
Studying the Effect of Co-change Dispersion  

on Software Quality 

Ehsan Kouroshfar 

Computer Science Department, George Mason University 

Fairfax, USA 

ekourosh@gmu.edu 

 
Abstract—Software change history plays an important role in 

measuring software quality and predicting defects. Co-change 

metrics such as number of files changed together has been used 

as a predictor of bugs. In this study, we further investigate the 

impact of specific characteristics of co-change dispersion on 

software quality. Using statistical regression models we show that 

co-changes that include files from different subsystems result in 

more bugs than co-changes that include files only from the same 

subsystem. This can be used to improve bug prediction models 

based on co-changes. 

Index Terms—mining software repository, bugs, changes. 

I.  PROBLEM AND MOTIVATION 

Many researchers have used the information in source code, 

change history, and bug repositories to predict files that are 

likely to have defects in the future. Several studies indicate that 

prior modifications to a file are a good predictor of its fault 

potential [1, 2, 3, 4, 5]. For example, many studies show that 

the more a file is changed the more likely it is to contain faults. 

Sometimes several files are being changed together in a single 

commit to source code repository. We use the term co-change 

here as changes of files that are included in a single 

modification request. Several studies show that the number of 

co-changes is also a good predictor of faults [1, 2]. For 

example, Hassan shows that the more spread the changes, the 

higher is the complexity of making those changes, thereby 

resulting in more bugs [2]. In addition, co-changes can be an 

indicator of a cross-cutting concern and concern scattering is 

known to be correlated with the number of defects [6, 7]. 

Although co-change could be a predictor for cross-cutting 

concerns, we believe that not all the co-changes are the same. 

A co-change that includes modules from different subsystems 

is a stronger predictor of cross-cutting concerns than a co-

change that changes modules from the same component. The 

difference between previous studies on co-changes and ours is 

that we are investigating the impact of co-changes on the 

software system’s quality from an architectural standpoint. We 

hypothesize that co-changes contained within the same 

subsystem do not have the same effect as co-changes dispersed 

across different subsystems. We believe we can obtain better 

insight about the relationship between co-changes and software 

quality by analyzing the nature of co-changes in more detail. 

A prerequisite in conducting this study is that we need to 

have insights into the subsystems comprising a software system 

under investigation. Unfortunately, most of the existing open 

source projects do not explicitly document the software 

architecture of the system. To address this challenge, we used 

Bunch, a reverse engineering tool that produces a subsystem 

decomposition model of a given software system by 

partitioning the system into a graph of entities (e.g., classes) 

and relations (e.g., function calls) in the source code [8].  

Empirical investigation of four apache projects has verified 

our hypothesis that co-changes in the same subsystem result in 

fewer bugs than co-changes in the different subsystems.  This 

new insight on the nature of co-changes can be used to improve 

bug prediction models based on co-changes (e.g., [1]). 

II. RELATED WORK 

Shihab et al. show that the number of co-changed files is a 

good indicator of defects that appear in unexpected locations 

(surprise defects) [1]. Hassan predicts defects using the entropy 

(or complexity) of code changes [2]. The more spread the 

changes, the higher is the complexity. D’Ambros et al. show 

that there is a relationship between change coupling and 

software defects [9]. 

Breu uses co-changes to identify cross-cutting changes [6]. 

The idea is that a code change is likely to introduce a cross 

cutting concern if various locations are modified within a 

single code change. Eaddy et al. show that there is a strong 

statistically significant correlation between the degree of 

concern scattering and the number of defects [7]. Several 

empirical studies provide evidence that crosscutting concerns 

degrade code quality because they negatively impact internal 

quality metrics such as program size, coupling and separation 

of concerns [10].  

III. APPROACH  

Our hypothesis is that co-changes that are located across 

multiple subsystems result in more bugs than co-changes 

affecting only a single subsystem.  

A. Data Collection 

In this study we use four apache open source projects: 

Camel, OpenJPA, Hive, and HBase. The first step is to find out 

which files have been changed together. Fig. 1 shows how we 

collected data in a three-month interval. In the first 3 months 

we obtain the information of co-changes from the source code 

repository. Then in the next three months we find the files that 

have been changed to fix bugs (bug fixes). We want to have 

equal periods of time for collecting co-changes and collecting 

bug fixes in order to have a meaningful comparison of the 

results.      

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
ACM Student Research Competition

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1450



3 months to 

collect co-changes

3 months to 

collect bug fixes

Release history of a project

Version n

 

Figure 1.  Data collection 

 B. Finding Subsystems 

We used Bunch, which is a reverse engineering tool and 

provides subsystems (clusters) based on the dependencies 

between modules [8]. Bunch is a fast, scalable and easy to use 

tool for reverse engineering of software projects. The clustering 

results of bunch are based on the static structure of the source 

code. Bunch uses some search techniques and heuristics (e.g., 

hill climbing) and finds a good partition in a way that 

interdependent modules are grouped in the same subsystems 

and independent modules are assigned to separate ones.  

C.  Method of Study 

 We define two metrics of co-changes: 

 CCSameSub: Number of co-changes for a file where 
the co-changes are made in a single subsystem 

 CCDiffSub: Number of co-changes for a file where the 
co-changes are made across more than one subsystem 

As an example, suppose that a, b and c are three of the files 

in the system and these are the co-changing files from three 

commits to the repository: {a, b}, {a, b, c}, {b, c}. All the files 

in the same set have been changed in a single commit. Suppose 

that files a and b are located in the same subsystem. Values of 

CCSameSub and CCDiffSub for the three files are shown in 

Table I.  

The following multivariable linear regression formula is 

one plausible way of representing the relationship between the 

two types of co-changes and bugs for each file:  

                                       

NumBugs is the number of times that a file has been 

changed due to a bug fix as a proxy measure of software 

defects. α and β are coefficients that are computed from the 

linear regression model. We hypothesize co-changes in the 

different subsystems results in more bugs than co-changes in 

the same subsystem. If our hypothesis is true, α should be 

greater than β.  

After we obtain the coefficients from the data collected in 

each data collection interval, we use t-Test to determine 

whether α is significantly greater than β or not. 

IV. RESULTS   

We have empirically 

examined four apache 

open source projects: 

Camel, HBase, Hive and 

OpenJPA. Table II shows 

the values of α and β for the four projects we examined.  

Since the total duration of data collection is different for 

each project, we have different number of data points that were 

collected at three-month intervals for each project. Each row 

shows the result for each data collection point. For example, 

row 1 for OpenJPA shows the result of the study for period of 

the first three months.  

The grey cells show the data points where α is greater than 

β. As it is shown, in most of the data points α is greater than β, 

which means that CCDiffSub has more impact on the number 

of bugs than CCSameSub.  

Next to see if this relationship (i.e., α being greater than β) 

is statistically significant, we performed two-tail t-Test on the 

values of α and β from Table II. Table III shows the results. 

First two columns show the average values of α and β for each 

of the projects, while the last column shows the value of two 

tail t-Test. The results show that in all of the projects, with at 

least 95% confidence, α is greater than β.  

 

 

 

 

 

 

 

V. CONCLUSIONS 

We used a subsystem decomposition model of four open-

source Apache projects to study how the locality of co-changes 

affects the system’s defects. Our results show that co-changes 

that are localized in the same subsystem result in fewer bugs 

than co-changes crosscutting the different subsystems. This 

study could provide the foundation for enhancing several 

existing bug prediction models that take co-change information 

as an input. In addition, we believe the dispersion of co-

changes among the subsystems could be used as an indicator of 

the architectural bad smells.  

ACKNOWLEDGMENT 

I would like to thank Dr. Sam Malek and Dr. Yonghee Shin 

for their advice on this research. 

TABLE III.  RESULTS OF T-TEST 

 α(average) β(average) t-Test 

OpenJPA 0.29 0.03 0.03 

Camel 0.40 0.28 0.01 

HBase 0.81 0.27 0.05 

Hive 0.38 0.26 0.01 

 

TABLE I.  VALUES OF METRICS 

 CCSameSub CCDiffSub 

a 1 1 

b 1 2 

c 0 2 

 

TABLE II.  RESULTS OF REGRESSION ANALYSIS  

 OpenJPA Camel HBase Hive 

 α β α β α β α β 

1 0.14 0.02 0.18 0.21 0.68 0.55 0.76 0.47 

2 -0.52 -0.59 0.39 0.25 0.61 0.57 0.45 0.21 

3 1.22 -0.03 0.29 0.22 0.54 0.40 0.16 0.00 

4 0.07 0.21 0.44 0.12 1.12 -0.41 0.66 0.63 

5 0.05 -0.27 0.33 0.20 0.56 -0.83 0.25 0.12 

6 0.33 -0.09 0.44 0.32 1.52 -0.60 0.24 0.20 

7 0.71 0.64 0.63 0.38 0.73 0.67 0.21 0.22 

8 0.59 0.06 0.51 0.56 0.48 -0.51 0.32 0.24 

9 0.59 0.64 0.44 0.20 1.42 2.49   

10 0.16 0.01 0.39 0.34 0.65 -0.23   

11 0.04 0.03   0.99 0.66   

12 0.13 -0.25   0.40 0.51   

 

1451



REFERENCES 

[1] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E. Hassan, 

“High-impact defects: a study of breakage and surprise defects,” 

In Proceedings of the 19th ACM SIGSOFT symposium and the 

13th European conference on Foundations of software 

engineering (ESEC/FSE '11). ACM, New York, NY, USA, 300-

310. 

[2] A. E. Hassan, “Predicting faults using the complexity of code 

changes,” In Proceedings of the 31st International Conference 

on Software Engineering (ICSE '09). IEEE Computer Society, 

Washington, DC, USA, 78-88. 

[3] E. Arisholm and L. C. Briand, “Predicting fault-prone 

components in a java legacy system,” In G. H. Travassos, J. C. 

Maldonado, and C. Wohlin, editors, ISESE, pages 8–17. ACM, 

2006. 

[4] T. L. Graves, A. F. Karr, J. S. Marron, and H. P. Siy, “Predicting 

fault incidence using software change history,” IEEE 

Transactions on Software Engineering, 26(7):653–661, 2000. 

[5] N. Nagappan and T. Ball, “Use of relative code churn measures 

to predict system defect density,” In Proceedings of the 27th 

International Conference on Software Engineering, pages 284–

292, 2005. 

[6] S. Breu and T. Zimmermann, “Mining Aspects from Version 

History,” InProceedings of the 21st IEEE/ACM International 

Conference on Automated Software Engineering(ASE '06). 

IEEE Computer Society, Washington, DC, USA, 221-230. 

[7] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C. 

Murphy, N. Nagappan, and Alfred V. Aho, “Do Crosscutting 

Concerns Cause Defects?,”. IEEE Trans. Softw. Eng. 34, 4 

(July2008),497-515. 

[8] B. S. Mitchell and S. Mancoridis, “On the Automatic 

Modularization of Software Systems Using the Bunch 

Tool,” IEEE Trans. Softw. Eng. 32, 3 (March 2006), 193-208.  

[9] M. D'Ambros, M. Lanza, and R. Robbes, “On the Relationship 

Between Change Coupling and Software Defects,” 

In Proceedings of the 2009 16th Working Conference on 

Reverse Engineering (WCRE '09). IEEE Computer Society, 

Washington, DC, USA, 135-144. 

[10] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier, C.V. Lopes, 

C. Maeda, and A. Mendhekar, “Aspect-Oriented Programming,” 

ACM Computing Surveys, vol. 28, no. 4es, p. 154, 1996. 

 

1452


