
Proactive Self-Adaptation for Improving
the Reliability of Mission-Critical, Embedded,

and Mobile Software
Deshan Cooray, Ehsan Kouroshfar, Sam Malek, Member, IEEE, and

Roshanak Roshandel, Member, IEEE

Abstract—Embedded and mobile software systems are marked with a high degree of unpredictability and dynamism in the execution

context. At the same time, such systems are often mission-critical, meaning that they need to satisfy strict reliability requirements. Most

current software reliability analysis approaches are not suitable for these types of software systems, as they do not take the changes in

the execution context of the system into account. We propose an approach geared to such systems which continuously furnishes

refined reliability predictions at runtime by incorporating various sources of information, including the execution context of the system.

The reliability predictions are leveraged to proactively place the software in the (near-)optimal configuration with respect to changing

conditions. Our approach considers two representative architectural reconfiguration decisions that impact the system’s reliability:

reallocation of components to processes and changing the number of component replicas. We have realized the approach as part of a

framework intended for mission-critical settings, called REsilient SItuated SofTware system (RESIST), and evaluated it using a mobile

emergency response system.

Index Terms—Context awareness, software architecture, self-adaptive systems, reliability, mobility
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1 INTRODUCTION

SOFTWARE systems are fast permeating a variety of
domains, including emergency response, industrial

automation, navigation, health care, power grid, and civil
infrastructure. These systems are predominantly mobile,
embedded, and pervasive. They are characterized by their
highly dynamic configuration, unknown operational pro-
file, and fluctuating conditions. At the same time, given
the mission-critical nature of the domains in which they are
deployed (e.g., emergency response), majority of these
systems are expected to satisfy stringent reliability
requirements.

Engineers of a mobile and embedded software system
typically spend significant effort to determine a good
configuration for the system that ensures its functional
and nonfunctional requirements. For instance, they may
perform a tradeoff analysis between the system’s efficiency
and reliability when they decide the allocation of software
components to operating system (OS) processes. Clearly,
the overall reliability of such systems depends on problems
both internal (e.g., software bugs) and external (e.g.,

network disconnection, hardware failure) to the software.
The key underlying insight in our research is that some
internal software problems may manifest themselves only
under certain dynamic characteristics external to the soft-
ware (e.g., physical location), which is traditionally referred
to as context [3].

Due to variability in the execution context, the optimal

configuration for a mobile and embedded system cannot be

determined prior to its deployment, and no particular

configuration can be optimal for the system’s entire

operational lifetime. Thus, runtime reconfiguration of the

system may be necessary to achieve the system’s maximum

potential. Given the mission-critical nature of many mobile

and embedded systems, we define a good configuration as

one that satisfies the reliability requirement, while taking

into consideration other quality attributes of concern

(e.g., efficiency).
In this paper, we describe and evaluate REsilient SItuated

SofTware system (RESIST), a framework intended to improve

the reliability of embedded and mobile software systems.

RESIST continuously analyses and dynamically adapts the

software to deal with changes in the execution context that

could degrade its reliability.
RESIST furnishes a compositional approach to reliability

estimation starting with analysis at the component level,

which in turn makes it possible to assess the impact of

adaptation choices on the system’s reliability. The analysis

is performed continuously at runtime by incorporating

various sources of information. In addition to the architec-

tural models and the monitoring data, RESIST incorporates

contextual information to predict the reliability of the

system in its near future operation.
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RESIST uses the reliability predictions to 1) proactively
determine when the system should be adapted, and 2) find
the (near-)optimal configuration for the near future opera-
tion of the system. Our evaluation shows that our reliability
predictions are accurate with respect to the observed system
reliability. We, thus, use the predicted reliability as an
indicator for making adaptation decisions. An important
contribution of our work is proactive adaptation based on
our reliability analysis that reconfigures the system at
runtime prior to actual reliability degradation. This trait
clearly sets our work apart from the majority of existing
self-adaptive frameworks that are reactive in their decision
making [4], [21].

We have developed a prototype implementation of
RESIST on top of a tool-suite, which consists of an existing
context-aware architectural middleware integrated with a
visual architectural modeling and analysis environment.
Finally, RESIST is evaluated using a robotics emergency
response system.

RESIST was originally introduced in our prior work [8].
Beyond a comprehensive and significantly more detailed
description of RESIST, this paper reports on several new
contributions and experiments. First, we formally specify
the notion of context and describe its impact on both
component and system reliability prediction in RESIST.
Second, we present RESISTER, a novel heuristic-based
algorithm for finding a near-optimal configuration that
satisfies the system’s reliability requirement, while taking
into consideration its efficiency. Third, we report on several
new experiments and evaluation results, which demon-
strate the accuracy and performance of RESIST.

The remainder of this paper is organized as follows:
Section 2 presents a motivating software system used to
describe and evaluate the research. Section 3 describes the
impact of context on the system’s architecture and subse-
quently its reliability predictions. Section 4 introduces
RESIST by providing a high-level overview of its compo-
nents. Section 5 defines our failure model and the
assumptions underlying this research. Section 6 presents
the component-level and configuration-level reliability
estimation techniques. Section 7 describes the reconfigura-
tion tactics for improving the system’s reliability. Section 8
defines the configuration selection problem and an algo-
rithm targeted at that. Sections 9 and 10 present a prototype
implementation of RESIST and its evaluation, respectively.
Section 11 provides an explicit discussion of threats to

validity. An overview of the related work and avenues of
future research conclude the paper.

2 MOTIVATING EXAMPLE

Emergency response is a domain that entails a high degree
of mission criticality. Software systems designed for this
domain, thus, have stringent reliability requirements. As a
motivating example, consider a mobile distributed emer-
gency response system intended to aid the emergency
personnel in fire crises, a prototype of which was developed
in a previous collaboration with a government agency [12],
[25]. This system consists of several entities, including a
central dispatcher that serves as the “Headquarters” for
coordinating the crew activities, smart fire engines that are
designed to alert the dispatcher of the current location of
the vehicle and provide its occupant with information
concerning the crisis scene, firefighters equipped with
smartphones capable of controlling the robots and sensors,
and mobile robots that execute the commands received from
the firefighters.

While the entire system is highly dynamic and could
benefit from our approach, for the clarity of exposition we
focus on the robotic subsystem. A robot consists of several
electronic sensors and mechanical actuators that allow it to
autonomously navigate, detect smoke, stream video, and
extinguish fire. It is constrained by limited battery life,
memory, processing speed, and connectivity. Architectural
design choices affecting the system at runtime aim at
accommodating these constraints.

An example architectural strategy for improving the
system’s efficiency is to use a thread-based architecture.
Software components are deployed as separate threads
within a single OS process, thus allowing for the resources
(e.g., stack memory) to be shared among components, while
avoiding the overhead (e.g., context switching) associated
with managing many separate processes. However, since a
process may exit prematurely due to an errant thread, a
disadvantage of the thread-based model is a potential
decrease in system reliability.

Figs. 1a and 1b show two alternative allocations of the
robot’s software components to OS processes. Although not
depicted in the figure, the connectors mediating the
component interaction in these two architectures are
different. In Fig. 1a, local interactions occur via shared data
structures, while in Fig. 1b interprocess communication
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Fig. 1. Component-to-process allocation alternatives: (a) All components allocated to the same process, (b) Controller and Navigator allocated to
separate processes, and (c) Controller allocated to separate process, and the Navigator is replicated and placed in separate processes.



occurs via remote method invocations. Therefore, the two
architectures differ in terms of both allocation and
component-connector viewpoints [7].

Based on the above discussion, from a system’s
perspective it is reasonable to expect the architecture
depicted in Fig. 1a to be more efficient, while the one
depicted in Fig. 1b to be more reliable. Determining the best
configuration depends on 1) the device’s fluctuating
resources (e.g., memory and CPU utilization, available
battery), and 2) the reliability of the system’s constituent
components, which as detailed later may vary due to
changes in context.

The above scenario demonstrates the impact of archi-
tectural decisions on system’s quality attributes. Such
decisions, while critical to a system’s dependability, cannot
be made effectively at design-time. It is only reasonable to
assume that some of these decisions must be made at
runtime, requiring specialized methodologies that continu-
ously evaluate the impact of these decisions on system’s
dependability. We use this example system in the remain-
der of the paper to describe and evaluate our approach.

3 IMPACT OF CONTEXT ON ARCHITECTURE

Any type of information that characterizes the runtime
conditions of the system and alters the system’s behavior
can be considered as its context [1]. A system’s context
may consist of a representation of several different aspects
of its changing execution environment that could poten-
tially impact the behavior and properties of a system.
Among them three main categories of context can be
identified [1], [46]:

. Computing Environment, such as the available re-
sources, including CPU, network bandwidth, and
battery power.

. User Environment, such as the user’s location, social
situation, and ongoing activities.

. Physical Environment, such as proximity to near-by
objects, the amount of light, and temperature.

A context-aware system uses knowledge about its
context to provide relevant information and/or services to
its user [1]. While in some systems contextual information is
directly used to provide services to the user, in others
contextual information is used to optimize the manner in
which services are provided to the user. For example, a
GPS-enabled mobile phone, which displays a map based on
the user’s location, considers the location as an input to the
service that is provided. In contrast, a mobile robot engaged
in firefighting may need to reconfigure itself (e.g., its
architecture) depending on its contextual characteristics so
that its dependability is optimal with respect to other
quality attributes such as resource usage. As described in
the next section, RESIST is aimed at the second class of
systems. Specifically, RESIST uses the system’s context to
perform architectural reconfiguration of the system in
response to anticipated changes in its reliability.

Changes to the operational context of a system impact
its runtime behavior, which in turn could potentially
impact aspects of system’s quality, such as reliability. In
architecture-based adaptation [21], [34] the system’s software

architecture forms the basis for adaptation reasoning.
Consequently, we argue that it is important to be able to
model the effect of changes in the context on a system’s
architecture as a first class entity. In our work, we adopt a
broad interpretation of the system’s architecture, which
simply captures the knowledge about the system. This
knowledge includes many different aspects of the system,
including the principal design decisions about the system,
its structure and behavioral models, as well as the
execution properties of the system captured in the form
of an operational profile model.

To exemplify the effect of context on a system’s
architecture, below we present how the mobile nature of a
robotic system introduces contextual changes that can
impact its operational profile, and in turn its reliability.
Fig. 2a shows the architectural models of the mobile robot. It
receives a command from an external system (i.e., a
smartphone) and returns the result of executing the
command. Upon receiving a command, it uses its Sensor
component to gather data about its environment, such as
nearby obstacles and proximity to heat, and determines a
plan and subsequently executes it using its Navigator and
Actuator components, respectively. Fig. 2b shows the
robot’s Controller component’s behavioral model in the
form of a UML state chart. It includes behavioral states idle,
estimating, planning, and moving, during which the Con-
troller invokes interactions with the other components in the
system (i.e., Sensors, Actuator, Navigator, etc.). The failed
state denotes a common failure state of the component.
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Fig. 2. The robot’s architecture: (a) the robot’s structural model, and
(b) the behavioral model of the robot’s Controller.



Transitions O1 to O6 denote behavioral transitions resulting
from input events such as interface calls on the component.
Transitions O7 to O9 denote a failure that may arise under
some circumstances. Such failures are caused by faults in the
software that could lead to a failure. Transition O10 denotes
eventual recovery of the component as a result of automatic
or manual reinitialization of the component.

This behavioral model depicts both the robot’s internal
behavior as well as interactions with the external environ-
ment. For example, O1 corresponds to an input task from the
user, and O5 corresponds to bump events triggered from the
physical environment as a result of colliding with, or being
within close proximity of an obstacle. Changes in the
contextual environment may impact the frequency of these
input events, which in turn alters the frequency of these two
state transitions O1 and O5. The resulting changes in the
execution frequency of the states in turn change the
frequency of failures as well. For example, if the estimating
state happens to be a state from which failures happen
frequently, situations in which robot navigates through a
dense terrain can increase bump events, which consequently
increases the frequency of transition to the estimating state,
and thus the probability of component failure. In this
example, the contextual changes resulting from the robot’s
mobility impact the Controller’s reliability.

The impact of the system’s context is not limited to
internal changes in the component behavior, as they may
also change the manner in which components interact, and
thus influence the system’s reliability. For example, the
Controller interacts with the Sensors to perform estima-
tions prior to planning its navigation route. However, if the
number of bump events increases, the Controller interacts
with the Sensors with a higher frequency to perform re-
estimations. Thus, the impact of the Sensor components’
reliability on system’s reliability depends on how fre-
quently the Controller needs to interact with the Sensors,
which is in turn determined by location-dependent
contextual information such as the complexity of the
terrain (i.e., the probability of bump events).

We model the changes in context and its effect on the
system’s architecture as follows:

. a set of contextual parameters C ¼ fC1; . . . ; Clg
representing the information about a system’s
context that may impact the system,

. a set of architectural parameters A ¼ fA1; . . . ; Amg
representing the architectural properties that are
amenable to change as a result of variations in the
system’s context,

. a set of interactions I ¼ fI1; . . . ; Ing between con-
textual and architectural parameters, where in each
interaction, one or more contextual parameters
instigates a change in an architectural parameter,

. a set of functions representing the effect of interac-
tions.

These functions can be defined as follows:

Given Ii 2 I; �i : P Cð Þ ! A; ð1Þ

where PðCÞ denotes the power set of contextual para-
meters. In the case of the robotic system above, the

probability of the robot encountering an obstacle on its
path (a contextual parameter that changes as a result of its
mobility) has an effect on two architectural parameters: the
transition probability from moving to estimating state within
the Controller, and the probability that the Controller
interacts with the Sensor components. In this example, we
have described two points of interaction between the
context and system’s architecture, but in any sizable system
one could expect multiple points of interaction, which
further highlights the importance of properly modeling and
incorporating context in engineering mobile systems.

In the next section, we present an overview of the RESIST
framework, and in the subsequent sections, we show how
the context information is used in predicting a system’s
reliability and optimizing its architecture.

4 APPROACH OVERVIEW

Fig. 3 provides an overview of our approach in light of
Kramer and Magee’s three-layer reference model of self-
management [21]. RESIST corresponds to the top layer (i.e.,
Goal Management layer), which is the focus of this paper.
However, RESIST also relies on the presence of an under-
lying implementation platform and runtime support (i.e.,
Change Management and Component Control layers) for
runtime monitoring and adaptation of the software system.
We first provide an overview of the RESIST’s components.
We then describe the relationship between RESIST and the
required capabilities in the bottom two layers.

4.1 RESIST (Goal Management Layer)

RESIST’s goal is to maintain a configuration for a software
system that satisfies a user specified reliability require-
ment (e.g., system reliability should be greater than
99 percent), while minimizing its resource usage. To that
end, and as shown in Fig. 3, RESIST assumes two inputs
from the user: 1) a reliability constraint representing the
system-level reliability requirement, and 2) one or more
utility functions indicating the acceptable tradeoffs with
respect to resource usage.

RESIST is comprised of three conceptual components:
Component Reliability Analyzer, Configuration Reliability Ana-
lyzer, and Configuration Selector.

Architecture-based reliability models along with con-
textual and monitoring information obtained from the
system are used by the Component Reliability Analyzer to
predict the reliability of system’s components in their near
future operation. These fine-grained reliability estimates are
used by the Configuration Reliability Analyzer to determine
the reliability of the current architectural configuration. If
the current configuration is deemed to be unsatisfactory
(e.g., does not satisfy the required reliability), the Config-
uration Selector is then invoked to find a suitable configura-
tion for the near future operation of the system.

To find an architecture that satisfies the reliability
requirements, Configuration Selector generates one or more
Alternative Architecture, and uses the Configuration Reliability
Analyzer to predict the reliability of each. In tandem with
reliability predictions, it may use estimates of resource
usage in the selection process. Note, however, the process
for obtaining and estimating resource usage is beyond the
scope of this paper.
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If a new configuration is found to be superior to the
current architecture, the revised configuration is passed to
the Change Management layer to adapt the system.

4.2 Change Management Layer

The Change Management layer is responsible for ensuring
orderly execution of changes in the system. To that end,
this layer is responsible for maintaining an updated
architectural representation of the running software
system. As shown in the Change Management layer of
Fig. 3, architectural models form the centerpiece of our
approach, and used at runtime to assess a variety of
configuration choices and to serve as predictors for the
future reliability of the system. Unlike the traditional
architectural models, they are annotated with contextual
properties necessary for reliability analysis of mobile and
embedded systems.

In addition, the Adaptation Coordinator of Change Manage-
ment layer is responsible for determining the order in which
changes should be effected in the software to avoid failures.
For instance, the Change Management layer may devise a
sequence of steps to ensure a software component is in the
quiescence state [22] before it is replaced.

Finally, the Monitoring Gauge of the Change Management
layer would process the raw monitored data collected from
the Runtime Probes (discussed in the next section). For
example, one such processing is to calculate the running
average of collected data to make the approach resilient to
anomalous spikes.

We have previously developed an architectural model-
ing and analysis environment, called XTEAM [10], that has
been integrated with Prism-MW [24] to ensure the models
and the running software are synchronized. We have used
this setup in our implementation and experiments. Other
researchers (e.g., Oreizy et al. [34] and Garlan et al. [13])
have also developed capabilities similar to the two bottom
layers of Fig. 3. As a result, RESIST is not necessarily
specific to our implementations of Change Management and

Component Control, and in principle could be ported to work
on top of these other environments.

4.3 Component Control Layer

RESIST is applicable to software systems where the internal
and contextual properties of the software can be monitored
and its architecture can be dynamically adapted. The
Component Control layer, at the very bottom of Fig. 3,
depicts these capabilities. We have previously developed a
middleware platform, called Prism-MW [24], that provides
such capabilities and used extensively in the implementa-
tion and evaluation of this research.

The middleware provides the ability to make changes to
the software in terms of architectural operations (e.g.,
adding/removing components and connectors, changing
the architecture’s topology). The middleware uses various
Runtime Probes to monitor the software system for informa-
tion that is used to refine the reliability predictions. This
information is obtained from multiple sources, both
internal to the software (e.g., frequency of failures and
exceptions, changes in workload and service requests) as
well as external/contextual to the software (e.g., available
network bandwidth and battery charge, changes in
physical location).

Since the monitored data represent the most recent
operational, structural, and contextual profile of the
system’s execution, it can be used to assess the system
reliability more accurately than what would be possible at
design-time. Note that unlike previous approaches [23],
[41], [51], we do not rely solely on monitoring the system’s
failure. Instead, we incorporate architectural knowledge,
monitoring data, and contextual changes at runtime in a
complementary fashion to produce more accurate results
that are indicative of the system’s near future reliability.

In summary, the overall process depicted in Fig. 3 is
organized as a feedback control loop that continuously
monitors, analyzes, and adapts the system at runtime. In
terms of the feedback control loop concepts, RESIST
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Fig. 3. Overview of RESIST framework, which is organized as a feedback control loop that continuously monitors, analyzes, and adapts the system
at runtime.



corresponds to the controller of the system, user specified
reliability requirement corresponds to the set point, and
RESIST assumes the availability of sensors that can measure
the input variables (e.g., variations in the context) and the
existence of actuators that can change the manipulated
variables (i.e., the configuration of the architecture).

5 RELIABILITY AND FAILURE DEFINITIONS

RESIST estimates reliability as the probability that a system
performs its required functions under stated conditions for
a specified period of time [36]. In embedded and mobile
software systems, given the ongoing changes in a system’s
operational conditions, the reliability may change over time.
We consider a failure to be an inconsistent behavior of a
system with respect to its specification. Faults are caused by
defects (e.g., software or hardware error), and are abnormal
conditions that may cause a reduction in, or loss of, the
capability of a functional unit to perform a required
function. Thus, faults are causes of failures [36].

Consistent with other architecture-based reliability ap-
proaches [14], [15], [16], [17], we assume that the occurrence
of failure is stochastic and that component failure model is
fail-stop. Failures are thus reliably detectable by middleware
facilities. Furthermore, failed components are assumed to
eventually (automatically or manually) recover and resume
normal behavior.

We consider two types of failure in RESIST: component
and process failures. Component failure is caused by a fault
within the component’s implementation. Its effects are
contained within the boundary of the component except
when it causes a process to fail. Process failure occurs when
one of the components running as a thread within a process
exits prematurely, causing the OS process, including all of
the components deployed on it, to fail.

RESIST’s reliability model is targeted at distinguishing
among alternative architectural configurations, and thus
does not consider failures (e.g., wrong results, mismatched
data type) that cannot be resolved through architectural
means. We assume either such defects are detected during the
construction of the system or the failure is contained within
the component in which the fault occurred (e.g., through the
use of appropriate pre- and postconditions). While RESIST
could be extended to accommodate these additional types of
failures, we do not believe such failures could be treated
effectively through architectural reconfiguration.

6 RELIABILITY ANALYSIS AND PREDICTION

Structural and behavioral knowledge embedded in soft-
ware architectural models provide an appropriate level of
abstraction from which reasoning about system’s quality
attributes is feasible [35]. Architectural models are typically
compositional: structure and behavior of complex systems
are described in terms of their constituent components and
their interactions. Despite this, however, as identified by
recent surveys [14], [16], [17], majority of existing archi-
tecture-based reliability modeling approaches largely focus
on analysis at the system level alone. Moreover, those
approaches that incorporate individual component reli-
abilities into analysis assume that component reliabilities

are known a priori. Consequently, existing approaches are
not suitable for mobile and embedded systems, where the
reliabilities of components and system fluctuate with the
context in which they operate. A purely coarse-grained
system-wide analysis offers little help in optimizing the
system’s architecture in this setting. As described in
Section 3, reliability analysis must be performed by
considering behavioral changes within components, as
well as changes in the interactions among components
and their operational context.

Therefore, as shown in Fig. 3, RESIST performs the
reliability analysis at two levels: at component level and
subsequently at configuration level. At both levels, archi-
tecture-based reliability techniques are used in conjunction
with monitoring information obtained from the system and
its context. Architecture-aware reliability analysis enables
architecture-based adaptation techniques to be utilized to
improve or maintain the system’s reliability. Moreover,
since the context impacts both the internal behavior of
components and the interactions among them, RESIST
incorporates context information into the reliability analysis
at both component and configuration level.

To perform reliability analysis and prediction, RESIST
considers the software operational profile (SOP) [36] of both
components and the system. This enables RESIST to
quantify components’ and system’s behavioral properties
that affect the overall reliability. SOP represents the set of
runtime events occurring during system execution along
with the probabilities with which they occur in a given
environment. As described in Section 3, the probabilities in
the SOP may be affected by changes in the system’s context.
Therefore in this case, we consider SOP’s probabilistic
values as relevant architectural parameters.

For the purpose of modeling the SOP of components and
the system, we use Discrete Time Markov Chains (DTMC)
[18]. A DTMC is defined as a stochastic process with a set of
states S ¼ fS1; S2; . . . ; Sng and a transition matrix A ¼ faijg,
where aij is the probability of transitioning from state Si to
state Sj Ultimately, our goal is to use the DTMCs
representing software components’ SOP and overall sys-
tem’s SOP, incorporate context information and predictions
about anticipated operational profile, and perform relia-
bility predictions first for individual components and
subsequently for the system as a whole. However, obtaining
the DTMC directly from observed runtime events poses
challenges, particularly when working with complex mod-
els. These challenges are rooted in the fact that a sequence of
observed events may not always have a one-to-one
mapping to a sequence of states in the Markov model.

We thus rely on Hidden Markov Model (HMM)
methodology where such an assumption is loosened and
appropriate algorithms have been developed to obtain the
DTMC [39]. Specifically, we use the Baum-Welch algorithm
[39] to learn from runtime data and obtain matrix A values.

Formally, an HMM is defined by a set of states
S ¼ fS1; S2; . . . ; Sng, a transition matrix A ¼ faijg represent-
ing the probabilities of transitions between states, a set of
observations O ¼ O1; O2; . . . ; Omf g, and an observation
probability matrix E ¼ feikg that represents the probability
of observing event Ok in state Si. The sets S and O of the

COORAY ET AL.: PROACTIVE SELF-ADAPTATION FOR IMPROVING THE RELIABILITY OF MISSION-CRITICAL, EMBEDDED, AND MOBILE... 1719



HMM come from architectural models of the system, while
runtime data obtained through monitoring become training
data for the HMM. Note that in this case, a sequence of
observations obtained at runtime does not deterministically
map to a sequence of states.

The Baum-Welch algorithm [39] is then used to train the
model based on the runtime data, solve the HMM, and obtain
the matrixA. The training data used as input to this algorithm
consist of sequences of observations. Given an initial HMM
constructed as described above, the Baum-Welch algorithm
converges on the transition matrix A. We use this technique
to derive the SOP for both components and the system. In the
following sections, we elaborate on the techniques used to
estimate the SOP and how they are used in predicting the
reliability of components and configurations.

6.1 Component Reliability Analysis

In the case of component reliability, the states (i.e., set S)
and observations (i.e., set O) are identified using the
component’s behavioral model, such as the state chart
diagram depicted in Fig. 2b. For example, for the robot’s
Controller, we can obtain the following:

S ¼ fS1; S2; S3; S4; Sfg; and O ¼ fO1; . . . ; O10g;

where states S1; . . . ; S4 represent the behavioral states: idle,
estimating, planning, and moving, state Sf represents the
common failed state, and observations O1; . . . ; O10 represent
the transitions between states as shown in Fig. 2b. At
runtime, the component is monitored to obtain execution
traces in the form of observation sequences. These execution
traces are then used to train the HMM, using the Baum-
Welch algorithm. The Markov model obtained from this
algorithm represents the SOP of the component based on
the training data, which represents the component’s
behavior based on its current context.

To better illustrate the concepts, consider the following
transition probability matrix obtained by executing the
Baum-Welch algorithm on observation data obtained from
the robot’s Controller:

AController ¼

0 1 0 0 0
0 0 0:932 0 0:068

0:049 0 0 0:947 0:004
0 0 0:99 0 0:01
1 0 0 0 0

2
66664

3
77775:

This represents the Controller’s operational profile based
on its present context. To compute its reliability, we obtain
the steady-state vector of the above transition matrix, from
which we determine the probability of not being in failure
state Sf . Intuitively, a steady state indicates the probability of
a stochastic phenomenon modeled using a Markov model
being in that state [18]. The steady-state vector for the
matrix AController is

0:0319 0:0319 0:4763 0:4511 0:0085½ �:

Here, the last column represents the probability of being
in the failed state. The Controller’s reliability based on its
present context can then be computed as follows:

RController ¼ 1� 0:0085 ¼ 0:9915:

6.2 Context-Aware Component Reliability
Prediction

An important contribution of our research is the incorpora-
tion of contextual knowledge in arriving at reliability
predictions, which enables proactive reconfiguration of the
software. To arrive at a reliability prediction for a compo-
nent, RESIST utilizes information from the emerging context
to determine the behavioral changes that can occur in the
near future operation of the component. This is performed
by considering the changes that occur in the component’s
SOP as a result of the anticipated contextual changes. To
determine the future SOP of the component, the transition
probabilities in the SOP are updated by utilizing functions of
the form of (1), which captures the impact of context on
architectural parameters. In this case, the architectural
parameters are the transition probabilities between states
in the component’s SOP.

Thus, let us consider a point of interaction In 2 I, where
architectural parameters represented by transition prob-
abilities in transition probability matrix A are impacted by
the system’s contextual parameter C, and where the impact
on each architectural parameter is given by function �n. The
component’s future SOP is derived based on the transition
probabilities of the present SOP, by applying the following
three rules 8In 2 I:

. The transition probability aij from state Si to Sj that
is impacted as a result of In is revised such that the
updated value a0ij is given by

a0ij ¼ �nðPðCÞÞ: ð2Þ

For example in Fig. 2b, the transition probability
from moving to estimating state is directly impacted
by the navigational complexity of the robot’s
environment. Here, �n is a function that correlates
the navigational complexity (i.e., a contextual para-
meter) to the transition probability from moving to
estimating state.

. Given the changed aij, the transition probability aif
from state Si to failure state Sf remains unchanged.
This is because the probability of failure while the
component is in state Si is independent of the
contextual changes that cause transitions to state Sj.
For example in Fig. 2b, the transition probability
from estimating to failed state does not change as the
transition probability from moving to estimating
state changes.

. Given the changed aij, the remaining transition
probabilities in row i of the transition probability
matrix A are updated so that the cumulative
probability of all transition probabilities in each row
remains at 1. Intuitively, a change in an operational
profile in terms of increased probability of one
activity will result in a decrease in probability of
other activities, given that the total probability of all
activities is capped at 1. The update is necessary to
maintain A as a valid stochastic matrix. For example
in Fig. 2b, as a result of an increase in the transition
probability from moving to estimating state, the
probability from moving to planning state will
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decrease. Thus, all transition probabilities aik in row i
excluding aij and aif are adjusted so that

a0ik ¼ aik � 1�
a0ij � aijP
k 6¼j;f aik

 !
: ð3Þ

To illustrate, consider the following function �bump that
quantifies the transition probability a42 from moving to
estimating state in the robot’s Controller with respect to the
navigational complexity of the robot’s physical context
given by c:

�bumpðcÞ ¼
0:8196cþ 0:00063; 0 � c � 0:3
0:7144cþ 0:06916; 0:3 < c � 0:65
0:6094cþ 0:13296; 0:65 < c � 1:

8<
:

In this case, the robot periodically takes snapshots of the
environment and using existing techniques [45] determines
the complexity of the terrain, which correlates with the
probability of encountering an obstacle in its path. This
forms the contextual parameter c. The robot then compares
the complexity of the current terrain with previous snap-
shots. In cases where the terrain seems less/more complex
than the past context, the relevant parameters in the SOP
are updated to reflect the contextual change. For example, if
the navigational complexity of the terrain is anticipated to
increase, the transition probability a42 in the matrix is
updated by computing �bumpðcÞ for the relevant value of c.

Assuming that the terrain complexity c is expected to
increase to 0.45, we can update the new transition
probability a42 based on �bumpðcÞ above, and adjust the
remaining elements in the row based on the rules presented
above to obtain the following SOP for the Controller:

A0Controller ¼

0 1 0 0 0
0 0 0:932 0 0:068

0:049 0 0 0:947 0:004
0 0:3906 0:5994 0 0:01
1 0 0 0 0

2
66664

3
77775:

As before, by computing the steady-state vector, we can
derive the reliability of the component from its expected
future SOP, which in this example results in a decreased
reliability of 0.9826.

6.3 Configuration Reliability Analysis

Once the reliability predictions for all components have
been obtained, a compositional model is used to predict the
reliability of specific system configurations. Configuration
reliability is in turn leveraged to assess the adherence of a
given configuration to the system reliability goals. When a
system does not meet the intended reliability threshold,
runtime adaptation becomes necessary to ensure that the
system’s reliability requirements remain satisfied.

While the majority of runtime adaptation approaches
take a reactive stance in response to degradation of the
system reliability, our approach can be used proactively in
anticipation of reliability degradation. This is done by
system monitoring and continuous reliability assessment
that incorporates fluctuating operational context as de-
scribed earlier. In the rest of this section, we describe the
configuration-level reliability analysis approach.

Our Markov-based configuration-level reliability estima-
tion approach is based on the model presented by Wang
et al. [52], where a system’s reliability is estimated
compositionally based on the reliability of individual
components, the architectural style governing their interac-
tions, and the system’s operational profile. A DTMC is built
by mapping the components and their interactions to a state
diagram. A state si maps to one or more components in
concurrent execution whose completion is required to
transfer control over to the next state. A state transition with
a probability Pij represents the probability of undergoing a
transition from state si to state sj. Accordingly, system
reliability R is computed as

R ¼ ð�1Þkþ1Rk
jEj
jI �Mj ; ð4Þ

where M is a k� k matrix in which s1 is the entry state and
sk is the exit state and whose elements are computed as
follows:

Mði; jÞ ¼ RiPij state si reaches state sj and i 6¼ k
0 otherwise;

�

where Ri is the reliability of state si, and Rk is the reliability
of the exit state. jI �Mj is the determinant of matrix
ðI �MÞ, while jEj is the determinant of the remaining
matrix excluding the last row and the first column of
ðI �MÞ.

This reliability model utilizes information from the
system’s SOP to derive the reliability for a configuration.
Specifically, it requires the transition probabilities between
the states (i.e., Pij). At the same time, as described in
Section 3, transition probabilities of the SOP are dependent
on the context in which the system operates. Thus, RESIST
monitors the system at runtime to obtain observations that
correspond to interactions between components to derive
transition probabilities between states required by the
model presented in (4). To derive these transition probabil-
ities, an HMM is trained using the Baum-Welch algorithm
using the observations obtained at the system level.

To construct the HMM for the system’s SOP, RESIST
utilizes the system’s structural model, such as the one
depicted in Fig. 2a for the robot. In this scenario, a fireman
interacts with the robot using a smartphone. The fireman
issues a high-level command (e.g., go to a particular
waypoint), which is received by the robot’s Controller
through the Communication Connector (CC). The Controller
executes the appropriate sequence of intermediate actions,
resulting in the successful completion of (or inability to
complete) the original command, which is sent back to the
smartphone through the Communication Connector. To
complete the task, the Controller makes use of a variety of
Sensors, which detect obstacles and heat, a Navigator, which
performs planning for the command being executed, and an
Actuator, which carries out the mechanical activities.

The state model in Fig. 4a depicts the components in the
system mapped to states, and control flow interactions
among the components are depicted as transitions between
states. As shown, each of the components CC, Controller (C),
and Navigator (N) have been mapped directly to separate
states S1, S2, and S4, respectively, as they execute in a
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sequential manner. Heat Sensors and Proximity Sensors (HS1,
HS2, PS1, and PS2) have been mapped to a single state S3,
since they all execute in parallel upon receiving the
execution control, and upon completion, the control
transfers back to C. Similarly, the Actuator (A) and Touch
Sensors (TS1 and TS2) are mapped to a single state S5. To
derive the SOP for the system, a HMM is constructed by
using the information in the state model. Thus, from Fig. 4a,
we can identify the states (i.e., set S ) and observations (i.e.,
set O) for the HMM as follows:

S ¼ fS1; . . . ; S5g and O ¼ fO1; . . . ; O8g;

where observations O1; . . . ; O8 represent the state transi-
tions between states that result from transfer of control
between components (i.e., interactions) as shown in
Fig. 4a. The runtime data used to train the HMM consist
of these observation sequences, which correspond to state
transitions.

For illustration, consider the following to be the transi-
tion probability matrix derived from HMM using the Baum-
Welch algorithm:

ASystem ¼

0 1 0 0 0
0:1996 0 0:2001 0:4002 0:2001

0 1 0 0 0
0 1 0 0 0
0 1 0 0 0

2
66664

3
77775:

The above transition probability matrix corresponds to
the robot’s system-level SOP based on its present context.
To compute system reliability, a transition matrix M is
derived for the model in (4) with the matrix elements
representing probability of successfully transitioning from
state Si to Sj computed as Ri � Pij. Here, Ri is the
reliability of each state computed using the reliabilities of
the components mapped to the state, and Pij is the
transition probability from state Si to Sj obtained from the
system’s SOP.

For example, let us assume that based on the robot’s
present context, the component reliabilities have been
computed to be Controller: RC ¼ 0:9915 and Navigator: RN ¼
0:9751 using the approach described in the previous section.
For the purpose of simplifying this illustration, we assume

the remaining components and connectors in the system,
i.e., CC, HS1, HS2, PS1, PS2, TS1, TS2, and A are
100 percent reliable. In cases where a state transition occurs
in a sequential manner, Ri is the reliability of the
component executing in state Si, whereas when a transition
occurs out of the parallel set, Ri is the multiplication of the
reliabilities of all components in state Si.

Using the transition probabilities in ASystem and the
component-level reliabilities, we obtain the following for
transition matrix M:

M ¼

0 1 0 0 0 0
0 0 0:1983 0:3966 0:1983 0:1983
0 1 0 0 0 0
0 0:9751 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

2
6666664

3
7777775
:

Solving the model according to (4) yields the system’s
reliability in its present context as 0.9152.

6.4 Context-Aware Configuration Reliability
Prediction

Similar to the component-level reliability prediction, pre-
dictions of the system reliability must incorporate contex-
tual changes into the analysis. By considering the changes
that can occur in a system’s SOP as a result of the anticipated
contextual changes, transition probabilities in matrix ASystem

are updated. This entails utilizing functions of the form (1)
to obtain the SOP for the system’s future context.

For the purpose of predicting the system’s SOP, we
follow an approach similar to the prediction of component’s
SOP described in Section 6.2. The only exception here is that
the system-level reliability model does not directly incor-
porate the notion of failure states. The system’s future SOP is
derived based on the transition probabilities of the present
SOP by applying the following two rules 8In 2 I:

. The transition probability aij from state Si to Sj that
is impacted as a result of In is revised such that the
updated value a0ij is given by

a0ij ¼ �nðPðCÞÞ: ð5Þ
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Fig. 4. (a) State model for the robot. (b) State model with the Navigator replicated.



For example, in Fig. 4a the transition probability
from state S2 to S3 is impacted by the navigational
complexity of the robot’s environment. Here, �n is a
function that correlates the navigational complexity
(i.e., a contextual parameter) to the transition
probability from state S2 to S3.

. Given the changed aij, the remaining transition
probabilities in row i of the transition probability
matrix A are updated to preserve the stochastic
property of matrix A. For example in Fig. 4a, as a
result of an increase in the transition probability
from state S2 to S3, the transition probabilities from
state S2 to S1, S4 and S5 need to decrease. Thus, all
transition probabilities aik in row i excluding aij are
adjusted such that

a0ik ¼ aik � 1�
a0ij � aijP

k 6¼j aik

 !
: ð6Þ

As an illustration, �bump given below quantifies the
transition probability a23 from state S2 to state S3 with
respect to the navigational complexity of the robot’s
physical context given by c:

�bumpðcÞ ¼
0:125cþ 0:2003; 0 � c � 0:3

0:09714cþ 0:2142; 0:3 < c � 0:65
0:6094cþ 0:13296; 0:65 < c � 1:

8<
:

Continuing on the scenario from Section 6.2, let us assume
that the terrain complexity c is expected to increase to 0.45.
We update the transition probability a23 based on �bumpðcÞ
above, and adjust all other transition probabilities in that
row using (6) to obtain the following SOP for the system:

A0System ¼

0 1 0 0 0
0:1855 0 0:2579 0:1855 0:3711

0 1 0 0 0
0 1 0 0 0
0 1 0 0 0

2
66664

3
77775:

Recall from Section 6.2 that under the future context the
reliability of the Controller is predicted to decrease to 0.9826,
and that the reliabilities of the rest of the components
remain the same. Using A0System as the predicted system-
level SOP, the matrix M 0 can be recomputed as follows to
derive the system-level transition matrix required for (4):

M 0 ¼

0 1 0 0 0 0
0 0 0:2534 0:1823 0:3646 0:1823
0 1 0 0 0 0
0 0:9751 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

2
6666664

3
7777775
:

Solving the model based on the revised matrix M 0 using (4)
yields the system’s reliability in its future context as 0.8736.

7 SYSTEM RECONFIGURATION

If the predicted system reliability for a given architectural
configuration does not meet the acceptable level of
reliability, system reconfiguration may be required. In this
section, we describe the architectural reconfiguration

decisions utilized by RESIST that drive the process of
reliability improvement.

7.1 Impact of Component Replica

Architectural patterns formulate preconceived solutions for
recurring software problems, including those having to do
with the system’s quality attributes (e.g., reliability, perfor-
mance) [35], [47]. Runtime adaptation and reconfiguration
of the system aimed at improving a certain quality may
entail application of a pattern known to promote that
quality. The fault-tolerant pattern [30], for example,
improves the system’s reliability by replicating critical
components. A multiversioning connector [30] in the form
of a middleware service can be used to handle the
component failures by relaying the requests to the hot
standby component replicas.

In the case of the robot, the original architecture in Fig. 1b
demonstrates the system when the components are allo-
cated to three processes with the Navigator and Controller
components running on separate OS processes. Applying
the fault-tolerant architectural pattern in this case can
improve the reliability by replicating the Navigator compo-
nent, which represents a critical point of failure. Recall from
Section 5 that we have adopted a probabilistic failure model,
commonly used in the literature; hence, an underlying
assumption is that replicas fail independently.1 Fig. 1c
shows a replicated Navigator component added to the
original architecture while running on a new process. The
corresponding state model (Fig. 4b) shows the two
replicated instances of the Navigator N1 and N2 both
mapped to state N 0. The reliability of the new state N 0 can
be computed as the probability that at least one of them does
not fail [52]. Hence, the probability of state N 0 executing
without failure is 0.9994. Assuming the reliability of all other
components and each of the Navigator components to be the
same as before, matrix M 0 can be updated such that state N
is replaced by the new state N 0, and the matrix element
representing the transition from N (which is now N 0) to C
increases to 0.9994 from 0.9751. Solving the model above
according to (4) yields a system reliability of 0.9124. Given
that in its present configuration, the reliability is predicted
to be 0.8736, replication of the Navigator results in an
improvement of approximately 4.4 percent.

7.2 Impact of Deployment Architecture

A system’s deployment architecture is essentially an alloca-
tion of its software components to hardware hosts and OS
processes. A system may be realized using more than one
deployment architecture. At the same time, the deployment
architecture has a significant impact on system’s reliability.
In this paper, we focus on the component-to-process
allocation, as another representative method employed by
RESIST to prevent reliability degradations.

When multiple components are allocated to the same
process, a component failure could propagate to other
components within the process, and impact their reliability.
In this case, redeploying components to separate processes
could improve a system’s reliability. In the case of the
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robot, consider two deployment configurations of the
architecture, one where the Controller and the Navigator
are deployed as two separate processes and another where
the two components are deployed as threads sharing the
same process.

Let us assume that RN and RC represent reliability of
the Navigator and the Controller components, respectively,
when they execute on separate processes. When the two
components are redeployed to share the same process, the
effective reliability of each component is simply RN �RC ,
where failure in either the Navigator or the Controller will
cause both components to fail. For instance, assuming that
the reliabilities of the Navigator and the Controller have
been predicted to be 0.9826 and 0.9751, respectively, the
effective reliability of the two components would be
R0N ¼ R0C ¼ 0:9581. Intuitively, the drop in the two compo-
nents’ effective reliability results in a decrease in the
overall system reliability. Therefore, the deployment
architecture in which components are deployed as separate
processes yields higher reliability.

8 CONFIGURATION SELECTION

The reliability estimation approach presented earlier can be
used to determine the most reliable configuration for a
mobile and embedded software system. However, in
practice, reliability estimates are used in conjunction with
the estimates of other quality attributes (e.g., efficiency,
response time) to determine the optimal configuration for the
system. In this section, we first formally specify the problem
of finding an appropriate configuration for the systems
managed using RESIST. Afterwards, we describe RESISTER,
a heuristic-driven algorithm for solving such problems.

8.1 Problem Formulation

The optimal configuration in RESIST is defined as one that
satisfies the system’s reliability requirement, while improv-
ing other quality attributes of concern. In other words, in
RESIST, reliability takes precedence over other quality
attributes. This is a reasonable objective for the domains
targeted by RESIST (i.e., mission-critical), but it may not be
appropriate for others. Consequently, the configuration
selection problem becomes one of an optimization pro-
blem.2 Specifically, RESIST’s objective is to find an
architectural configuration C� such that

C� ¼ argmax
ðCÞ

X
8q2QualityObjectives

UqðCÞ

Subject to RðCÞ � �; � 2 IR; 0 < � � 1;

where Uq is a utility function indicating the engineer’s
preferences for the quality attribute q, R corresponds to (4)
that calculates the expected reliability of a given architec-
ture C as further detailed below.

A utility function is used to perform tradeoff analysis
between competing (conflicting) quality concerns. In the
robotic software system, we used three utility functions: One
specifies the user’s preference for improvements in reliability,
while two others specify the same for efficiency dimensions,
namely CPU and memory utilization. Alternatively, we could

have used a single utility function for efficiency, but as we
will see in Section 10.1, since in the case of the robotic system
efficiency was quantified in terms of CPU and memory
utilization, expressing the utility in terms of those dimen-
sions was more natural.

Elicitation of user’s preferences is a topic that has been
investigated extensively in the literature (e.g., [48]). RESIST
does not place a constraint on the format of utility functions.
Arguably any user can specify hard constraints, which can
be trivially modeled as step functions. Alternatively, a utility
function may take on more advanced forms (e.g., sigmoid
curve), and elicited using the techniques described in [48].

The optimization is subject to ensuring the specified
reliability requirement is not violated. RESIST may also use
this constraint to determine when a reconfiguration of the
system is necessary.

We define T as a set of components and H as a set of
processes. Thus, for a system with Tj j ¼ t number of
software components and Hj j ¼ h processes, an architectur-
al configuration for the aforementioned decision making
problem can be formally specified as follows:

Let decision variable pi 2 ZZþ represent the number of
replicas for component i.

Let decision variable xij 2 ½0; 1� to indicate if component i
is placed on the process j.

The architectural configuration C is a tuple defined in
terms of two sets of decision, the deployment of compo-
nents on processes (xijÞ and number of replicas for each
component (piÞ:

C ¼ hfxij : 8i 2 T; 8j 2 Hg j fpi : 8i 2 Tgi:

The configuration is subject to the following constraints:

. Each component must be placed on a process:

8i 2 f1; . . . ; tg;
Xh
j¼1

xij ¼ 1:

. An architectural constraint may be applied to limit
the number of replicas allowed for a component:

8i 2 f1; . . . ; tg; pi � wi;where w 2 ZZþ:

. Though a component is allowed to be both repli-
cated and share a process with another component,
an architectural constraint is imposed such that they
may not both happen simultaneously. This is
because replication is most effective (i.e., achieves
maximum improvement in reliability) if both the
component and its replicas are isolated into separate
processes. Thus, we introduce binary variable qi,
which indicates if component i is sharing a process
with another component:

qi ¼
1; if the ith component shares a process

0; if the ith component does not share

a process

8><
>:

8i; k 2 f1; . . . ; tg; qi ¼ 1�
Xh
j¼1

xij
Yt
k6¼i
ð1� xkjÞ:
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Thus, the effective reliability of component i is

rieff ¼ qirishare þ ð1� qiÞrirep ;

where rishare is the effective reliability of component i

when the component shares a process with another

component, and

rishare ¼
Xh
j¼1

rixij
Yt
k6¼i
½rkxkj þ ð1� xkjÞ�;

and rirep is the effective reliability of component i when the

component is replicated with pi number of replicas, and

rirep ¼ 1� ð1� riÞ1þpi :

The system reliability RðCÞ is computed by mapping the

effective reliability rieff of the components to states as

described in (4).
There are OðhtÞ ways of allocating software components

to OS processes. The total number of different architectures

resulting from the application of fault-tolerant pattern

is OðmaxfwigtÞ. Thus, the size of the solution space for

this optimization problem is Oððmaxfwig�hÞtÞ. Clearly, the

solution space is large, even for small values of w, h, and t.

The solution space may be pruned by imposing architectur-

al constraints, such as the limit on the number of

replications allowed.
An optimal solution to this problem can be found using

an exact algorithm. An exact algorithm would be either an
off-the-shelf solver (e.g., CPLEX [9]) that would first
transform the problem from a nonlinear form into an
integer linear programming form by adding auxiliary
variables [27], and thereby exploding the complexity of
the problem even further, or by exhaustively checking the
entire solution space. The NP-hard nature of our architec-
ture optimization problem means that optimal solutions can
only be found in very small problems [2], [27]. This
motivated the development of heuristic-based approxima-
tion algorithms as discussed in the next section.

8.2 RESISTER Algorithm

We have developed an algorithm that utilizes heuristics
specific to our problem domain to find near-optimal
solutions. Given the NP-hard nature of our problem,
developing an algorithm capable of finding the optimal
solution in polynomial time is infeasible. Moreover, in
RESIST, since our objective is to apply runtime adaptation
before the system’s reliability degrades, optimality is not as
much of a concern as the speed with which an acceptable
solution is found.

The algorithm primarily consists of two steps: satisfy and

optimize. The purpose of the satisfy step is to find a

configuration that meets the reliability requirement, which

in the case of mobile and embedded software takes

precedence over every other criteria. This initial configura-

tion is then used as a “seed” for the second step, optimize,

which is aimed at evaluating several configurations derived

from the seed using a neighborhood search strategy to find

a configuration that yields the highest utility. In the

following sections, we describe each step in greater detail.

8.2.1 Satisfy Step

In this step, we leverage a greedy approach to find an initial
configuration that meets the reliability constraint. The
approach is based on a largest-variance-first tactic [37],
where we first apply changes to the configuration that
yield the maximum reliability gain. Given an initial
configuration, the algorithm begins by selecting the most
unreliable component in the system. It applies architectural
reconfiguration operations on the component to improve
the reliability of the system. It then visits the next most
unreliable component and repeats the process until either
all components have been visited, or an architecture that
meets the reliability requirement has been found.

The two reconfiguration operations described in Section 7
are applied here: 1) changing the deployment architecture
by redeploying the unreliable component to a vacant
process, and 2) changing the architectural configuration
by replicating the component and placing the replica on a
new process. In this manner, the effect of each component’s
unreliability is alleviated, resulting in an increase in system
reliability. The largest-variance-first tactic helps us reach the
reliability goal with the minimum number of iterations.

Fig. 5 shows the pseudocode for the satisfy step. We
define VT as an empty set, and iteratively each of the
components in the architecture are added to it. In line 2, the
algorithm selects an unvisited component that is least
reliable. If it shares a process with another component
(line 3), it finds a vacant process and deploys the
component on it (lines 4 and 5). Then, it evaluates to see
if the new configuration satisfies the reliability constraint,
and if so, the satisfy step ends with C as the output (lines 6
and 7). Otherwise, the algorithm increases the number of
replicas for the component under the constraint that it
would not exceed the total number of replicas allowed for
that component (lines 8 and 9). The resulting architecture is
evaluated again to see if it meets the reliability require-
ment, and if so, the satisfy step ends with configuration C
as the output (lines 10 and 11). If it does not meet the
reliability constraint, the visited component is added to the
set VT, and the process is repeated for the next most
unreliable component.

If all components have been visited and no configuration
is found that meets the reliability constraint, the satisfy step
ends with the best available configuration C as the output.
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This corresponds to a situation where the reliability
requirements cannot be met through reconfiguration of
the software. In such cases, other measures would need to
be employed to improve the system’s reliability.

8.2.2 Optimize Step

Upon termination of the satisfy step, and assuming a
solution has been found that meets the reliability require-
ment, the algorithm continues to the optimize step. This step
is necessary because the solution that meets the reliability
requirement may not be a good solution with respect to the
overall utility. Recall from Section 8.1 that RESIST utilizes a
multidimensional utility function to denote the user’s
preferences for other relevant properties (i.e., efficiency).
The algorithm subsequently performs the optimize step,
where it explores the neighborhood of the configuration
found by the satisfy step in the hope of finding a solution
with comparable reliability, but higher utility.

Fig. 6 shows the pseudocode of this step. SatisfiedC
defined in line 1 is used to maintain the solution resulting
from satisfy step, while BestC defined in line 2 is used to
keep the best valid solution throughout the search. The
following process then repeats for k iterations, where the
value of k is selected based on either the time limit or
system’s performance requirement. First, a component and
a process are picked randomly (lines 4 and 5). The
algorithm then uses the randomly picked elements to
explore the neighboring solutions by making three types
of modifications:

. Change the deployment of components (lines 6-9). At
line 6, the possibility of deploying component i on
process j is evaluated. For this, either j should be a
vacant process or i and all other components
deployed on j should not have replicas. This
heuristic allows the algorithm to avoid changes that
are likely to break the reliability requirement. The
reasoning behind it is that if a component has been

replicated as a part of the satisfy step, that compo-
nent is likely to be one of the least reliable
components, and thus is not suitable for modifica-
tion at this stage.

. Increase the number of replicas (lines 10-13). In line 10, if
component i does not share the process with any
other components and has not exceeded the max-
imum number of replicas, it is replicated (line 11).
This change improves the reliability at the expense
of efficiency, and could improve the utility if the
user has placed more emphasis on reliability
improvements over the system’s efficiency, as
captured in the corresponding utility functions.

. Decrease the number of replicas (lines 14-17). The
algorithm attempts to find a configuration with
better utility by decreasing the number of replicas.
Contrary to the above case, this change improves the
efficiency at the expense of reliability, and could
improve the utility if the user has placed more
emphasis on efficiency improvements over the
system’s reliability.

As part of each aforementioned change, the algorithm
checks to see if 1) the changed configuration is valid (i.e., its
reliability satisfies the required threshold) and 2) the overall
utility is better than the best utility found so far. If so, the
configuration is assigned to BestC. Upon termination, the
algorithm returns BestC, which embodies a configuration
for the system that not only satisfies the reliability
requirement, but also achieves a good utility.

9 IMPLEMENTATION

We have developed a prototype implementation of RESIST
that integrates 1) an extended version of XTEAM [10] as the
environment for maintaining the structural, behavioral, and
reliability models, 2) Prism-MW [24] as the context-aware
middleware for obtaining monitoring data from the system
and effecting reconfiguration changes, and 3) an off-the-
shelf HMM toolbox for MATLAB.

XTEAM is an extensible architectural modeling and
analysis environment that supports modeling of a system’s
software architecture using several well-known architectur-
al description languages (e.g., FSP and xADL for modeling
the behavioral and structural properties of a system,
respectively). We extended XTEAM’s structural and beha-
vioral metamodels with the annotations needed for relia-
bility analysis. To that end, the traditional FSP support in
XTEAM was extended to include the notion of failure states
and associate a transition probability with each FSP action.
We also extended the traditional xADL model support in
XTEAM to model reliability properties of the architectural
constructs, such as component reliability. Fig. 7 depicts a
snapshot of the reliability-annotated xADL and FSP models
for a subset of the robot’s software system.

We have used XTEAM’s API for accessing and modify-
ing the reliability-annotated models, which are then used to
develop RESIST’s reliability analysis and proactive reconfi-
guration modules. RESIST’s analysis module reads the
reliability-annotated architectural models to generate the
appropriate HMM, which is then solved using MATLAB’s
HMM toolbox. The estimated reliability values are then
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Fig. 6. The pseudocode for the optimize operation of the algorithm.



used to find optimal or near-optimal configuration for the

system using an implementation of exact algorithm or

RESISTER algorithm, respectively.
The running system is implemented on top of Prism-MW

middleware, which is integrated with RESIST to facilitate
monitoring and adaptation. Prism-MW’s monitoring services
provide the runtime data and contextual information
needed for RESIST’s analysis. The reliability analysis may
determine the need to change the system’s configuration to
prevent reliability degradation. In turn, a new configuration
is effected by making the appropriate changes to XTEAM’s
architectural models. Whenever XTEAM’s models change
(i.e., RESIST selects a new configuration), an architectural diff
is performed, and the differences are effected through the

dynamic adaptation services of Prism-MW. The details of

Prism-MW’s support for mobility, context-awareness, and

adaptation are described in [24].
The interested reader may download the artifacts

comprising the RESIST prototype from [40].

10 EVALUATION

We have evaluated RESIST using its prototype implementa-

tion and the mobile emergency response system described

earlier. The evaluation consists of six criteria:

1. the impact of architectural reconfiguration decisions
on the reliability of components and the system,
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Fig. 7. Reliability-annotated architectural models of a portion of the robot’s Controller component in XTEAM: (a) structural view in xADL, and
(b) behavioral view in FSP.



2. the validity of reliability prediction based on
expected changes in the context,

3. the ability to maintain the system’s reliability
through proactive reconfiguration,

4. the overhead of runtime reliability analysis, and
finally,

5. the effectiveness, and
6. performance of RESISTER algorithm.

We first provide an overview of our experiment setup,

followed by a detailed presentation of our evaluation results.

10.1 Experiment Setup

In all of the experiments discussed herein, RESIST was

executed on an Intel Core 2, 2.4 GHz, 2 GB RAM platform,

which is representative of the average hardware capability

present in modern mobile robots (e.g., [32]).
We estimated the efficiency of software in terms of its

memory and CPU utilization. We used analytical models

where the total memory and CPU utilization are computed

as a function of the number of components, processes, and

the average memory and CPU cycles required by the

configuration. Given a configuration C, the following

analytical models were used for computing memory

utilization MðCÞ and processing utilization P ðCÞ:

MðCÞ ¼ h�mem0 þ
Pt

i¼1 memi

memavail
� 100;

P ðCÞ ¼ h� proc0 þ
Pt

i¼1 proci
procavail

� 100;

where

mem0 ¼ average memory required by a process;

memi ¼ average memory required by component i;

memavail ¼ total memory available;

proc0 ¼ average CPU cycles required by a process;

proci ¼ average CPU cycles required by component i;

procavail ¼ total CPU cycles available:

Recall from Section 8.1 that t and h denote the number of

components and processes, respectively.
Sigmoid curves have been shown to be practical for

specifying the user’s quality preferences in terms of utility

[48], in particular in the constructions of autonomic systems

(e.g., [19], [31]). We used the following sigmoid curve

functions to express the utility functions for the three

quality attributes of concern:

URelðRðCÞÞ ¼
1

1þ e�0:1ð100RðCÞ�50Þ ;

UMemUtilizðMðCÞÞ ¼
1

1þ e0:1ðMðCÞ�50Þ ;

UProcUtilizðP ðCÞÞ ¼
1

1þ e0:1ðP ðCÞ�50Þ :

The global utility function UgðCÞ was then defined as
follows:

UgðCÞ ¼ URelðRðCÞÞ þ UMemUtilizðMðCÞÞ þ UProcUtilizðP ðCÞÞ:

The global utility range for all of the results presented
here is ½0; 3�, since each of the sigmoid curve functions
representing the individual utility functions can return a
value in the ½0; 1� range. However, this does not necessarily
mean that for a given problem, it is possible to find a
solution that achieves the maximum utility of 3. In fact, due
to the NP-hard nature of our problem, determining the
maximum utility possible in a given problem is not possible
without exploring the entire solution space first.

In our experiments, we used XTEAM to control the
system’s operational profile (i.e., usage) and Prism-MW for
gathering runtime data. However, neither the robotic
software nor RESIST was controlled, which allowed them
to behave as they would in practice.

10.2 Impact of Reconfiguration

We first evaluate our assertion regarding the impact of
architectural reconfiguration on the system’s reliability by
comparing the components’ and subsequently the system’s
reliability under different configurations. In this set of
experiments, we have manually injected defects in the
Navigator with varied probability of failure. The failure
probability for the Controller and one of the Heat Sensors
components is fixed at 0 and 0.15, respectively. We have
controlled the experiment by fixing both the usage profile
and context.

Fig. 8 shows the reliability estimates obtained for three
different architectures as the Navigator’s failure probability
increases. Part (a) shows the system reliability for the
following three configurations: 1) Navigator and Controller
are placed in the same process, 2) they are placed in
separate processes, and 3) Controller remains in a separate
process, the Navigator is replicated, and each replica placed
in a separate process. In all configurations, the rest of the
components in the system are placed in separate processes,
and their failure probability is fixed at 0. Parts (b), (c), and
(d) show the components’ reliability for configurations 1, 2,
and 3, respectively.
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Fig. 8. (a) System reliability for three architectures; Parts (b), (c), and (d) show component reliabilities for configurations 1, 2, and 3, respectively.



As shown in part (a), the different architectural config-
urations exhibit starkly different reliabilities, corroborating
the impact of architectural decisions on system’s reliability.
Configuration 1 results in the lowest system reliability as
the Navigator’s failure probability increases because the two
components are placed on the same process. As shown in
part (b), along with the increase in Navigator’s failure
probability, the reliabilities of the Navigator and the
Controller remain equal as they fail together, despite the
fact that the Controller’s failure probability is 0. As expected,
in Configuration 2, isolating the components to separate
processes resulted in an overall improvement in system
reliability. This is due to the fact that given the allocation of
Controller and Navigator on separate processes, the effective
Controller’s reliability is now increased to 1, shown in
part (c). In Configuration 3, the Navigator component is
replicated. This configuration is the most reliable of the
three. As shown in part (d), in contrast with reallocation to
separate processes, replication does not impact the compo-
nents’ reliability, but results in a system wide improvement.
Finally, the Heat Sensor is unaffected throughout the
experiments, as it is placed in a separate process.

10.3 Validity of Reliability Prediction

As described in Section 6, RESIST uses the system’s context
to predict system’s near-future reliability by estimating the
impact of contextual changes on a components’ internal
behavior. We have examined the validity of our results by
comparing RESIST’s predicted reliability values with those
estimations obtained from the system’s actual behavior.
While we have evaluated the validity of our predictions for
the entire system, in this section, we present details of the
Controller’s reliability analysis.

For this experiment, we controlled the influence of
context by varying the probability of the robot encountering
an obstacle on its path, which we refer to as bump probability.
The bump probability correlates with the complexity of the
terrain through which the robot navigates to accomplish an
assigned task. An increase in the bump probability causes
the Controller to transition from the moving state to the
estimating state with a higher probability (recall Section 3),
thereby altering its operational profile. The techniques
presented in [45] together with multilinear regression were
used in our experiments to derive function � (recall
Section 6) that estimates the impact of change in terrain to
change in bump probability with �2:1 percent error at
95 percent confidence level.

In addition to analyzing the effect of context, we varied
the failure probability of the Controller, specifically the
probability of failure from the estimating state. We com-
pared RESIST’s reliability predictions with the actual
observed reliability of the robot during operation. In this
experiment, the Navigator and the Controller were placed in
separate processes, and except for the Controller, all other
components’ failure probability was fixed at 0.

Fig. 9 shows the comparison of predicted reliability and
observed reliability in three execution scenarios, where
different bump probabilities were predicted, and varied the
failure probability of the Controller component from 0 to
0.05. As shown, the Controller’s reliability decreases as the
bump probability increases. This is because an increase in

transitions to the estimating state leads to more failures.
Further, the deviations between observed and predicted
reliability both at the level of system and Controller are
extremely small. Note that since the function � used in
the experiment had a 95 percent likely error bound of
2.1 percent, a small deviation in results is to be expected.
However, the deviation is small enough that very accurate
adaptation decisions could be made.

10.4 Proactive Reconfiguration

We evaluate RESIST’s ability to satisfy the system’s
reliability requirement through proactive reconfiguration.
We compared an instance of the robot using RESIST against
one without RESIST. Results show that the system using
RESIST was able to successfully satisfy the reliability
requirement throughout its operation. The failure probabil-
ities of all components in both instances were fixed. We
varied the bump probability (effectively changing the
context) and observed the proactive reconfiguration pro-
cess. The robot was required to maintain a system reliability
of at least 97 percent throughout its execution, which formed
the constraint in our optimization problem. Initially,
Navigator was placed in a separate process, and the other
components were placed together in one process. This
configuration was based on a design-time analysis of the
system that satisfied the reliability requirement and mini-
mized the resource utilization.

Fig. 10a illustrates the comparison between the two
instances of the robot as they maneuver the same area
within a building with varying levels of complexity (i.e.,
obstacles). RESIST predicts the near future reliability of the
system as it approaches an area with a complexity that is
different from its current location. For instance, as the robot
passes point B and before it reaches point C, RESIST
anticipates a drop in reliability (since the bump probability
increases to 0.14) and proactively adapts the system to
maintain its reliability above 97 percent. As a result, the
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Fig. 9. Accuracy of reliability predictions: (a) system reliability,
(b) Controller’s reliability.



Navigator is replicated and the Controller is redeployed to a
separate process. This reconfiguration prevents the relia-
bility from dropping below the requirement. In contrast, the
reliability of the robot without RESIST deteriorates sig-
nificantly, falling below the 97 percent requirement.

Fig. 10b shows the effect of reconfiguration on the
system’s resource utilization. For instance, at point C both
CPU and memory utilization increase significantly due to
the addition of the Navigator replica and separate processes.

Similarly, RESIST continues to proactively manage the
system’s configuration. In points F and I, in anticipation of a
drop in reliability, RESIST proactively places the system in a
more reliable configuration, albeit less efficient. On the
other hand, in points D, G, and J, in anticipation of an
improvement in reliability, RESIST proactively places the
system in a more efficient configuration, while meeting the
97 percent reliability requirement.

10.5 Overhead of Reliability Analysis

Since RESIST is intended to manage embedded and mobile
software at runtime, it is important to assess the
performance overhead of RESIST’s analysis. Tables 1 and
2 show the benchmarking results of RESIST’s reliability
analysis. The results in Table 1 show the time it took to
perform the reliability analysis for varying number of
commands (i.e., tasks sent to the robot). While in each
experiment the system is comprised of 10 components,
each command on average resulted in 20 different
monitoring observations (e.g., component interface invoca-
tions) to be collected and used for training the HMM. The
benchmark in the largest scenario, consisting of 2,000
commands and 41,879 observations took 10.45 seconds.
However, in practice, our experience with the robot

software system shows the analysis is often performed
on a much smaller number of observations, requiring only
a fraction of a second for completion.

The results in Table 2 show the time it took to perform
the reliability analysis for varying number of components.
In each of the experiments, 100 commands were sent to the
robotic system, while the number of components was
increased in steps of 10, and the time taken to train the
HMM was measured. In the largest scenario where the
system comprised of 100 components, the elapsed time was
5.43 seconds.

10.6 Effectiveness of RESISTER

Here, we evaluate the effectiveness of RESISTER algorithm
in finding high-quality solutions. This is achieved in terms
of two criteria: 1) Is RESISTER capable of finding a solution
that satisfies the reliability requirement in a highly
constrained solution space (i.e., when only a very small
number of configurations out of many satisfy the require-
ment)? 2) Is RESISTER capable of finding a solution that
significantly improves the overall utility?

Evaluating the quality by comparing against the optimal
solution is possible only for small problems, since due to the
NP-hard nature of our problem the optimal solution for any
sizable system is not known. Therefore, for large problems
we compare the quality of the solutions found by RESISTER
against an unbiased sample selected randomly from the
solution space. The sampling of the solution space allows us
to show the difficulty of a given problem and, thus, evaluate
REISTER’s ability to find a solution in cases where the
majority of configurations do not satisfy the reliability
requirement. Table 3 shows the result of our experiments in
nine problems. Each problem dealt with finding a config-
uration that satisfied the 99 percent reliability requirement
in a system with 15 components and processes, where up to
five replicas per component were allowed. In generating
these problems, we randomly assigned each component a
reliability value within a range, which is depicted on the left
most column of Table 3. As we traverse from the top to the
bottom of the table this range is increased, resulting in
problems that are easier to solve. This is because the more
reliable the components are, the easier it is to find a
configuration that satisfies the reliability requirement.
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Fig. 10. Context-aware proactive reconfiguration. (a) System reliability. (b) Resource utilization efficiency.

TABLE 1
Execution Time of Reliability Analysis with

Increasing Number of Observations



The table shows the result of applying the RESISTER
algorithm on each problem, including both the reliability
and the utility of the configuration that is found.

The table also shows the result of selecting 100,000
unbiased samples from the solution space. Each sample
corresponds to a functionally correct configuration, albeit
one that may not satisfy the reliability requirements. Given
that we are sampling the solution space randomly, the
easier a problem, the more likely it is that some of the
sampled solutions satisfy the requirement. For each experi-
ment, the table shows the highest reliability achieved
among the 100,000 samples, ratio of valid solutions (i.e.,
those that satisfied the reliability requirement of 99 percent),
and average utility of valid solutions.

We see that RESISTER is capable of finding a solution that
satisfies the minimum reliability requirement of 99 percent
in all cases. To fully appreciate RESISTER’s ability to solve
these problems, consider that none of the 100,000 sampled
solutions satisfied the reliability requirement in any of the
experiments, except in the easiest case (i.e., the last row). In
the last row, where the components are highly reliable,
0.04 percent of 100,000 configurations satisfied the reliability
requirement. As shown in the rightmost column, the
average global utility of those valid solutions was 1.59,
which is less than the global utility of 1.90 found by
RESISTER in the same problem.

The comparison with the unbiased sample demonstrates
RESISTER’s ability to find a configuration that satisfies the
reliability requirement and optimizes the utility, even when
the solution space is highly constrained.

The optimal solution for a given problem can be found
using an exact algorithm that would check the entire

solution space (recall Section 8.1). However, the NP-hard
nature of this problem makes it impossible to find the
optimal solution, except in very small problems. Table 4
shows a comparison of the solutions found by RESISTER
with the optimal solutions, for systems with seven
components, but varying levels of component reliability.
As expected the solutions found by RESISTER have lower
utility than the corresponding optimal solutions, but the
difference in execution time is considerable. On average,
the exhaustive search requires 3 hours to find the optimal
solution for this relatively small system of seven
components, whereas RESISTER finds a solution in a
fraction of second. In summary, the exact algorithm finds
better solutions, but it is clearly infeasible to execute for
most systems.

10.7 Performance of RESISTER

The time it takes to find a solution together with the time it
takes for reliability analysis (evaluated in Section 10.5)
constitute RESIST’s total delay in reconfiguring the software
in response to an expected change in the context. As a
result, just like the reliability analysis, the timeliness of
RESISTER is an important criterion for being able to
reconfigure the software prior to its reliability degradation.
Table 5 shows the result of benchmarking the RESISTER
algorithm on problems ranging from 10 to 640 components
in two scenarios with varied degrees of component
reliability. The reliability constraint for all of these problems
was set at 99 percent. In the first scenario, the reliability of
components was randomly selected in the range of (0.955,
0.96), whereas in the second scenario it was selected in the
range of (0.99, 1). We should note that the former represents
a rather extreme scenario, as a system in which all of the
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components are that unreliable should go through addi-

tional verification and validation to improve their reliability

before runtime management techniques, such as RESIST,

become practical.
As one would expect, by increasing the size of the

problem, the time taken to find a solution increases. The

results show that RESISTER is able to find solutions to

relatively large problems of up to 80 components in a

fraction of a second. We found this result to be satisfactory

in our experiments, and we believe it would be in most

embedded and mobile software systems, which are not

likely to have more components than that.
When the component reliability is chosen in the range of

(0.955, 0.96), due to the unreliable nature of the components,

the number of replicas needed to satisfy the reliability

requirement of 99 percent increases. This in turn expands

the solution space that RESISTER needs to search, which

explains the increase in the execution time.
It is important to note that when we double the size of

components and processes in Table 5, we are not simply

doubling the size of the problem, as our problem has a very

steep exponential growth (recall Section 8.1). As expected,

when we have a very large system of 640 components and

each of the components has a very low reliability in the range

of (0.955, 0.96), it takes a long time for RESISTER to find a

solution that satisfies the stringent reliability requirement.

However, as mentioned before, we believe this is an extreme

case, as we believe other techniques to improve the

reliability of individual software components should be

employed, before runtime management techniques, such as

RESIST, become practical.
Finally, we believe it may be possible to improve

RESISTER’s performance in such extreme cases by

employing parallelization techniques, but leave this to

our future work.

11 THREATS TO VALIDITY

An important threat to the validity of our research is the

assumed model of reliability and the adopted principles for

estimating it. In Section 5, we provided a detailed definition

of reliability and failure in the context of our research.

Majority of the state-based reliability analysis models

assume Markov transfer of control among states, which

means that the probability of transition to a state at time

tþ 1 depends on the state at time t and is independent from

its past history. In the context of architecture-based

reliability modeling, this would imply that the transfer of

control among components maintain the Markov property.
Cheung [5] argues that this assumption at the macroscopic

(architecture) level is valid for most systems, although at

instruction level it is debatable. A large body of prior research

[14], [16], [17] has adopted this model of estimating reliability

at the architecture level. As a result, we believe our technique

is grounded in principles that are widely accepted. That said,

the crux of RESIST is on how reliability predictions could be

used to optimize the architecture of a software system at

runtime. We believe other types of reliability analysis models
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could be substituted to furnish RESIST with predictions
that it could use for self-management.

Another issue with state-based approaches to reliability
estimation is the state-space explosion problem during the
analysis. This, however, is significantly less of a problem in
an architecture-centric approach, particularly because of the
hierarchical and compositional nature of architectural
models. In order for architectural models to be useful, they
need to remain at a “reasonable” granularity level. Software
architects frequently zoom in and out as they change
the abstraction level of their viewpoint. This directly helps
address the state explosion problem [28], as the architectur-
al models are abstractions of the system’s implementation.

Our approach relies on the availability of functions
relating contextual variations with changes in the architec-
tural models. As you may recall from Section 10.3, we have
used multilinear regression to derive an example of such a
function relating the complexity of the terrain navigated by
a robot to the frequency with which it may need to
recalculate routes. Although our approach illustrates that at
least in some cases it is feasible to derive such functions,
this is not necessarily the case for all situations. In fact, if
the changes in context are occurring completely indepen-
dent of the historical trends, deriving such functions could
be challenging. In such situations, an approach such as
RESIST would need to be used in a reactive fashion, as
meaningful prediction about the system’s future reliability
would not be possible.

There are two general limitations in RESIST’s adaptation
model. First, currently RESIST supports only two types of
adaptation (recall Section 7), while there may be other
types of adaptation that could improve the system’s
reliability and in certain situations they may be more
appropriate than those supported so far. This assumption
is not due to a conceptual limitation, but rather the lack of
implementation support in our tool suite for affecting other
types of runtime change in the software. Extending RESIST
to support other types of adaptation based on the
conceptual framework described in this paper should be
possible. Second, RESIST assumes changes in the system
(e.g., context) are not so frequent that they would trigger
constant adaptation of the system. One approach to
address this limitation would be to make the adaptation
decisions based on predictions over a period of time in
future, such that a tradeoff analysis as to the benefits of
adaptation versus its overhead could be made.

12 RELATED WORK

Over the past three decades many software reliability
approaches have been proposed. The approaches most
relevant to our work are those that consider the system’s
software architecture [15], [16], [23], [41], [42], [44], [52]. The
underlying assumptions in these approaches make them
unsuitable for use in the domain of dynamic and mobile
systems. Majority of these approaches focus on system-level
analysis and assume the reliabilities of the software
components are fixed and known. Moreover, many of these
approaches assume (sometimes implicitly) that the opera-
tional profile of the system is known and does not change at
runtime. Finally, none considers the impact of contextual

change on the software system’s reliability. Three recent
surveys [14], [16], [17] corroborate these observations.

Our past research has addressed some of the uncertain-
ties associated with design-time reliability analysis by
incorporating various sources of information [5], [43]. We
also identified the challenges of reliability analysis in the
mobile domain [26]. Our objective was to provide rough
reliability predictions early in the software life cycle when
an implementation of the system is not available. In
contrast to our previous work, here we are concerned with
runtime reliability of the system and rely on the avail-
ability of its implementation. Moreover, we incorporate the
latest operational and contextual information to predict the
system’s reliability and proactively place it in the optimal
configuration.

Few approaches combine software architecture and
reliability analysis using runtime data [51], [11], [38]. While
[51] and [38] target traditional and highly predictable
software, the KAMI framework [11] provides continuous
dependability analysis using a model-driven approach.
Specifically, KAMI uses runtime data to update the
parameters of reliability and performance models. The focus
of RESIST has been different from KAMI. KAMI reactively
adjusts the system’s models, while RESIST proactively
predicts near future reliability of the system. Moreover,
unlike KAMI, RESIST furnishes reliability predictions at the
component level. We believe KAMI and RESIST to be
complementary, as the continuous refinement of para-
meters in KAMI could be utilized in updating RESIST’s
reliability models.

Related to our work are the general-purpose architec-
ture-based adaptation frameworks [3], [13], [21]. In contrast
to them, RESIST is narrowly aimed at improving the
reliability of dynamic mobile and embedded systems.
While none of the existing frameworks directly achieves
our objectives, they form the foundation of our research. In
fact, our framework is compatible with the widely accepted
three layer reference model of self-adaptation [21].

Finally, related is previous research on middleware
intended for mobile and embedded software. Aura [49] is
an architectural style and supporting middleware for
ubiquitous computing applications with a special focus on
user mobility, context awareness, and context switching.
XMIDDLE [29] is a data-sharing middleware for mobile
computing. MobiPADS [3] is a reflective middleware that
supports active deployment of augmented services (called
mobilets) for mobile computing. Lime [33] is a Java-based
middleware that provides a coordination layer that can be
exploited for designing applications which exhibit either
logical or physical mobility, or both. Unlike RESIST, none of
the above technologies provides reliability-driven support
for optimization of embedded and mobile software through
proactive self-adaptation.

13 CONCLUSION

Software systems are increasingly deployed in mission-
critical settings, which present stringent reliability require-
ments. These systems are predominantly mobile, embedded,
and pervasive, which are innately dynamic and unpredict-
able. In turn, no particular configuration of the system is
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optimal for the system’s entire operational lifetime. We
presented RESIST, a framework intended to satisfy the
reliability requirements, while taking into consideration
other quality attributes (e.g., efficiency) through proactive
reconfiguration of the software. The three key contributions
of RESIST are: 1) incorporation of multiple sources of
information, in particular contextual information, to provide
refined reliability predictions at runtime; 2) automatically
find the near-optimal architectural configuration that
achieves the appropriate level of tradeoff between reliability
and other quality attributes; and 3) proactively adapt the
system by positioning it in the optimal configuration before
the system’s reliability degrades.

In our future work, we intend to evaluate the scalability
of RESIST in large-scale software systems comprised of
hundreds of components and hardware hosts. We also
intend to increase the types of reconfiguration decisions and
dependability tradeoffs that RESIST supports. We plan to
investigate the use of other stochastic approaches, namely
Dynamic Bayesian Networks and Hierarchical HMM.
Dynamic Bayesian Networks extend a traditional Bayesian
Network by incorporating the notion of time, thus provid-
ing a more accurate representation of the failure probability.
Hierarchical HMMs directly build upon the hierarchical
nature of architectural models, thus allowing for a more
natural and intuitive modeling foundation.

Finally, another interesting avenue of future research
would be an integration with KAMI [11]. KAMI incremen-
tally furnishes reliability estimates through fine-grained
refinement of DTMC parameters, while RESIST periodically
estimates the reliability of the entire system based on the
changed DTMC parameters. We believe an integration of
the two techniques would be interesting, as it allows us to
improve the speed with which RESIST reacts to reliability
violations. That is, instead of waiting for the periodic
assessment of the system reliability to detect the violations
and react to them, we would be able to detect the violations
at an earlier time and, thus, react faster than what is
currently possible with RESIST.
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