
On the Stability of Ranks to Low Image Quality
in Biometric Identification Systems

Emanuela Marasco1, Ayman Abaza2,3

1 Lane Department of Computer Science and Electrical Engineering,
West Virginia University

PO Box 6109 Morgantown, WV, USA
emanuela.marasco@mail.wvu.edu

2 West Virginia High Technology Consortium Foundation
Fairmont, WV 26554, USA

3 Biomedical Engineering and Systems,
Cairo University, Egypt

Abstract. The goal of a biometric identification system is to determine
the identity of the input biometric probe. This is accomplished using
a matcher which compares the input probe data against each labeled
biometric data present in the gallery database. The output is a set of
similarity scores that are ranked in decreasing order. The identity of the
gallery entry corresponding to the highest similarity score (i.e., rank 1)
is associated with that of the probe. In multibiometric systems, the out-
puts of multiple biometric matchers are combined. Such a combination,
or fusion, can be accomplished at the score level or rank level (apart
from other levels of fusion). In the literature, rank is believed to be a
stable statistic. However, this belief has not been experimentally demon-
strated. The contribution of this paper is to investigate the stability
of ranks to the image quality degradation in both unimodal and mul-
timodal scenarios. Experiments were carried out using two databases:
1) West Virginia University (WVU) dataset, composed of four finger-
prints per subject for 240 subjects, 2) Face and Ocular Challenge Series
(FOCS) collection, composed of three frontal faces per subject for 407
subjects. Experimental results show that, in a unimodal scenario when
dealing with low quality data, ranks are more stable than scores. How-
ever, such a rank stability is not verified when fusing multiple matchers.
Experiments demonstrate that, in the presence of low quality data, per-
formance achieved by score-level fusion is better than that one achieved
by rank-level fusion.

1 Introduction

In a generic biometric system, operating in identification mode, the input probe
(e.g., a fingerprint image) is compared to the labeled biometric data in the gallery
database (e.g., fingerprint database) and a set of similarity scores is generated.
Scores are sorted in decreasing order and based on this ordering a set of integer
values or ranks is assigned to these retrieved identities. The lowest rank indicates



the best match; hence the corresponding identity is associated with that of the
input probe. The identity of the gallery that corresponds to the true identity of
the probe is known as the genuine identity; otherwise it is called impostor one.

The recognition accuracy of a biometric system generally decreases in the
presence of low quality biometric data wherein the similarity between the probe
and associated gallery image may be reduced [1] [2]. It has been observed that,
in such a critical scenario, consolidating the evidence provided by multiple bio-
metric sources can increase the recognition accuracy [3] [4]. Evidence can be
integrated before matching, at sensor or feature level; or, after matching at de-
cision, rank or score level [5] [6]. While the amount of information to integrate
progressively decreases from the sensor level to the decision level, the degree of
noise also decreases [7] [8]. Since match scores are easy to access and combine,
score-level fusion has been widely used.

Recent research [9] [10] [11] has established the benefits of rank-level fusion in
identification systems. Ranks only carry information about the relative ordering
of the different identities in the gallery. However, there are cases where ranks
are useful. First, when the output of commercial systems is only a list of can-
didate identities and no match scores are given [12]. Second, when conducting
statistical parametric tests where distributions are assumed to be normal [13].
These tests may fail when considering match scores whose distributions are not
normal. Using ranks instead of match scores, can lead to more robust results.
Third, when applying monotonous transformation to match scores, the corre-
sponding ranks are kept unchanged. Ranks do not change when the scale on
which the corresponding numerical measurements changes [14]. Further, when
combining multiple modalities, fusing ranks does not require a normalization
phase as typically needed with heterogeneous match scores [15]. Ranks provided
by multiple biometric matchers are consolidated and, for each identity in the
gallery, a consensus rank is determined [16].

Monwar and Gavrilova presented a Markov chain approach for combining
ranks from face, ear and iris [10]. Their experiments showed the superiority in
accuracy and reliability over other biometric rank aggregation methods. They
reported a rank-1 multimodal identification accuracy of 98.5% compared to the
unimodal accuracies of 87%, 92% and 94% for ear, face and iris respectively.
However, this improvement may be due to the presence of the iris modality.
Abaza and Ross proposed a quality-based Borda Count scheme that is able to
increase the robustness of the traditional Borda Count in the presence of low
quality images without requiring a training phase [17]. Marasco et al. proposed
a predictor-based approach to perform a reliable fusion at rank level. The pre-
dictor (classifier) was trained using both ranks and match scores and designed
to operate before fusion [18]. Results demonstrated its effectiveness in detecting
potential unimodal identification errors. An interesting analysis was conducted
by Lee [19], who investigated the effect of using rank instead of similarity values
when combining multiple evidence by Lee [19]. The study focuses on generating
rank-similarity curves where the rank-similarity was computed by applying the



function γ to the rank of the ith subject following:

γ(ri) = [1 − (ri − 1)/N ] (1)

i = 1 . . . N , where N indicates the number of enrolled subjects. The resulting
value is used as the similarity value of the subject.

In the presence of low quality biometric data, the genuine match score is
claimed to be low and it is expected to be an unreliable individual output, able to
confuse a score level fusion algorithm and result in a potential identification error.
Conversely, the rank assigned to that genuine identity is expected to remain
stable even when using low quality biometric data [20]. However, the stability of
ranks has been argued but not experimentally demonstrated. The contribution
of this paper is to investigate the stability of ranks in the presence of low quality
probes in both unimodal and multimodal scenarios. This paper is organized as
follows: Section 2 defines the rank stability. Section 3 presents the approaches for
fusion at rank level used to conduct this study. Section 4 describes the technique
adopted to synthetically degrade the quality of the fingerprint images and the
actual low quality face samples used in our experiments. Section 5 reports results
and Section 6 summarizes the conclusions of this work.

2 Rank (and Score) Stability

The concept of stability is introduced here in order to have a method to evaluate
the robustness of ranks and scores to low quality data. A biometric system is
considered stable when small perturbations of its inputs do not alter its outputs
[21]. The stability of ranks can be measured as a function of the difference
between the rank assigned to the genuine identity using various low quality
probes. A rank difference close to zero indicates that the system is rank stable.
In this case the variation of the rank assigned to the genuine identity in the
gallery when reducing the quality of the probe is limited. Similarly, the stability
of match scores is based on the difference between the score assigned to the
genuine identity using a high quality and a low quality probe, respectively. In
this work, we consider sources of noisy input data that may arise during the
image capture where the image quality can be impacted for example by an
incorrect presentation of the biometric sample to the system.

Let G = [G1, G2, ...GN ] be the gallery set, composed by N biometric samples
belonging to N different subjects. Given a single probe image, N comparisons
of the probe against the gallery are performed and N similarity scores are gen-
erated. Let P denote a high quality probe image. Let P ′ denote the same probe
image under degradation. Let si and s′i indicate the score output by the matcher
after comparing P and the ith gallery, and P ′ and the ith gallery, respectively.
Let r[si] and r[s′i] indicate the rank assigned to the scores si and s′i, respectively.
The score-stability statistic τS and rank-stability statistic τR can be measured
as described in Eqn. (2) and Eqn. (3), respectively.

τS = f(si − s′i) (2)



τR = f(r[si] − r[s′j ]) (3)

Ranks (scores) are stable if the rank (score) assigned to the genuine identity
would not change with respect to the probe quality. In other words, a small
difference in ranks (scores) between using high and low quality probes indicates
high stability, and viceversa. A biometric measure which measures the distance
between two distributions is the relative entropy. The entropy measures the
amount of information required to describe a random variable; however, as a
functional of the distribution of the random variable, it does not depend on the
actual values assumed by the random variable but only on the probabilities [22].
In order to measure the stability of ranks, it is important to keep the rank value.
For the unimodal case, we develop statistical tests as non-parametric measure
to estimate rank (and score) stability over low quality images. Tests based on
an assumption of normality, like t-test, are not suitable to measure stability. We
return this to the fact that these tests poorly approximates data under study.
Also, the Wilcoxon and the Sign tests are not suitable to measure stability,
since they assume that the distribution under the Null hypothesis is a standard
normal. In this paper, we used the Kendall and the Spearman’s rank correlation
coefficient, whose inputs are two vectors composed by the ranks assigned to the
genuine identity with high and low quality probes. For the later tests, higher
correlation coefficient value indicates higher stability.

3 Experimental Results

This section discusses the used datasets and presents experiments to estimate
the stability of ranks and scores for both unimodal and multimodal scenarios.

3.1 Datasets

The performance of the proposed strategy was evaluated using two databases.
The first database was collected at West Virginia University (WVU). A sub-
set of this database pertaining to the fingerprint (left thumb [FL1], right thumb
[FR1], left index [FL2], right index [FR2]) was used [23]. Fingerprint images were
collected using an optical sensor. The entire dataset was divided into five sets:
one sample of each identity was used to compose the gallery and the remaining
four samples of each identity were used as probes (P1, P2, P3, P4). VeriFin-
ger4 software was used for generating the fingerprint scores. Matching scenarios
considered the gallery image of high quality and the probe image degraded to
simulate low quality ones. The fingerprint image quality was quantified using the
IQF software[24]. Degradation effects are simulated using a gray-scale satura-
tion technique which converts fingerprint pixels corresponding to the ridges into
background pixels [17]. The gray-scale saturation level (SL) indicates the gray
level value above which pixels are saturated to white (255) (see Fig.1). Figure
2 illustrates the unimodal performance when using various levels of the image
quality of probes.

4 http://www.neurotechnology.com/verifinger.html



Fig. 1: Examples of low quality fingerprint images artificially degraded by using
five different noise saturation levels ST = [128, 160, 192, 224, 240].

Fig. 2: The unimodal performance decreases when degrading the quality of the
probe image at different levels. ND indicates the case with no degradation.

The second database is a subset of the Face and Ocular Challenge Series
(FOCS) collection (the Good, Bad and Ugly database) composed by three frontal
instances of faces, with two high quality images (from the Good dataset) and one
actual low quality image (from the Ugly dataset in which images are taken under
uncontrolled illumination, both indoors and outdoors). The partitions of interest
are referred to as Good and Ugly, that have an average identification accuracy of
0.98 and 0.15 respectively 5. PittPatt6 software was used for generating the face
match scores. Two different matching scenarios were considered: high quality
gallery versus high quality probe, referred to as Good-Good and high quality
gallery versus low quality probe, referred to as Good-Ugly. Table 1 provides the
details of the database. Fig. 3 shows examples of actual low quality images.

3.2 Results and Discussion

We conducted experiments to estimate the stability of ranks (and match scores)
in the presence of low quality input data for both unimodal and multimodal
scenarios.

5 http://www.nist.gov/itl/iad/ig/focs.cfm
6 http://www.pittpatt.com/



Table 1: Details of the datasets used for the experiments

Database Biometric Subjects Samples Scores

WVU Fingerprint 240 5 per finger Gen: (1200 × 4) × 4
(4 fingers) Imp: (240 × 239 × 25) × 4

FOCS Face 407 3 per subject Gen: 407 × 2
Imp: 407 × 406 × 2

(a) (b)

Fig. 3: Examples of face images taken from the Face and Ocular Challenge Series
(FOCS) collection: (a) sample image from the Ugly partition; (b) sample image
from the Good partition.

Unimodal Rank /Scores Stability. Ranks appears to be more stable than
match scores, see Fig. 4 for fingerprints (a similar result is obtained for faces
as well). Histograms of the difference between the rank (score) assigned to the
genuine identity in the presence of a high and low quality probe image is shown
in Fig. 4.

Multimodal Rank /Scores Stability. We integrated ranks in multimodal
biometric systems, and compare them to the performance achieved using scores.

Fig. 5 (a) shows the accuracy achieved by rank- and score-level fusion schemes
when combining four fingerprints where two are of low quality. In this scenario,
the modified highest rank exhibits the best performance among the considered
rank level fusion schemes; the achieved rank identification rate decreases from
92.08% to 57.5% when increasing the degradation factor. The score sum per-
formance decreases only from 99.17% to 86.67%. Fig. 5 (b) shows the accuracy
achieved when fusing four fingerprints where one is of low quality. The modi-
fied highest rank exhibits the best robustness to image quality degradation. It
achieves a rank-1 identification rate of 97.08% when the noise saturation level
applied to one fingerprint image in every pair is 128 and 85.00% when increasing
the noise saturation level to 240. However, the performance of the score sum
exceeds that obtained by rank level fusion by achieving a rank-1 identification
rate of 99.17% in both non-degraded and degraded conditions. The experiments
showed that rank is stable using low quality probes. The correlation coefficient
value for ranks is higher than that for match scores, ranks are more stable than
scores. When the level of quality degradation is significant, both ranks and scores
are not stable (0.418 for ranks and 0.199 for scores).



(a) (b)

Fig. 4: Histograms of the difference between the rank (and the score) assigned
to the genuine identity in the gallery before and after degradation of the probe
image: (a) Rank difference: Non Degraded vs. degraded with SL= 128; (b) Score
difference: Non Degraded vs. degraded with SL= 128.

Fig. 5: (a) Fusion of four fingerprints when one of them is degraded: change in
performance of different schemes at rank and score under different degradation
levels. (b) Fusion of four fingerprints when two of them are degraded: change
in performance of different schemes at rank and score under different levels of
degradation of two fingerprint probe images.



Fig. 6: Fusion of one face and two fingerprints both are of low quality. The
face modality is taken from the GBU data set of the FOCS database and both
fingerprints from WVU database (FR1 and FL1 fingers).

Fig. 6 illustrates the performance when fusing one face and two fingerprints
all of low quality. When combining ranks, the best accuracy is achieved by the
Modified Highest Rank. For the traditional Borda Count scheme, the presence
of only one incorrect identification where a high rank is assigned to the genuine
identity to have a final error. The Highest Rank rule requires that only one of the
combined biometric matchers assigns rank-1 to the genuine identity. Errors due
to ties are solved with its modified version. When all the combined modalities
are all of low quality, the Quality-based Borda Count is the most effective fu-
sion scheme. However, fusion at score level outperforms all the rank-level fusion
schemes.

Fig. 7 (a) shows a fusion casework in which the sum of scores and the quality-
based Borda Count assign a rank greater than 1, while all the other rank level
fusion schemes performs well. In Fig. 7 (b) where only the sum of scores is able
to output a correct decision.

4 Conclusion

This study carried out an investigation regarding the stability of the rank in the
context of biometrics. Further, we analyzed different non learning-based rank
level fusion schemes in the presence of both synthetically degraded fingerprint
images and actual low quality face images. The experiments showed that rank
is stable with low quality images, when the level of degradation is not signifi-
cant; While both ranks and scores are not stable, when the level of degradation
is significant. Further, ranks are more stable than scores since they present a
higher rank correlation coefficient value. (However, the performed study may be



(a) (b)

Fig. 7: (a)Fusion scenario where gallery is of high quality for all the matchers but
one of the probe (FL1) is low quality (obtained with SL= 240). (b) Examples
of a high quality (ND) and low quality fingerprint images where the low quality
probe has been obtained with SL= 240. For this subject, when using the low
quality probe, only the sum of scores is able to correctly classify that probe.

dependent upon the matcher used). Conditions under which it is reasonable to
use ranks can be expressed as follows:

– When match scores are not available, fusing ranks by applying the modified
highest rank scheme leads to the best identification accuracy.

– When match scores are available, a better identification accuracy can be
obtained by employing score level fusion.
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