types of spoof attacks and discussed the various
countermeasures that have been developed in the literature to detect or deflect such at-
tacks. The pros and cons of some of these countermeasures were presented. Databases
and performance metrics used to evaluate the efficacy of these countermeasures were
also discussed. We then presented methods for combining liveness values with match
scores and quality measures. Finally, we discussed some of the open challenges in this
field. As fingerprint verification systems become widely used, it is necessary to make
them resilient to spoof attacks. The advent of mobile biometrics and remote authen-
tication further reinforces the need to design robust anti-spoofing schemes for finger-
prints and other biometric modalities.
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