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Abstract

Security of fingerprint authentication systems remains
threatened by the presentation of spoof artifacts. Most cur-
rent mitigation approaches rely upon the fingerprint live-
ness detection as the main anti-spoofing mechanisms. How-
ever, liveness detection algorithms are not robust to sen-
sor variations. In other words, typical liveness detection
algorithms need to be retrained and adapted to each and
every sensor used for fingerprint capture. In this paper,
inspired by popular invariant feature descriptors such as
histograms of oriented gradients (HOG) and the scale in-
variant feature transform (SIFT), we propose a new invari-
ant descriptor of fingerprint ridge texture called histograms
of invariant gradients (HIG). The proposed descriptor is
designed to preserve robustness to variations in gradient
positions. Spoofed fingerprints are detected using multi-
ple histograms of invariant gradients computed from spa-
tial neighborhoods within the fingerprint. Results show that
proposed method achieves an average accuracy compara-
ble to the best algorithms of the Fingerprint Liveness De-
tection Competition 2013, while being applicable with no
change to multiple acquisition sensors.

1. Introduction
The deployment of fingerprint recognition systems is

growing. The ease of use and low error rates are the main
factors that contribute to their widespread use [17]. Subse-
quently, the interest in guaranteeing the reliability of these
systems has increased as well. Several issues pertaining to
the security of fingerprint systems under spoof artifact pre-
sentations have arisen. Fingerprint ridges can be modeled
using artificial materials such as latex, silicone, or gelatin
and maliciously employed to gain unauthorized access to

the system protected by the fingerprint sensor [28] [26] [15].
The risk of spoof attacks is becoming serious and it involves
realistic cases. In March 2013, spoof fingerprints were ma-
liciously used by a doctor to forge the check-in of absent co-
workers1. In September, only two days after the iPhone5S
was released, its vulnerability to spoof fingerprints was an-
nounced2.

This problem has been handled through the development
of various anti-spoofing mechanisms most of which focused
on liveness detection approaches [28]. Liveness detection
refers to the ability of a system to discriminate between hu-
man live fingerprints and spoof artifacts [26]. Error rates
of liveness detection approaches reported in the literature
are generally not low enough to satisfy requirements for
high security, as reported by Liveness Detection Competi-
tions [23] [31] [8]. Existing algorithms are limited by their
learning-based nature which implies dependence on both
the sensor used for acquiring data and the specific set of ma-
terials used for representing the spoof class when training
[21]. To the best of our knowledge, the scientific literature
lacks anti-spoofing techniques robust to variations induced
in the images by the sensor. In particular, minutiae locations
are affected by variations induced by the acquisition device
and, due to this, may imply changes in liveness detection
accuracy across different optical sensors [19]. Although ap-
proaches such as histograms of oriented gradients (HOG)
and the scale invariant feature transform (SIFT) are efficient
and popular in computer vision, they have note been used
for implementing anti-spoofing techniques.

In this paper, inspired by the invariant feature descrip-
tors HOG and SIFT, we propose a new invariant descriptor
of fingerprint ridge texture called histograms of invariant

1http://nexidbiometrics.com/brazilian-doctor-arrested-for-using-fake-
fingerprints/

2http://secureidnews.com/news-item/apples-touch-id-spoofed/



gradients (HIG). In the proposed approach, liveness is pre-
dicted based on local histograms which count occurrences
of gradient orientation and magnitude in a local region of
the fingerprint image. Local gradients are estimated by pre-
serving independence of the precise gradient positions. HIG
features this innovative aspect which is promising for deal-
ing with changes in liveness detection accuracy across dif-
ferent capture devices.

This paper is organized as follows. In Section 2, we
describe the state-of-the-art in the fingerprint anti-spoofing
strategies. Section 3 presents the proposed approach. Sec-
tion 4 discusses the evaluation procedure and experimental
results. Section 5 draws conclusions and future research di-
rections.

2. Related Works
Liveness detection currently represents the countermea-

sure most commonly used for minimizing the risk associ-
ated with spoof presentations. The detection can be cat-
egorized as being hardware- or software-based [29] [20].
Hardware-based solutions usually exploit characteristics of
vitality such as temperature of the finger, electrical conduc-
tivity of the skin, pulse oximetry [27]. These approaches
require the integration of additional hardware into the bio-
metric sensor which makes the device more expensive; ad-
ditionally, an improper integration can result in a vulnera-
ble scenario where a spoof artifact is placed on the finger-
print sensor while any live finger is placed on the added
hardware. Software-based liveness detection represents a
cheaper and non-invasive solution. Methods in this category
can exploit characteristics derived from multiple frames of
the same fingerprint, referred to as dynamic, or from a single
impression, referred to as static. Static approaches appear
more suitable for achieving high performance, in terms of
time and accuracy, required in operational scenarios.

A physiological phenomenon of live human fingers
which has been investigated in past studies is perspiration.
The corresponding spatial moisture pattern can be quanti-
fied by temporal gray-level changes between two sequen-
tial images. Abhyankar and Schuckers [1] isolated the per-
spiration pattern through changes in wavelet coefficients
between two images. In particular, high frequency com-
ponents due to the circular transitions from dark to white
around pores are captured with wavelet packets, while low
frequency components due to the occurrence of pores are
captured via multi-resolution analysis (MRA). The corre-
sponding liveness measure is computed as the total energy
associated to the considered frequency bands. Reported
equal error rate (EER) is of 13.85%. Perspiration has been
be exploited statically as well by processing only one im-
age [30]. Based on the observation that pixels of spoofs are
mainly distributed in the dark gray levels (<150), Tan and
Schuckers derived two features: i) Gray Level 1 ratio, com-
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Figure 1. The basic steps for computing the histogram of invariant
gradients are: (a) computing the image gradients (red arrows on
the black ridge line) and (b) estimating the orientation field. Then,
the angle between unsigned gradients and the local orientation at
each pixel (c) determines in which orientation bin the gradient is
sorted. Finally, the histogram of invariant gradients (d) is a sum-
mary statistic of all gradient lengths in a local neighborhood. In
this noise-free synthetic example, all gradients are perpendicular
to the local orientation and their invariant representation is sorted
into the bin centered at 90◦ (d).

puted as the ratio between the number of pixels with gray
level (150, 253) and the number of pixels with gray-level
ranging in (1, 149); ii) Gray Level 2 ratio, computed as the
ratio between the number of pixels with gray level (246,
256) and the number of pixels with gray-level ranging in (1,
245).

Several studies analyze variations in texture (e.g., mor-
phology, smoothness) exhibited by spoof and live finger-
prints. Moon et al. [24] modeled the fingerprint surface
by using the standard deviation of the residual noise which
represents an indicator of texture coarseness. This allows
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Figure 2. Two fingerprints from the LivDet 2013 Biometrika database: a print of a real finger on the left (a/b) and an image acquired from
a spoof made of Eco Flex on the right (c/d). Two ways of geometric partitioning are considered for computing the descriptor: for the
minutiae circle approach, gradients within a circle of radius 16 pixels around minutiae locations are taken into account for computing the
histogram in (a) and (c). For the dense block packing approach, the image is divided into blocks of 16× 16 pixels and the 100 blocks with
the highest sum of gradient vector lengths are chosen as depicted in (b) and (d).

for distinguishing between live and spoof fingerprints since
the surface texture of a live finger is generally less coarse
than a spoof. Furthermore, since fingerprints exhibit ori-
ented texture-like pattern, Nikam et al. [25] extracted Ga-
bor filter-based features to capture local frequency and ori-
entation information. The gray level distribution of single
pixels is modeled by the first order statistics, while the joint
gray level function between pairs of pixels is modeled by
the second order statistics. Marasco and Sansone success-
fully investigated the joint contribution of the most robust
texture and perspiration-based measures [22]. A novel set
of features for detecting liveness based on the Local Phase
Quantization of the fingerprint image has been defined by
Ghiani et al. [7]. Recently, Gragnaniello et al. [13] pro-
posed a method based on the Weber’s law while Ghiani
et al. [6] evaluated binarized statistical image features in
which the fingerprint representation is obtained by learning
filters, instead of manually tuning them. Quality measures
such as strength and clarity of fingerprint ridges have been
exploited for anti-spoofing purposes too. In particular, the
ridge continuity is captured by measuring the continuity of
the orientation fields [5]. Espinoza et al. [4] proposed a
method based on comparing pore quantity between spoof
and live fingerprint images.

3. Histograms of Invariant Gradients (HIG)
3.1. Basic Algorithm

In this section, we describe the proposed approach which
is based on an approximation of image gradients invariant
not only to rotation and translation but also to curvature and
deformation. This effort aims to design an algorithm robust
device and spoof material diversity. Liveness can be pre-

dicted based on multiple histograms of these invariant gra-
dients computed in local neighborhoods. The image gradi-
ent operator estimates the maximum rate of the gray levels
increase per unit distance. For an image I , the gradient of I
at coordinates (x, y) is defined as the following vector:

∇I =
[
Gx

Gy

]
, (1)

mag(∇I) = [G2
x +G2

y]
1/2. (2)

Gx corresponds to ∂I
∂x , the differences in x (horizontal)

direction, Gy corresponds to ∂I
∂y , the differences in y (verti-

cal) direction [9], and mag(∇I) is the gradient magnitude
or length.

Image Gradients Estimation. Image gradients are
computed for each pixel using the Sobel filter, see Figure
1 (a). To achieve conditions of invariance described
above, in our approach local gradients are compensated by
normalizing relative gradients with respect to the global
orientation field. The orientation field is estimated by
the line sensor method [11], see Figure 1 (b). The local
orientation is defined as the tangent to the fingerprint ridge.
This normalization results in an invariant representation of
each gradient (see Figure 1 (c)).

Histograms of Invariant Gradients. Histograms of in-
variant gradients (see Figure 1 (d)) are computed in local
neighborhoods by considering the following two geometric
partitions (see Figure 2):

• Minutiae Circles. Minutiae are extracted and for each
minutia i, a histogram of invariant gradients is com-
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Figure 3. Histograms with 180 orientation bins (the leftmost bin corresponds to 0◦) are displayed for 5 out 100 blocks for an image of a
real finger (left) and a spoof (right). High bars around the center of the histograms indicate that most gradients are orthogonal to the local
orientation.

SIFT HOG HIG
Gradient directions are global, fixed coordinate local orientation
normalized with respect to

keypoint direction
system for the whole image at each pixel

1 histogram
Histograms and bins

4× 4 histograms
with 9 orientation bins

1 histogram

per descriptor
with 8 directional bins

for each cell and
with 180 orientation bins

for each keypoint
4-9 cells per HOG

for each circle or block

Gradients signed (0-360◦)
or unsigned (0-180◦)

signed unsigned unsigned

Invariance to
rotation and translation

yes no yes

Invariance to
curvature and deformation

no no yes

Typical number of around 20-40 minutiae circles
descriptors per image

1000-2000 keypoints 4000 detection windows
or top 100 blocks

Table 1. Summary of similarities and differences regarding key properties of SIFT [16], HOG [3] and our approach.

puted taking into account all gradients within a cir-
cle of radius r = 16 pixel around the minutia loca-
tion (xi, yi).

• Dense Block Packing. The whole image (the fin-
gerprint foreground) is divided into non-overlapping
blocks of size 16 × 16 pixels. For each block, we cal-
culate the sum of gradient lengths inside that block.
The first t = 100 blocks with biggest sum of gradient
lengths are chosen.

Histograms are obtained after sorting each invariant gra-
dient into the nearest of n = 180 orientation bins. Since
the orientation resolution of the histogram is very fine, no
weighted voting into neighbooring is performed. Each his-
togram is normalized by L2-normalization.

Let h be the unnormalized histogram of summed up gra-

dient lengths per bin, ||h||k its k-norm and ε be a very small
constant. For L2-normalization we compute

h := h/
√
||h||22 + ε. (3)

The normalized histograms are used as features for training
by a support vector machine with a linear kernel (C = 1.0).
Histograms obtained from spoof fingerprints are used as
negative examples (y = 0) and histograms derived from im-
ages of live fingers are used as positive examples (y = 1).
A model learned on the training data is applied to predict
whether a histogram originated from a spoof (y = 0) or a
real finger (y = 1). The average of all predictions for one
image is considered as the liveness score s. Based on the
average prediction score s and the determined threshold, an
image is classified as spoof or live. The main steps of the
proposed approach are summarized in Algorithm A.



Algorithm A. Histograms of Invariant Gradients.

Input:
Let I(x, y) be the original Fingerprint Image.

Steps:
1. Compute Image Gradients from I(x, y).
2. Estimate Orientation Field from I(x, y).
3. Compute Geometric Partitioning.
Option 3.1.: Circles of radius 16 pixels around minutiae locations.
Option 3.2.: Top 100 blocks of 16 × 16 pixels with the biggest
sum of gradient lengths.
4. Obtain Invariant Gradients by normalizing gradient directions
with respect to the local orientation.
5. Compute Histogram of Invariant Gradients by
adding gradients lengths to the corresponding orientation bins.
6. Histogram Normalization by L2-normalization.

Output:
k Histograms of Invariant Gradients.

A comparison of the key properties of SIFT, HOG and
the proposed invariant gradient representation is summa-
rized in Table 1. Compared to SIFT and HOG, HIG relies
on much less number of feature points to describe the ap-
pearance of fingerprint ridge texture, which makes it com-
putationally efficient. At the same time, it inherits the ro-
bustness of SIFT and HOG that can effectively compensate
the variations in typical fingerprint images in terms of illu-
mination and orientation. Such capabilities enable a live-
ness detection algorithm to achieve good accuracy in cross-
device scenarios.

3.2. Variations

In addition, we propose an extension of the descriptor
in which, additional to the 180 orientation bins, two more
features are considered: the gradient coherence in a block as
defined in Equation 10 of [12] and the difference between
the largest and smallest gradient length in a block. This
descriptor with 182 features is referred to as “HIG dense
block packing extended” in Table 2, and “HIG dense block
packing combined” chooses the best of these two variants
in the training set. Using the available training images, we
investigated conceivable alternatives to the parameters and
choices previously described:

• Different radii around minutiae locations.

• A geometry with a central circular cell and four cells
on an annulus with an expanded radius as in the C-
HOG of [3].

• Different block sizes and blocks consisting of two or
more cells to allow overlap.

• Different number of blocks per image.

• Different number of orientation bins.

• Considering signed instead of unsigned gradients.

• Four histogram normalization schemes: L1, L1-sqrt,
L2 and L2-Hys.

• Different kernels and parameters for the support vector
machine.

We also explored histograms of gradients relative to the
minutiae direction, similar to SIFT descriptor. However,
using these histograms as features decreased the accuracy
considerably in comparison to the proposed invariant gradi-
ent representation.

4. Experimental Results
4.1. Benchmark Data Set

The LivDet2013 [8] data set consists of fingerprint im-
ages acquired with four different sensors:

• Biometrika FX2000 (optical sensor with 569 DPI res-
olution and 312× 372 pixels image size).

• Italdata ET10 (optical sensor with 500 DPI resolution
and 640× 480 pixels image size).

• Crossmatch L Scan Guardian (optical scanner with
500 DPI resolution and 800× 750 pixels image size).

• Swipe sensor with 96 DPI resolution and 208 × 1500
pixels image size.

According to the description in [8], there are training and
test sets comprising 1,000 images for each of the four sen-
sors and for each of the two scenarios ’live’ and ’spoof’,
with the exception of the CrossMatch device and the swipe
sensor in the scenario ’live’ for which 1,250 training and
1,250 test images are available, summing up to a total of
17,000 images. The results in this paper are based on 16,853
images which were made available for download by the or-
ganizers of the competition.

4.2. Evaluation Procedure

Histograms are computed for all training images in each
considered database. Using all training images we deter-
mine the threshold which maximizes the accuracy for that
training set. During the test phase, histograms are computed
for each image, as previously described. The learned SVM
model is applied to predict a fake finger or a live finger. Ex-
periments were performed using LIBSVM [2].
The liveness detection accuracy a is computed as follows:

a =
C

N
, (4)



LivDet 2013 Biometrika Italdata Crossmatch Swipe Average
Anonym2 98.20 99.40 45.20 94.19 84.25
Dermalog 98.30 99.20 44.53 96.47 84.63
UniNap1 95.30 96.50 68.80 85.93 86.63

HIG minutiae circle 95.70 89.40 60.04 67.59 78.18
HIG dense block packing 96.10 91.70 65.87 85.56 84.81
HIG dense block packing extended 89.10 98.30 71.24 81.89 85.13
HIG dense block packing combined 96.10 98.30 71.24 85.56 87.80

Table 2. The rate of accuracy, in percents, for the four sensor databases of LivDet 2013 and the average accuracy. The results of the best
three algorithms of LivDet 2013 in terms of average accuracy are cited from [8].

where C is the number of correct decisions (classifying an
image of an alive finger as ’alive’ and classifying an im-
age of a fake finger as ’spoof’) and N is the number of all
decisions.

4.3. Results and Discussion

Table 2 reports the accuracy of the best algorithms from
LivDet 2013 and the proposed method. These results show
that proposed method achieves average accuracy similar to
the best algorithms in LivDet 2013. A major advantage of
the invariant gradient representation is that it creates very
few additional computational costs.
Most fingerprint algorithms are based on minutiae for
matching [17]. Typical processing steps before minutiae
extraction are segmentation, orientation field (OF) estima-
tion and image enhancement [10]. Therefore, computing
the image gradients and estimating the OF can be regarded
as ’free’ assuming the liveness detection module is used in
combination with algorithms which require these steps [18].
Other software-based liveness detection methods apply fea-
tures like the wavelet-Markov local descriptor [14], which
may not be utilized by the matching algorithm and therefore
impose extra burden with regard to the computational costs.

5. Conclusions
Results show that proposed method achieves a compa-

rable average accuracy with the best algorithms on LivDet
2013 using the same evaluation protocol; however, this eval-
uation procedure limits the evaluation of the algorithm with
respect to the robustness to device diversity. We will extend
experiments by testing with different materials to represent
the spoof class and to demonstrate interoperability of the
proposed liveness detector.
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