
Using Design Patterns for Refactoring Real-World Models

Hamed Yaghoubi Shahir, Ehsan Kouroshfar, Raman Ramsin
Department of Computer Engineering,

Sharif University of Technology
Tehran, Iran

yaghoubi@ieee.org, kouroshfar@ce.sharif.edu, ramsin@sharif.edu

Abstract— Many software development methodologies are
based on modeling the real world. In some of these
methodologies, real-world models are gradually transformed
into software models, while in others, the real world is only
considered as a preliminary source of insight into the
physical business domain. Real-world modeling was pushed
to the sidelines due to anomalies in real-world modeling
approaches; however, with the advent of the Model-Driven
Architecture (MDA), real-world conceptual modeling is
likely to regain its importance.
We propose a method for using Design Patterns in the
context of model transformation, where real-world models
are refactored through application of these patterns.
Although the patterns are not applied in their original
contexts, we show through examples that they are equally
applicable to real-world models.

Keywords-Design Patterns; Real-World Modeling; Model
Transformation; Model Driven Architecture

I. INTRODUCTION
Real-world modeling has been defined as “a technique

to model the real world as it is; it identifies a class
corresponding to an entity in the real world that can be
observed” [9]. Many object-oriented methodologies begin
modeling activities from the real world, and many
methodologists agree that object-oriented concepts provide
the possibility to consider the real world as the physical
manifestation of the problem domain. In some object-
oriented methodologies, real-world modeling is the basic
modeling activity; examples include: Shlaer-Mellor,
Object Modeling Technique (OMT), Catalysis, and
Feature Driven Development (FDD) [14].

Real-world modeling has its own advantages and
disadvantages. Since real-world models are elicited from
the physical domain, they are tangible to both users and
developers. Real-world models can therefore provide a
more effective means of communication among
developers, domain experts and stakeholders; requirements
elicitation is thereby facilitated. The potential for effective
domain-driven development is therefore enhanced, since
real-world models show all the traits associated with
effective domain models [5].

Despite the above advantages, various anomalies have
been observed in real-world modeling, due to which it has
declined in importance in recent years. The main
disadvantages are as follows [9]:
• Actors in the real world become classes in the system;

this may produce redundant or god classes.
• Irrelevant classes are introduced.
• Irrelevant operations and associations are introduced.

The above problems violate encapsulation, and as a
result, cohesion and coupling are compromised.

We use a pattern-based model transformation approach
originally introduced in [15], and propose the use of design
patterns in this approach. The approach benefits from the
advantages of real-world modeling while avoiding its
anomalies and disadvantages.

The rest of the paper is structured as follows: Section 2
discusses the background and motivations for this
research. In Section 3, we describe our transformation
approach based on real-world versions of software design
patterns. Section 4 provides a case study of applying
selected design patterns to real-world models. The last
section presents the conclusions, as well as suggestions for
furthering this research.

II. BACKGROUND AND MOTIVATIONS: PATTERN-
BASED MODEL TRANSFORMATION

Before introducing the details of the method proposed,
a brief look at the research area would be in order. Many
approaches have been proposed for pattern-based model
transformation. Judson et al. have proposed a design-
pattern-based model transformation approach at the
metamodel level in [10]. They also provide some case
studies on model transformation using different types of
design patterns. France et al. have proposed a
metamodeling approach to pattern-based model refactoring
[7], and also a role-based metamodeling approach to
specifying design patterns [11]. Wang et al. have provided
a simple UML profile for design patterns so as to represent
design patterns in UML models, and have proposed and
implemented a model transformation approach based on
these models [17]. Dong et al. have proposed a model
transformation approach for design pattern evolutions [4],
and Kim et al. have presented a framework for pattern-
based model evolution approaches [12]. Ramsin has
proposed an approach for using Reengineering and
Refactoring patterns for transforming real-world models
into software models [15].

Although many approaches have been proposed for
using software patterns in model refactoring and model
transformation, most of these approaches apply the
patterns during later stages of development. Motivated by
the merits of real-world domain modeling, we extend the
approach introduced in [15] and propose a design-pattern-
based approach for refactoring real-world models. To this
aim, we provide real-world-modeling counterparts for a
number of GoF design patterns [8], thus using them in a
context which is different from the one they were
originally intended for. This approach is based on the
observation that design patterns possess a rationale and

2009 35th Euromicro Conference on Software Engineering and Advanced Applications

978-0-7695-3784-9/09 $25.00 © 2009 IEEE

DOI 10.1109/SEAA.2009.56

436

2009 35th Euromicro Conference on Software Engineering and Advanced Applications

978-0-7695-3784-9/09 $26.00 © 2009 IEEE

DOI 10.1109/SEAA.2009.56

436

Authorized licensed use limited to: George Mason University. Downloaded on January 29, 2010 at 16:01 from IEEE Xplore. Restrictions apply.

tangibility that appeals to the human mind, thus even
transcending their usage in software development. This is
mainly because software patterns are proven human-
devised solutions to common problems. It is therefore quite
natural to find many “software patterns” being used as
problem-solution pairs in various older contexts, long
before their usefulness in software development was
recognized; examples include business organizations and
social structures. Since real-world domain models and
organizational structures are manifest in conceptual system
models, applying design patterns can improve model
quality; this is analogous to the approach adopted in [13],
where similar patterns are used for improving business
organizations.

III. PATTERN-BASED APPROACH TO TRANSFORMING
REAL-WORLD MODELS

The transformation approach adopted herein was
originally introduced in [15]. In this section, we will
briefly introduce the approach in order to delineate the
context for using design patterns in model transformation.
In the transformation approach of [15], real-world domain
modeling is conducted iteratively and in a top-down
fashion. Human workers, systems and data-stores of the
problem domain are modeled as collaborating objects in a
Context Object Model. A notation similar to UML
collaboration diagrams is used for representing the model,
except that the links are adorned with data/control flows
rather than sequence numbers (Figure 8). Responsibilities
of the context objects are defined as features, much in the
fashion of the FDD methodology [14]. The resulting
functional models comprise the main bulk of the Context
Model. The system is then introduced as an object into the
Context Model, and responsibilities are assigned to the
system through redistribution and/or duplication of the
features. The next step focuses on the design of the system
as an extension to the problem domain: The system object
produced during the previous step is opened up, and the
system is designed as an extension to the organization,
using the same types of elements already present in the
problem domain; System Object Models are thereby built.

The System Model thus built is then converted to the
Software Model through using patterns to iteratively
redistribute features among objects. The objective is to
enhance encapsulation, increase cohesion and reduce
coupling, and also to introduce architecture. The
redistribution procedure is devised in such a way as to
resolve the problems typically afflicting analysis
approaches which are based on object-oriented real-world
modeling [9]. This marks the transition from the problem-
domain-based system to the software system, signifying
the transition to solution domain. The resulting Software
Object Models comprise the functional component of the
Software Model. The relationships between the models is
shown in Figure 1.

Figure 1. Relationships among the models produced

As prescribed in [15], three reengineering patterns [3]
and seven refactoring patterns [6] are of utmost use in the
starting iterations. These include: Move behavior close to
data, Eliminate navigation code, Split up god classes,
Move method, Move field, Extract class, Inline class, Hide
delegate, Remove middleman, and Encapsulate field.
Design patterns ([1], [8]) can be used in later iterations to
help introduce specific architectures and mechanisms. We
have used this transformation approach to apply five GoF
design patterns [8] in a model refactoring context.

A. Design Patterns Adapted for Use in Real-World Model
Transformation
New versions for five GoF design patterns [8] are

provided herein, redefined so that they can be applied to
real-world models.
• Mediator
- Context: Organizational units where complex

interactions occur among active elements (thus
increasing dependencies).

- Problem: How can we deal with elements of the
problem domain (objects/entities/clerks) which interact
and communicate in a complex fashion?

- Solution: A mediator (manager) element promotes
loose coupling by keeping interacting elements from
referring to one another directly. The elements interact
with the mediator instead of with each other.

- Application example: Communicating clerks in
different departments. Solution: Assign a mediator
acting as a coordinator (Figure 2).

Figure 2. Example of applying Mediator

• Façade
- Context: Organizational structures where highly

coupled units (departments/sections/groups) interact, or
where clients need to interact with internal units of the
organization.

- Problem: How can we decouple organizational units
(departments/sections) from each other, and how can
we decouple the client from internal units?

- Solution: An intermediary resides between the units
with the ultimate aim of reducing interdependencies.

- Application example: Departments interacting with
clients and with each other. Solution: Assign facades to
the departments and a mediator to manage their
communications (Figure 3).

Figure 3. Example of applying Facade and Mediator

437437

Authorized licensed use limited to: George Mason University. Downloaded on January 29, 2010 at 16:01 from IEEE Xplore. Restrictions apply.

• Visitor
- Context: Organizational units where there is a need for

special services that are implemented differently for
each and every element (clerk/object/entity) in the unit,
and where the service provider should have the
knowledge of how to provide a specific service to a
specific client.

- Problem: Services are required which cannot be
performed by the clients (organizational elements).

- Solution: A specialized service-provider/consultant is
put in charge of serving the clients by visiting them and
providing the specific service required.

- Application example: There is a need for a specific
service in many departments for different internal
clients, and the clients lack the expertise or the
resources required to perform the service themselves;
furthermore, the exact nature of the service depends on
the client. Solution: A service department is established
to visit the clients and provide the service (Figure 4).

Figure 4. Example of applying Visitor

• Proxy
- Context: Organizational units where there are service-

providers that receive many requests, and for some
reason (security, efficiency, etc.) cannot or should not
respond to the requests directly.

- Problem: How can some tasks be performed/
monitored/controlled transparently before being passed
on to the actual service-provider?

- Solution: Assign a proxy as a middleman which can
control interactions with actual service-providers, and
which can help them with their responsibilities.

- Application example: There is an external service-
provider who can provide better service than that which
is provided internally. Solution: Consider the external
service-provider as an external visitor, and assign an
internal unit to act as its proxy (Figure 5).

Figure 5. Example of applying Visitor and Proxy

• Observer
- Context: Where there is a need for monitoring changes

in order to ensure consistency, or to enforce certain
rules.

- Problem: How can we implement task monitoring or
rule enforcement in an organizational unit?

- Solution: Assign observers to ensure consistency
between information sources and information
consumers, and also to monitor information change and
make sure that certain rules are upheld.

- Application example: An organizational element/unit
needs to keep track of changes occurring in some other
unit. Solution: The interested element/unit becomes an
observer of the unit it needs to keep informed about
(observee); this means that the observer registers itself
with the observee so that any changes can be sent to it
upon occurrence (Figure 6).

Figure 6. Example of applying Observer

In cases where the observee resides outside the system
– e.g., when the system needs to update itself with
external information – an internal proxy is assigned to
the external source (Figure 7).

Figure 7. Example of applying Observer and Proxy

B. Suitable Types of Design Patterns for Transformation
Purposes
The real-world model transformation context involves

situations where there are interactions among real-world
components, and such interactions need the
implementation of appropriate behaviors on suitable
structures. Structural and Behavioral design patterns are
therefore better suited to the context, as Creational design
patterns can only address a very limited range of context-
relevant problems.

IV. CASE STUDY
A case study is provided in this section to demonstrate

the applicability of the proposed design-pattern-based
approach to real-world model transformation. The Estate
Agency System used in the case study has been adapted
from [15]. In the current system, potential buyers and
sellers visit the premises of the agency in person or contact
agency clerks by phone in order to obtain information
about the properties on the market, put new properties up
for sale, request viewings, or make an offer on a property.
Information about properties, customers and transactions is
stored in a database and maintained via an existing
computer-based record management system. The aim is to
develop an online estate-agency system that provides
property search facilities online, and allows registered

438438

Authorized licensed use limited to: George Mason University. Downloaded on January 29, 2010 at 16:01 from IEEE Xplore. Restrictions apply.

customers to put properties up for sale, request viewings,
make offers, negotiate deals, and seek professional advice.
The present computer-based record management system is
to be considered as an external data storage system,
interfaced in order to provide database management
facilities to the online system. A subset of the requirements
is listed below:
• The system should maintain information on sellers and

buyers, properties, and transactions,
• Customers need to search in the properties that are

registered in the system,
• Sellers and buyers need to pay via credit card, but the

system should use secure payment providers,
• The system should provide online property search

facilities to its users, using an external search engine
for providing these facilities,

• There may be a need to automatically update property
prices through consulting external sources.

This section contains the results of applying design

patterns to transform the system model of the estate agency
to its refactored counterpart. We will describe the
transformation steps which are applied to the before state
of the case study (Figure 8) in order to obtain the after
state (Figure 9):

Step 1 - Applying Mediator and Façade at the
boundary of the system: Since the interactions between
outside actors and inside elements are complex, we first
introduce a Mediator at the boundary of the system. In
order to decouple the system’s elements from outside
actors, a Facade is introduced (named after the system); it
is then merged with the mediator.

Step 2 - Applying Visitor and Proxy to accommodate
external service-providers: Secure Payment and Search
facilities are outside the scope of the system. This means
that external service-providers are to be used. We have
therefore inserted an external Visitor to provide each of the
required services, with corresponding Proxies placed
inside the system.

Step 3 - Applying Observer and Proxy to provide
automatic price updates: Since the system needs to

automatically update the price of the properties through
consulting external sources, an Observer is inserted to
provide the required information. Since the Price Observed
resides outside the system, a corresponding internal Proxy
is assigned to it.

Step 4 - Applying Proxy to manage record repositories:
A Proxy acting as a repository manager is assigned to each
of the three record repositories.

While the aim of applying these patterns is to introduce

useful architectures, reduce coupling and promote
cohesion, it is important to note that we have applied
Design patterns in the Requirements Engineering and
Analysis phases. By applying the design-pattern-based
transformation approach, the initial Real-World Model is
refactored to better address the requirements. The
following advantages can be observed in the resulting
model:
• The produced model can be easily understood by the

stakeholders, since it is directly transformed from the
real world, and is composed of the same concepts.

• We can use a specific proposed design pattern for
applying common Requirements Engineering
decisions in different projects. For example, as stated
in the case study, the use of the Visitor pattern is
recommended where an external service is required.
By formatting such decisions as patterns, they can be
reused in similar situations.

• The proposed approach can inspire new or enhanced
business processes within the organization, thus
promoting Business Process Reengineering (BPR).
The use of Façade and Proxy patterns in our case
study is a typical example.

• Building solution-domain and implementation-domain
classes can be facilitated by using the proposed
patterns during initial stages of development. For
example, applying real-world versions of Observer
and Proxy during analysis may eliminate the need for
such decisions in later phases.

Clerk

Property
Seller

Property
Buyer

Property Records

Buyer Services Mgmt
 Processing Viewing Requests
 Processing Offers
Seller Services Mgmt
 Processing Sale Requests
 Processing Offer Responses
Agent Services Mgmt
 Processing Inspection Requests

Agent

R
ec

or
d

M
an

ag
em

en
t S

ys
te

m

Record Management
Clerk

Property Records
Agent Records
Customer Records
Transaction Records

Property Records Mgmt
Agent Records Mgmt
Customer Records Mgmt

Buyer Records

Seller Records

Viewing
Request

Data

Offer

Inspection
Request

Report

Sale
Request

Offer
Response

Data

Data

Data

Sale
Request

Offer
Response

Viewing
Request

Offer

Inspection
Request

Data

Request

Estate Agency System

Get/Save Request

Figure 8. The real-world model before the application of Design Patterns [15]

439439

Authorized licensed use limited to: George Mason University. Downloaded on January 29, 2010 at 16:01 from IEEE Xplore. Restrictions apply.

Estate Agency System

Clerk

Property
Seller

Property
Buyer

Property Records
Proxy

Buyer Services Mgmt
 Processing Viewing Requests
 Processing Offers
Seller Services Mgmt
 Processing Sale Requests
 Processing Offer Responses
Agent Services Mgmt
 Processing Inspection Requests

Agent

Record Management System

Record Management
Clerk

Property Records
Agent Records
Customer Records
Transaction Records

Property Records Mgmt
Agent Records Mgmt
Customer Records Mgmt

Viewing
Request

Data

Offer

Inspection
Request

Report

Offer
Response

Data

Data

Get/Save
Request

Sale
Request

Offer
Response

Viewing
Request

Offer

Inspection
Request

Request

Es
ta

te
 A

ge
nc

y
Sy

st
em

Visitor Pattern
Proxy Pattern

Facade Pattern
Mediator Pattern

Proxy Pattern

Data

Sale
Request

Property Records Repository

Seller Records Proxy

Seller Records Repository
Data

Buyer Records Proxy

Data
Buyer Records Repository

Data

Observee

Price Observee
Proxy

Observer Pattern
Proxy Pattern

Data

Visitor Pattern

Search Engine
Provider

Service Provider

Search
Engine

Provider
Proxy

Secure
Payment
Provider

Proxy

Secure Payment
Provider

Price Observee
Observer Pattern

Figure 9. The result of applying design patterns to the real-world model

V. CONCLUSIONS AND FUTURE WORK
In software engineering, real-world modeling has

typically been used during systems analysis as a prelude to
defining the internal structure of software systems. We
have proposed a design-pattern-based approach for
transforming/refactoring real-world models. The pattern-
based real-world model transformation approach proposed
in [15] has been used as a framework for applying design
patterns.

We have proposed new definitions for five prominent
design patterns, thus explaining their application in the
new context. The approach has been demonstrated through
a case study, where the five patterns have been applied to a
real-world model to ultimately produce an improved model

of the software system. The resulting models are richer as
to architectural features, are more intelligible to domain
experts and end users, and lend themselves better to the
application of patterns in later phases of development.

The proposed design-pattern-based refactoring
approach is applicable as a pattern-based model
transformation approach in a Model-Driven Architecture
(MDA) context. This research can be furthered through
defining the design patterns in the Epsilon Wizard
Language (EWL), and providing complete tool support for
the approach. The applicability of the approach can then be
empirically assessed through applying it in the context of
industrial-scale Model-Driven Development (MDD)
projects. Another strand of research can focus on exploring
the applicability of other types of patterns in a real-world

440440

Authorized licensed use limited to: George Mason University. Downloaded on January 29, 2010 at 16:01 from IEEE Xplore. Restrictions apply.

model transformation context; Architectural [1] and
Organizational [13] patterns seem to be especially
promising in this regard.

ACKNOWLEDGEMENT
We wish to thank the ITRC Research Center for

sponsoring this research.

REFERENCES
[1] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,

and Stal, M., Pattern Oriented Software Architecture: A
System of Patterns, Wiley, New York, 1996.

[2] Czarnecki K., and Helsen, S., “Classification of Model
Transformation Approaches”. In Proceedings of the
OOPSLA '03 Workshop on Generative Techniques in the
Context of Model-Driven Architecture, 2003.

[3] Demeyer, S., Ducasse, S., and Nierstrasz, O., Object-
Oriented Reengineering Patterns, Morgan-Kauffman, San
Francisco, 2003.

[4] Dong, J., Yang, S., and Zhang, K., “A Model
Transformation Approach for Design Pattern Evolutions”,
In Proceedings of the 13th Annual IEEE International
Symposium and Workshop on Engineering of Computer
Based Systems (ECBS’06), pp. 80-92, 2006.

[5] Evans, E., Domain-Driven Design: Tacking Complexity in
the Heart of Software. Addison-Wesley Longman
Publishing Co., 2003.

[6] Fowler, M., Refactoring: Improving the Design of Existing
Code, Addison Wesley, 1999.

[7] France, R., Ghosh, S., Song, E., and Kim, D., “A
Metamodeling Approach to Pattern-Based Model
Refactoring”, IEEE Software, Vol.20, No.5, pp. 52-58,
2003.

[8] Gamma, E., Helm, R., Johnson, R., And Vlissides, J.,
Design Patterns: Elements of Reusable Object-oriented
Software, Addison Wesley, 1995.

[9] Isoda, S., “Object-Oriented Real-World Modeling
Revisited”, Journal of Systems and Software, 59, 2
(November), pp. 153-162, 2001.

[10] Judson, Sh. R., France, R. B., and Carver, D. L.,
“Specifying Model Transformations at the Metamodel
Level”, In Proceedings of the Workshop in Software Model
Engineering (WiSME'03), San Francisco, CA, USA,
October 2003.

[11] Kim, D., France, R., Ghosh, S., and Song, E., “A Role-
Based Metamodeling Approach to Specifying Design
Patterns”, In Proceedings of the 27th Annual International
Conference on Computer Software and Applications
(COMPSAC’03), 2003.

[12] Kim, S. and Carrington, D. “A Pattern based Model
Evolution Approach”, In Proceedings of the XIII Asia
Pacific Software Engineering Conference (APSEC’06),
2006.

[13] O’Shaughnessy, J., Patterns of Business Organization,
George Allen & Unwin Ltd, 1976.

[14] Ramsin, R., and Paige, R. F., “Process-Centered Review of
Object-Oriented Software Development Methodologies”,
ACM Computing Surveys, February 2008, pp. 3:1-89.

[15] Ramsin, R., The Engineering of an Object-Oriented
Software Development Methodology, Ph.D. Thesis,
University of York, April 2006. Available at:
http://www.cs.york.ac.uk/ftpdir/reports/YCST-2006-12.pdf.

[16] Sendall, Sh., and Kozaczynski, W., “Model
Transformation: The Heart and Soul of Model-Driven
Software Development”, IEEE Software, Vol. 20, No.5, pp.
42-45, 2003.

[17] Wang, X., Wu, Q., Wang, H., and Shi, D., “Research and
Implementation of Design Pattern-Oriented Model
Transformation”, In Proceedings of the International Multi-
Conference on Computing in the Global Information
Technology (ICCGI’07), 2007.

441441

Authorized licensed use limited to: George Mason University. Downloaded on January 29, 2010 at 16:01 from IEEE Xplore. Restrictions apply.

