2015 12th Working Conference on Mining Software Repositories

A Study on the Role of Software Architecture in
the Evolution and Quality of Software

Ehsan Kouroshfar*, Mehdi Mirakhorlif, Hamid Bagheri*, Lu Xiao*, Sam Malek*, and Yuanfang Cait
*Computer Science Department, George Mason University, USA
fSoftware Engineering Department, Rochester Institute of Technology, USA
fComputer Science Department, Drexel University, USA

Abstract—Conventional wisdom suggests that a software sys-
tem’s architecture has a significant impact on its evolution.
Prior research has studied the evolution of software using the
information of how its files have changed together in their
revision history. No prior study, however, has investigated the
impact of architecture on the evolution of software from its
change history. This is mainly because most open-source software
systems do not document their architectures. We have overcome
this challenge using several architecture recovery techniques. We
used the recovered models to examine if co-changes spanning
multiple architecture modules are more likely to introduce bugs
than co-changes that are within modules. The results show that
the co-changes that cross architectural module boundaries are
more correlated with defects than co-changes within modules,
implying that, to improve accuracy, bug predictors should also
take the software architecture of the system into consideration.

Index Terms—Software Repositories, Software Architecture,
Defects.

I. INTRODUCTION

Software engineers have developed numerous abstractions
to deal with the complexity of implementing and maintaining
software systems. One of those abstractions is software ar-
chitecture, which has shown to be particularly effective for
reasoning about the system’s structure, its constituent ele-
ments and the relationships among them. Software architecture
enables the engineers to reason about the functionality and
properties of a software system without getting involved in
low-level source code and implementation details.

At the outset of any large-scale software construction project
is an architectural design phase. The architecture produced
at this stage is often in the form of Module View [10],
representing the decomposition of the software system into
its implementation units, called architectural modules, and
the dependencies among them.! This architecture serves as
a high-level blueprint for the system’s implementation and
maintenance activities.

Well-designed software architecture employs the principle
of separation of concern to allocate different functionalities
and responsibilities to different architectural elements com-
prising the system [18], [23]. Conventional wisdom suggests
that it is easier to make changes to a software system that

'The notion of architectural module should not be confused with module
traditionally used in the literature to refer to files or classes. Here, we
use the notion of module to mean architecturally significant implementation
artifacts, as opposed to its typical meaning in the programming languages.
Architectural modules represent the construction units (subsystems), and
therefore, also different from software components that represent the runtime
units of computation in the Component-Connector View [10].

978-0-7695-5594-2/15 $31.00 © 2015 IEEE
DOI 10.1109/MSR.2015.30

246

has a well-designed architecture. Conversely, bad architecture,
manifested as architectural bad smells [18], can increase the
complexity, possibly leading to poor software quality [23]. In
particular, scattered functionality, a well-known architectural
bad smell, increases the system’s complexity by intermingling
the functionality across multiple architectural modules. While
certain level of concern scattering is unavoidable due to non-
functional concerns (e.g., security), a good architecture tries
to minimize it as much as possible.

Monitoring the complexity of making changes to an evolv-
ing software system and measuring its effect on software qual-
ity are essential for a mature software engineering practice. It
has been shown that the more scattered the changes among
a software system’s implementation artifacts such as source
files and classes, the higher is the complexity of making those
changes, thereby the higher is the likelihood of introducing
bugs [22]. In addition, co-changes (i.e., multiple changed files
committed to a repository at the same time) have shown to be
good indicators of logically coupled concerns [17], which are
known to correlate with the number of defects [5], [13].

However, a topic that has not been studied in the prior
research, and thus the focus of this paper, is whether co-
changes involving several architectural modules(cross-module
co-changes) have a different impact on software quality than
co-changes that are localized within a single module (intra-
module co-changes). Two insights seem to suggest that not
all co-changes have the same effect. First, an architectural
module supposedly deals with a limited number of concerns,
and thus co-changes localized within an architectural module
is likely to deal with less concerns than those that crosscut
the modules. Second, it is reasonable to assume in a large-
scale software system, the developers are familiar with only a
small subset of the modules, and thus the more crosscutting
the co-changes, the more difficult it would be for the developer
to fully understand the consequences of those changes on the
system’s behavior.

Given that a large body of prior research has leveraged
co-change history for building predictors (e.g., predicting
bugs in a future release of the software) [12], [22], [27],
[37], [41], a study of this topic is highly relevant, as it has
the potential to support the construction of more accurate
predictors by leveraging architecture information. In addition,
empirical evidence corroborating our insights would underline
the importance of software architecture in the construction and
maintenance of software. In fact, the approach would pave the
way for building predictors of architectural bad smells based

on the co-change and bug history of the software system, i.e.,
pointing out the parts of the architecture that would need to
be refactored.

The contribution of this paper is two-fold. Firstly, it presents
an empirical method designed for investigating yet unexplored
but important software engineering research questions to better
understand the impact of architecturally dispersed co-changes
on software quality. In particular, we contribute two new
metrics to quantify the differences between cross-module and
intra-module co-changes.

Since in reality many software systems do not have a
complete and updated documentation of their software ar-
chitecture, our method introduces the concept of “Surrogate
Architectural Views”. Surrogate views are obtained through a
set of diverse reverse engineering methods to approximate the
system’s architecture for this experimental study.

The second contribution of this paper is in fact the observed
results of applying this empirical method on development data
of real, large scale, open source software systems, showing that
cross-module co-changes are more correlated with defects than
that of intra-module co-changes.

The remainder of paper is organized as follows. Section II
describes the prior research. Section III provides an overview
of our research methodology. Sections 1V, V, and VI respec-
tively explain the surrogate architectural views that we use in
our study, details of our hypotheses, and data collection and
analysis method. Section VII provides the results of empirical
study, while Section VIII discusses the implications of our
findings. The paper concludes with a discussion of threats to
validity in Section IX and our future work in Section X.

II. RELATED WORK

Several studies have shown that metrics mined from change
history can be effective in locating defect-prone code ar-
eas [21], [31], [32]. Previous research has also investigated the
relationships between code dependency and software quality
[6], [9]. Yet another group of studies have investigated the
relationships between change coupling and software quality
[12], [37]. Our study, on the other hand, is different and new
as it investigates the effects of change coupling together with
syntactic dependency from an architectural perspective.

There is prior empirical evidence that the part of code
that changes frequently tends to have more defects than other
code areas [31], [32]. Metrics that measure code dependency
are also known to be useful indicators of defect-prone code
areas [8]. While code dependency can represent some level of
logical relationships between code elements, change coupling
metrics are known to be useful in finding hidden dependency
between code elements [17].

Gall et al. [17] proposed the idea of logical coupling that can
be identified from change coupling. They found that there is a
stronger logical dependency between the changed subsystems
when those systems change together in a long subsequence of
releases.

Wong et al. [42] proposed an approach to detect object-
oriented modularity violation by comparing the expected
change coupling and actual change coupling. They identified
expected change coupling using structural coupling identified

247

based on the Baldwin and Clark’s design rule theory and iden-
tified actual change coupling from software revision history.

Breu and Zimmerman used co-changes to identify cross-
cutting concerns [5]. The idea is that a code change is likely
to introduce a crosscutting concern if various locations are
modified within a single code change. This study did not
consider the architecture of the system and also did not
correlate the co-changes with bugs in the system.

Eick et al. used increases in change coupling over time as an
indicator of code decay [14], [15]. Since change coupling can
be an evidence of concern scatteredness [5], studies on concern
scatteredness are relevant to our studies. Eaddy et al. [13]
showed that the degree of concern scattering and the number of
defects are strongly correlated. The biggest difference between
their study and ours is that they manually mapped concerns to
program elements to find concern scatteredness, while we use
co-changes as an indirect indication of concern scatteredness.
In addition, their metrics are at class level while our approach
works at the architectural level.

D’Ambros et al’s study [12] is closer to ours in that
they identified the relationships between change coupling
and defects. However, they performed the study at the class
level, while our focus is at the architectural level. They did
not distinguish between the change coupling of classes from
different architectural modules and same module.

Martin and Martin [28] introduced the Common Closure
Principle (CCP) as a design principle about package cohesion.
This principle implies that a change that affects a compo-
nent could affect all the classes in that component, but no
other components. Although the authors introduce CCP as a
guideline for good decomposition of architecture, they do not
investigate the impact of it on software defects.

Shihab et al. [37] showed that the number of co-changed
files is a good indicator of defects that appear in unexpected
locations (surprise defects). Hassan [22] predicted defects
using the entropy (or complexity) of code changes. Unlike
these works, we examine the nature of logical coupling from
an architectural point of view.

Mockus and Weiss [31] found that in a large switching
software system, the number of subsystems modified by a
change can be a predictor of whether the change contains a
fault, but no definition of subsystem was provided, making it
difficult to generalize their observation to other projects.

Yu et al. [44] has studied the correlation between multiple
packages dependencies and their co-evolution. However this
study does not take into account the impact of packages’ co-
evolution on software quality and defects.

Nagappan and Ball [32] used code dependency metrics and
change history metrics to predict failure-proneness. However,
they did not examine change-coupling effects. Additionally,
they used Windows Server 2003 as a project under study, the
source code and architecture of which is not publicly available.

In summary, while the majority of existing studies have
focused on examining the effects of change-coupling on de-
fects at the file level, we examine this at the architectural
level. Moreover, our research is the first to show that reverse
engineered approximation of the system’s architecture is effec-
tive for conducting this type of studies. The first author has

N-months Commit Co-Change
logs afterrelease Extractor
Co-changes
" .. |NextN-months bug Defect
Lz ¥l fixing commits Extractor
Co-changes

Architecture Explorer resultingin bugs

L

’ Package (Bunch)
View | View
; /ArchDRH™, —Surrogate § Hypothesis
View /' — Views i
—~ =S — Testin,
A DA) » ACDC .
E»V*iew“fv # T View —

Fig. 1: Overview of the experimental method

previously published a two-page short paper on the importance
of this study [24].

III. METHODOLOGY OVERVIEW

The method designed and implemented to run our empirical
study involves four components represented by rectangles in
Figure 1. The first component is Co-change Extractor, which
searches source code repositories and retrieves the groups
of files which have been changed together. It identifies the
co-changes by going through the developer commits to the
SVN repository and extracting the groups of files in the same
commit transaction that have been modified together. The
current implementation of the Co-change Extractor component
utilizes SVNKit, a Java toolkit providing APIs to access and
work with subversion repositories. This component has a
modular design, and can be easily extended to support other
source code repositories as well.

The second component is Defect Extractor, which parses
the commit logs of projects and identifies the software
changes which introduced the defects/bugs in the system.
Defect Extractor and Co-Change Extractor components are
synchronized with each other, to implement an n-months data
collection approach, where the co-changes are extracted from
the first n-months after a certain release and the introduced
bugs are retrieved from the next n-months after the co-changes
are retrieved. While Co-change Extractor component obtains
the information of co-changes from the source code repository,
the Defect Extractor component retrieves the information from
the next n-months, and finds which of the original co-changed
files has introduced defects in the next n-months time slice.

To examine the effects of co-change dispersion among the
system’s architectural modules on defects, we incorporated
a third component, Architecture Explorer, which reconstructs
the module view of architecture for our experiments. At the
state of practice, there is no reverse engineering technique
that can produce the “ground truth” architecture [19]. Archi-
tecture Explorer component thus utilizes different reverse en-
gineering approaches and obtains several Surrogate Views that
approximate the system’s architecture. The surrogate views
are then used in the last experimental module, Hypothesis

248

Testing, where the effects of software co-change dispersion
are examined from an architectural perspective. Particularly,
we are interested in exploring three research questions:

RQ1: Are co-changes dispersed across multiple architec-
tural modules more likely to have defects than co-changes
localized within an architectural module?

The positive answer to this question will enable the practi-
tioners (software architects and developers) to use co-change
dispersion metrics to assess quality of software, cope with
architectural degradation, and also focus on important co-
changes or architecturally significant ones first.

RQ2: Do different surrogates for module view exhibit
different results in terms of the relationship between co-
change dispersion and defects? If so, which surrogate
module view provides better estimate of software defects?

If the co-change dispersions measured from the various
surrogate module views are different in their ability to reveal
software defects, practitioners would need to use the views
that best reveal defects to further inspect the root causes of
the problems; otherwise, it would make more sense to use the
view that is easier to obtain.

RQ3: Does a metric that differentiates cross-module co-
changes have higher correlation with defects than a
co-change metric that does not take into account the
architecture?

If that is the case, then using a metric that distinguishes
between the different types of co-change could produce more
accurate bug prediction models. The co-change differences,
from an architectural perspective, is a factor that has been
largely ignored in the prior research. To answer these ques-
tions, the Hypothesis Testing component utilizes new metrics
we have defined in this paper plus a set of established
statistical techniques.

IV. OBTAINING SURROGATES FOR ARCHITECTURAL
MODULE VIEW

In this section, we describe the architectural representations
that we used in our study.

Comprehending the architecture and architecturally signif-
icant issues of any complex systems requires looking at the
architecture from different perspectives [2], [25] .These per-
spectives are known as architectural views, each dealing with
a separate concern. According to Clements et al. [10] three
view types are commonly used to represent the architecture of
a system: Module View, Component-and-Connector View, and
Allocation View. Module View shows units of implementation,
Component-and-Connector View represents a set of elements
that have runtime behavior and interactions, and Allocation
View shows the relationship between software and non-
software resources of development (e.g., team of developers)
and execution environment (e.g., hardware elements).

Since this study is concerned with the construction and
evolution of software, and not its runtime or deployment

characteristics, Module View is the relevant view to focus
on. Module View determines how a system’s source code
is decomposed into units and it provides a blueprint for
construction of the software.

In reality, many projects lack trustworthy architecture doc-
umentation, therefore, we used different techniques to reverse
engineer five surrogate models that approximate such archi-
tecture: Package View, Bunch View [30], ArchDRH View [7],
LDA View [3] and ACDC View [39]. Although there might
have been various techniques to reconstruct the architecture,
we chose those that have the highest degree of automation,
and therefore applicable to the context of our empirical study.

A. Package View

An intuitive approximation of the system’s architecture in
the Module View is Package View, where packages represent
the system’s architectural modules. It is reasonable to assume
the package structure to be a good approximation of the
decomposition of the system into architecturally significant
elements, as packages are created by the developers of the
system. In fact, package structuring has been used as a de-
composition reference in prior research as well [4]. Therefore,
one can say that package structuring of a Java project is
representative of Module View architecture in which each
architectural module consists of several Java classes (as a
package) and the relation between them is is-part-of. There
could be different decomposition layers when we are looking
at the package structuring. It can be seen as a tree considering
each class as a leaf that is part of a package, which itself
may be part of a bigger package, with a top package as
the root. Package view is considered at two levels. In the
high-level package view, we consider each of the top-level
directories as one of the architectural modules. For exam-
ple, in OpenJPA, we consider each subfolder of the project
(i.e., org.apache.openjpa.jdbc, org.apache.openjpa.kernel and
org.apache.openjpa.persistence) as an architectural module. In
the low-level view, architectural modules are represented by
enclosing directories of each file.

B. Bunch View

Bunch [30] is a reverse engineering tool that produces
clusters based on the dependencies among the classes. Prior
research has shown that it is among the best available tools for
reverse engineering the system’s architecture [43]. Bunch re-
lies on source code analysis tools to transform the source code
to a directed graph which is a representation of the source code
artifacts and their relations. Dependencies between classes are
binary relations that are supported by programming languages
like procedure invocation, variable access, and inheritance.
The clustering output of Bunch is a representation of Module
View architecture, where the elements of this architecture
correspond to the clustered classes. These clusters represent
depends-on and is-a relationships in the system.

C. ArchDRH View

Cai et al. [7] proposed an architecture recovery algorithm,
called the Architectural Design Rule Hierarchy (ArchDRH).
The key features of ArchDRH algorithm are as follows. First,

249

it finds design rules and gives them a special position in the
architecture, rather than aggregating them into subordinating
modules as other clustering methods would do. Second, based
on the observation that a software system usually has one or
more main programs that depend on many other elements,
acting as controllers or dispatchers, ArchDRH also separates
these controllers and gives them a special position in the
architecture. After that, ArchDRH separates the rest of the
system into modules based on the principle of maximizing
parallelism between modules. Concretely, given the depen-
dency graph formed by the rest of the system, it calculates
its connected subgraphs. For a subgraph that is still large, the
algorithm further separates design rules and controllers within
the subgraph, and processes the rest of it recursively till a stop
condition is met, e.g, all the subgraphs are strongly connected.
This way, the algorithm outputs a hierarchical structure, which
is called a design rule hierarchy.

D. LDA View

Yet another way to reconstruct the modular decomposition
of architecture is to utilize Information Retrieval and Data
Mining techniques, such as Latent Dirichlet Allocation (LDA),
which is a known approach to automatically discover the
underlying structure of the data. In the context of software en-
gineering, this method has been used to discover the modular
decomposition of a system [3], a conceptual implementation
architecture [29] or, capturing coupling among classes in OO
software systems [20].

LDA analyzes the underlying latent topics, words and terms
used to implement each class/source files and discovers the
most relevant topics describing the system. Therefore, based
on similarity of each source file and the discovered topics, it
decides which source files should be part of the same module.

Unlike the previous reconstruction approaches which utilize
the structural dependencies between classes to find a poten-
tial modularization view, LDA uses the textual similarities
between the contents of these classes and clusters them into
different modules. The number of reconstructed modules is
equal to the number of discovered underlying topics.

E. ACDC View

Algorithm for Comprehension-Driven Clustering (ACDC)
[39] clusters program entities based on the principle of easing
comprehension. Accordingly, it clusters program entities based
on a list of system patterns, such as source file pattern,
naming pattern, body-header pattern, leaf collection pattern,
and support library pattern. After first constructing the skeleton
of the system using these patterns, it then aggregates the
leftover elements using orphan adoption methods [40]. The
idea is to assign these elements into existing modules using
various criteria, such as name similarity or dependency density
between the element and a module. This algorithm also
provides meaningful names for the resulting clusters and limits
the cardinality of each cluster to ensure the resulting clusters
are easy to understand.

V. MEASURING EFFECTS OF CO-CHANGE DISPERSION

The goal of our study is to examine the effects of co-change
dispersion from an architectural perspective. To that end, we

(@)

]

Class a

1

Class d

Class b Class ¢

>

| 7

—_————— Class e

Commitl :...{b,¢} Increases cross-module co-changes by 1 for both b and ¢
Commit2 :...{a,b,c} I i dul hanges by 1 for a, band ¢

Inereases infra-module co-changes by 1 for both a and b
Increases intra-module co-changesby 1 for both a and b

Commit3 :._.{ab}

&)

Commit2: ... {a,b,c}

Co-changes dispersed across multiple architectural

adules
NS

Class b ;

Class d

Class ¢
Class a

14

Commitl: .
Co-changes localized within an architectural module

Commitl : ... {bc}
Commit2 : ... {a,b,c}

Commit3 : ... {a,b}

b

Class e

{b.c}

Increases intra-module co-changesby 1 for both b and ¢
Increases cross-module co-changes by 1 for a, b and ¢
Increases intra-module co-changesby 1 for both b and ¢
Increases cross-module co-changes by 1 for both g and b

Fig. 2: Architectural Module View Surrogates of a system: (a) Package View, and (b) Bunch View.

formulated the three research questions described in Section
III. In order to answer those questions, we define two metrics
discussed in the following section.

A. Metric Definition

To answer RQI, we compare the number of co-changes
made within an architectural module and across multiple
architectural modules for a given file. For this purpose, this
section defines metrics to quantify the number of co-changes
with respect to the system’s architectural modules.

Let S < F,P,,,C > be a project, consisting of a
set of files F, structured in a set of modules P, under the
architectural model m, and a set of commits C. Each file is
assigned to a module and none of the modules overlap. More
formally, the set P,, C P(F') is a partition of F under the
architectural model m. The relationship between a file and a
module in the m architectural model is captured by a function
Pm : ' — P,,, and a set of co-changed committed files is
identified by a function h : C' — P(F).

We can now define our two metrics for intra-module co-
changes (IMC) and cross-module co-changes (CMC) using set
cardinality expression.

Definition 1 (CMC). Number of co-changes for a file, f;,
where the co-changes are made across more than one archi-
tectural module:

CMC(f;) =card({c:C| fie h(c) A 3 f; € hic) .
pm(fi) # pm(f5)})

Definition 2 (IMC). Number of co-changes for a file, f;,
where there is at least another co-changed file in the same
architectural module:

IMC(f;) =card({c:C| fi € h(c) AN 3 f; € h(c).
pm(fz) = pm(.fj)})

More intuitively, Figure 2 illustrates the differences between
these two metrics using two surrogate architectures for a
small hypothetical example. Figure 2(a) depicts the Package
View, which includes two packages and classes inside them,
denoting the is-part-of relation. Based on this architectural
view surrogate, package 1 and package 2 are the architectural
modules of the system. Package 1 includes two classes of a
and b; Package 2 includes three classes of ¢, d and e.

In Figure 2(b) an alternative surrogate view is shown, which
is obtained by clustering the classes using Bunch (recall

250

Section IV-B) . Here, there are two depends-on relationships
(i.e., a-e and b-c) and one is-a relationship (i.e., e-d). Based
on these dependency relations, Bunch generates two clusters:
Cluster 1 includes classes b and c¢; Cluster 2 includes classes a,
e and d. These clusters here are considered as the architectural
modules of the system.

As illustrated at the bottom of Figure 2(a) and Figure 2(b),
suppose that a, b and ¢ are the co-changing files from three
commits to the repository: {a, b}, {a, b, ¢}, {b, c}. All the
files in the same set have been changed in a single commit.
We are able to calculate our metrics from these commits. For
example, in Figure 2(b), from the commit {b, c}, the values of
IMC for both b and c increase by 1, because both of the files
are in the same architectural module. From the commit {q, b,
c}, the values of CMC for a, b and c increase by 1, because
a is in a different architectural module. The IMC values for
both b and ¢ also increase by 1, since they are in the same
architectural module.

B. Underlying Characteristics of the Data

Before adopting any statistical method to answer our re-
search questions, we examined the nature and statistical char-
acteristics of our mined data. This section presents the char-
acteristics of our dataset and provides rationale for choosing
the appropriate statistical methods.

The data used in our experiments are non-negative integers,
representing the numbers of bugs, therefore can be considered
as count or frequency data. By using Q-Q normal plot, we
realized that the data does not follow a normal distribution.
Also by using scatter plot of CMC and IMC with defects,
we observed that these two metrics do not have a linear rela-
tionship with defects. The collected data, moreover, contains
numerous zeroes (i.e., files that do not change or do not have
defects). The same phenomena have also been observed by
other researchers [34], [36], [45]. In fact, it has been shown
that the distribution of fault data over modules in real systems
are highly unbalanced [45].

C. Analysis Method

Considering the characteristics of data, we ruled out the
option of using Linear Regression as it assumes the defects to
be normally distributed [45], which is certainly not the case
here. Unlike linear regression, negative binomial regression
(NBR) makes no assumptions on either the linearity of the

TABLE I: Studied Projects and Release Information

Project Description Releases SLOC Architecture
. 0.1.0 ,0.1.3 ,0.18.0 ,0.19.0, 0.19.3, 0.20.2, 0.89.20100621, Recovered
HBase Distributed Scalable Data Store 0.89.20100924, 0.90.2, 0.90.4, 0.92.0, 0.94.0 39K-246K
Hive Data Warehouse System for Hadoop 0.3.0, 0.4.1, 0.5.0, 0.6.0, 0.7.0, 0.7.1, 0.8.1, 0.9.0 66K-226K Recovered
. 1.0.1, 1.0.3, 1.1.0, 1.2.0, 1.2.1, 1.2.2, 2.0.0, Recovered
OpenJPA Java Persistence Framework 2.0.0-M3, 2.0.1, 2.1.0. 2.1.1. 2.2.0 153K-407K
Camel Integration Framework based on Enterprise Integration Patterns ;gg %gl;/l ézézio 240,250,260, 271, 99K-390K Recovered
Cassandra Distributed Database Management System 0.3.0 ,0.4.1 ,0.5.1 ,0.6.2, 0.6.5, 0.7.0, 0.7.5, 0.7.8 50K-90K Recovered
Hadoop Distributed Computing Framework 0.19 224k Ground-truth
System J An Industrial Product - 300K Recovered

relationship between the variables, or the normality of the vari-
ables distributions. Therefore NBR is an appropriate technique
to relate the number of defects in a source file to our two co-
change metrics.

This model is thus applicable to count data and even
more importantly addresses circumstances such as over-
dispersion [11], as used in previous studies [34], [35].

We want to model the relationships between the number of
defects (Y) in the source files and our two metrics. Suppose
that y; represents the number of defects for file ¢ and z; is
a vector of our two metrics (CMC and IMC) for that file.
NBR specifies that y;, given z;, has a Poisson distribution with
mean \; = fyieﬁ/“, where [is a column vector of regression
coefficients (3’ is the transpose 3) and +; is a random variable
drawn from a gamma distribution [34].

Specifically, the output of this regression model is the vector
B = [B1, B2], where B; is the coefficient of CMC and S is the
coefficient of IMC. By using NBR, the expected number of
defects varies as a function of CMC and IMC in multiplicative
factor (unlike the case of linear regression, where the outcome
is an additive function of the explanatory variables).

Since the co-changes data have a long tail (some files
have a lot of co-changes compared to others), we use the
logs transformation of our metrics to reduce the influence
of extreme values [11]. Furthermore, as NBR models the
natural log of the dependent variable (number of faults), the
coefficients can be interpreted as follows: for one unit of
change in the independent variable (e.g., CMC), the log of the
dependent variable (number of faults) is expected to change
by the value of the regression coefficient (51). To make the
idea concrete, suppose that the coefficient of CMC is 0.8. This
means that a unit change in logs of CMC is associated with an
increase of 0.8 in natural logarithm of the expected number of
defects. In essence, this would result in multiplicative factor
of €98 = 2.22 in defects.

We hypothesize that co-changes cross different architectural
modules are more correlated with defects than co-changes
within the same architectural module. If our hypothesis is true,
(1 should be greater than (5.

VI. EXECUTING THE ANALYSIS

This section describes in detail how we conducted an
experimental study to investigate our research questions about
impacts of architecture and modularity on bugs.

Projects Studied. Our experimental subjects are seven
projects from diverse domains, listed in Table I. For the
Hadoop project, we had access to its ground-truth architec-
ture, obtained through a manual recovery process by other
researchers and verified by the key developers of Hadoop [19].

251

The last project that we studied is an industrial software
project, called System J, which is codename for a system that
has also been the subject of a prior empirical study [36]. It
is a two-year old development project, comprised of about
300 KSLOC of Java in 900 files, and structured in 165
Java packages. The system aggregates a certain type of data
from many sources and uses it to support both market and
operational decision-making at a time granularity of minutes
to hours. It has a service-oriented architecture and a transac-
tional database, both implemented with third-party platform
technologies.

Data Collection. There are several techniques for linking
a bug database and a version archive of a project for finding
fix-inducing changes. For example, searching the commit logs
for specific tokens like bugs, fixes and defects followed by a
number [38]. Unfortunately, developers do not always report
which commits are bug fixes. Prior work suggests that such
links can be a biased sample of entire population of fixed bugs
[1]. But in the software repositories (Apache Foundation) and
the projects studied in this paper, the commits that are bug
fixes are distinguishable as they specify project name and bug
number as a value pair in their commit logs in SVN.

We intentionally chose equal periods of time for collecting
both co-changes and bug fixes in order to have a meaningful
comparison of the results. We performed the study using both
3 and 6 months time intervals, which produced consistent
results. Due to space constraint, the results reported in this
paper are based on a 3 months time interval. In the first 3
months, we obtain the information of co-changes from the
source code repository. Subsequently, in the next three months,
we find the files that have been changed to fix bugs. This is
repeated for the entire duration of the revision history.

At first it may seem that we could have simply used the
time between consecutive releases, but we observed that in
many cases, the periods of time between releases are not
consistent. For example, the intervals between 4 consecutive
releases of HBase project (0.90.3-0.90.6) are 66, 153, and 85
days. If we were to follow the release dates, one data point
would be based on collecting the co-changes in 66 days and
bug fixes in 153 days, while the next data point would be
based on collecting the co-changes in 153 days and the bug
fixes in 85 days. Rather, to have unbiased results required for
conducting this study, we take the approach of using equal
time for collecting both co-changes and bug fixes, which is
consistent with previous studies in the literature [33].

Interested reader may access our research artifacts at:
http://www.sdalab.com/projects/ccdispersion.

TABLE II: Regression results for architectural views of (a) Bunch, (b) ArchDRH, (c) ACDC, (d) High-level package, (e)

Low-level package, and (f) LDA.

[Project [Metrics | Bunch View [ArchDRH View | ACDC View | High-level Package | Low-level Package | LDA View |
Est P> [z | Bst P> [2) | EBst P> [2]) | Est P> [2) | Bst P> [2D | Bst Pi(> [2])
(Intercept) -3.59 <2e-16 -3.57 <2e-16 -3.64 <2e-16 -3.71 <2e-16 -3.74 <2e-16 -3.74 <2e-16
HBase log(IMC) -0.03 0.562 0.15 0.00169 0.02 0.588 0.13 0.0161 0.15 0.00772 0.14 0.0151
; log(CMC) 0.57 <2e-16 0.40 5.43e-10 0.52 <2e-16 0.40 3.7e-12 0.38 2.39e-09 0.36 9.86e-09
log(LOC) 0.36 <2e-16 0.37 <2e-16 0.37 <2e-16 0.39 <2e-16 0.39 <2e-16 0.39 <2e-16
(Intercept) -4.06 <2e-16 -4.34 <2e-16 -4.06 <2e-16 -3.65 <2e-16 -3.68 <2e-16 -4.21 <2e-16
Hive log(IMC) 0.15 0.102 0.13 0.171 0.26 0.00315 0.16 0.04 0.05 0.454 0.22 0.0252
log(CMC) 0.53 1.29e-07 0.67 1.15e-09 0.48 7.76e-06 0.50 1.19e-10 0.72 <2e-16 0.56 4.09e-07
log(LOC) 0.32 <2e-16 0.33 2.66e-15 0.31 <2e-16 0.28 <2e-16 0.24 <2e-16 0.31 <2e-16
(Intercept) -4.47 <2e-16 -4.70 <2e-16 -4.41 <2e-16 -4.37 <2e-16 -4.41 <2e-16 -4.42 <2e-16
OpenJPA log(IMC) 0.01 0.922 0.19 0.00814 0.05 0.484 0.29 8.88e-05 0.02 0.709 0.05 0.438
log(CMC) 0.59 6.02e-10 0.44 5.96e-06 0.55 1.02e-08 0.23 0.00526 0.62 4.68e-10 0.54 2.73e-09
log(LOC) 0.37 <2e-16 0.40 <2e-16 0.37 <2e-16 0.39 <2e-16 0.36 <2e-16 0.37 <2e-16
(Intercept) -4.14 <2e-16 -4.18 <2e-16 -4.17 <2e-16 -4.25 <2e-16 -4.30 <2e-16 -4.16 <2e-16
Camel log(IMC) 0.11 0.00155 0.09 0.00971 0.14 8.70e-05 0.18 9.52e-07 0.14 8.29¢-05 0.07 0.0358
log(CMC) 0.21 4.22e-09 0.25 1.96e-11 0.17 1.92e-05 0.17 4.13e-07 0.22 1.03e-08 0.25 3.62e-10
log(LOC) 0.52 <2e-16 0.52 <2e-16 0.53 <2e-16 0.53 <2e-16 0.53 <2e-16 0.52 <2e-16
(Intercept) -3.60 <2e-16 -3.48 <2e-16 -3.54 <2e-16 -3.20 <2e-16 -3.27 <2e-16 -3.28 <2e-16
Cassandra log(IMC) 0.20 0.0166 -0.05 0.336799 -0.06 0418 -0.05 0.55872 -0.01 0.962640 -0.01 0.84988
o log(CMC) 0.41 1.36e-05 0.63 <2e-16 0.69 1.13e-11 0.69 7.75e-12 0.64 1.77e-10 0.64 8.72e-13
log(LOC) 0.21 1.89e-05 0.18 0.000192 0.19 5.46e-05 0.14 0.00163 0.15 0.000942 0.15 0.00115
(Intercept) -3.58 <2e-16 -2.89 <2e-16 -2.82 <2e-16 -2.93 <2e-16 -2.98 <2e-16 - -
System J log(IMC) -0.05 0.68 -0.02 0.79 0.09 0.31 -0.07 0.46 -0.03 0.53 - -
log(CMC) 0.82 <2e-16 0.75 <2e-16 0.72 <2e-16 0.78 <2e-16 0.81 <2e-16 - -

VII. RESULTS OF THE STUDY

This section describes the result of empirically analyzing
the data in the manner described in the previous section.

A. Results for Research Question 1

To address our first research question—whether co-changes
dispersed across architectural modules are more likely to have
defects than intra-module co-changes—we use NBR to model
the count data against the two metrics we defined (recall
Section V-A). We include the file size (LOC) to control for
the relationship between the size of files and the number of
defects, as it could be argued that the larger files are more
likely to have bugs and be a party in cross-module co-changes,
thus creating a confounding effect [16], [45].

Table II summarizes the results for the five surrogate models
of Bunch, ArchDRH, ACDC, Package and LDA view. Since
we did not have access to the source code of the commercial
project, we could not generate the data for the LDA view.
Each row shows the regression coefficient for a variable along
with the p-value. For example, the regression result for Bunch
view in Hive project (Table II) indicates that the coefficient of
IMC is 0.15 and its significance level is at 89% (the p-value is
0.102), while the coefficient of CMC is 0.53 and its significant
level is more than 99% (the p-value is 6.02e-10).

We can see from these regression models that for the studied
projects, the coefficient of CMC is highly significant and is
greater than the coefficient of IMC in all surrogate views
except the high-level package view—which will be discussed
in the next subsection. In addition, we can observe that in
several instances, the attribution of IMC in the model is not
even significant. These data lend to support the proposition that
cross-module co-changes have a bigger impact on the number
of bugs than intra-module co-changes. We also observe no dif-
ference between the open-source projects and the commercial
project.

Table IIT shows the results of the regression analysis for the
ground truth architecture of Hadoop. The results of analyzing
the ground truth architecture in this project are in line with

TABLE III: Regression results for Hadoop and using the
ground-truth architecture.

\ Estimate Pr(> [z]) |
(Intercept) -4.51 1.9e-06
log(IMC) 0.94 0.00034
log(CMC) 1.80 7.1e-09
log(LOC) 0.10 0.42524

those obtained using surrogate models for the other projects
(i.e., CMC is highly significant and larger than IMC), thereby,
giving us confidence in the validity of our conclusions.

Furthermore, we compared the Spearman correlation of
CMC and IMC with defects (see table IV). As we can see, in
all of the projects, CMC has higher correlation with defects.
We used the Spearman rank correlation method, since it makes
no assumption about the distribution of data, and thus is more
appropriate for data that is not normally distributed.

Conclusion 1: Co-changes crosscutting the system’s archi-
tectural modules have more impact on defects than co-changes
localized within the same architectural modules.

B. Results for Research Question 2

Up to this point, we described the effect of co-change
dispersion across architectural modules using the five surrogate
models. In all of the projects that we investigated, co-changes
crosscutting multiple architectural modules had a stronger
impact on bugs than co-changes localized within the same
architectural module. But which one of the views is a better
predictor of defects and should be used to analyze the effect of
co-changes? The answer to this question is relevant, as it helps
the practitioners understand which view should be employed
for collecting the data in practice.

To that end, we calculated the Spearman correlation between
CMC and defects in all projects using the five views. Table
IV summarizes correlation coefficients between defects and
the CMC metric calculated for five different surrogate views
of each project. The data shows consistently similar correlation
between CMC and defects in all surrogate architectural views
except in the high-level package view, where the correlation is
relatively lower than other surrogate views. We also observed

252

TABLE IV: Correlation coefficients between defects and the metrics for cross-module co-changes (CMC), intra-module co-
changes (IMC), and number of co-changed files (NCF). (Correlations significant at the 0.01 level are highlighted)

HBase Hive OpenJPA Camel Cassandra System J
CMC | IMC | NCF | CMC | IMC | NCF | CMC | IMC | NCF | CMC | IMC | NCF | CMC | IMC | NCF | CMC | IMC | NCF
Bunch 039 | 024 | 022 | 033 | 028 | 03I 030 | 0.13 | 0.15 0.20 | 0.13 | 0.07 033 | 031 | 024 | 049 | 005 | 0.49
ACDC 039 | 021 | 022 | 037 | 029 | 031 0.31 0.13 | 0.15 0.20 | 0.11 | 0.07 034 | 027 | 024 | 052 | 033 | 049
ArchDRH 038 | 027 | 022 | 033 | 023 | 031 026 | 0.18 | 0.15 0.21 0.1 0.07 033 | 006 | 024 | 052 | 0.18 | 0.49
Package High | 036 | 029 | 022 | 031 0.28 | 0.31 0.21 021 | 0.15 0.19 | 0.16 | 0.07 032 | 026 | 024 0.51 | 021 | 049
Package Low 036 | 026 | 022 | 038 | 022 | 031 032 | 0.15 | 0.15 022 | 0.12 | 0.07 032 | 027 | 024 | 052 | 0.19 | 049
LDA 036 | 024 | 022 | 036 | 029 | 031 0.31 0.15 | 0.15 0.20 | 0.15 | 0.07 033 | 025 | 024 - - -
TABLE V: Regression results for Bunch View including Num-cochanged-files.
HBase Hive OpenJPA Camel Cassandra System J
Est. | Pr(> |z|) | Est. | Pr(> |z]) | Est. | Pr(> |z|) | Est. | Pr(> |z]) | Est. | Pr(> |z]) | Est. | Pr(> |z|)
(Intercept) | -3.20 | <2e-16 | -4.49 | < 2e-16 | 435 | < 2e-16 | -3.82 | < 2e-16 | -2.59 | 2.24e-13 | -2.77 | 0.00044
log2(IMC) | 0.04 | 0.495515 | 0.07 | 0.44580 | 0.04 0.582 0.20 | 5.41e-07 | 0.27 0.0013 | -0.06 | 0.59429
log2(CMC) | 0.74 | <2e-16 | 0.38 | 0.00149 | 0.67 | 2.15¢-09 | 0.37 | 1.33e-15 | 0.77 | 1.33e-09 | 1.00 | 1.00E-07
log2(NCF) | -0.17 | 0.000189 | 0.16 | 0.01743 | -0.07 0.227 -0.15 | 6.67e-08 | -0.40 | 1.04e-05 | -0.27 | 0.26421
log2(LOC) | 0.34 | <2e-16 | 033 | <216 | 037 | < 2e-16 | 051 | < 2e-16 | 022 | 5.71e-06 - -

that (cf. Table II) in two cases—i.e., OpenJPA and Camel high-
level package views—IMC is even greater than CMC. Further
analysis showed that high-level package view is not a proper
representation for the architectural modules of a system due
to its coarse granularity. For instance, nearly 65% of files in
the Camel (version 2.9.1) are located in one of its top level
packages (called “components”).

The data suggests that developers can use any of the
available surrogate views except the high-level packages to
monitor the changes being made in the system. In fact, it
means that even using the low-level package structure and
not any complex reverse engineering methods can be helpful
in monitoring the health of a system from its change history
(e.g., identify co-changes that may indicate architectural bad
smells, as further discussed in Section VIII).

Conclusion 2: No surrogate view is conclusively better than
others, as they all—except the high-level package view—
produce similar results in terms of the relationship between
co-change dispersion and defects.

C. Results for Research Question 3

To address the third research question—whether a co-
change metric considering architectural modules has higher
correlation with defects than one that does not—we com-
pare our CMC architecture-relevant metric with the num-co-
changed-files (NCF) metric of Shihab et al. [37] to see which
one is more correlated with defects. Their metric does not take
into account the notion of architectural modules.

Shihab et al. [37] in their extensive study of bug prediction
extracted 15 different metrics from three categories of (1)
traditional metrics (e.g., file-size), (2) co-change metrics (e.g.,
num-co-changed-files) and (3) time factors (e.g., latest-change-
before-release) to predict defects. Since some of these metrics
are highly correlated, they performed a multicollinearity test
to remove the metrics that have overlapping degree of impact.
After removing the overlapping metrics, five were left that
covered all of the three categories. One of these five metrics
was num-co-changed-files, which indicates the total number of
files a file has co-changed with. Note that NCF measures the

253

magnitude of change, as opposed to whether the co-changed
files were from different architectural modules or not.

We compared NCF with CMC to see which one is more cor-
related with defects. Table IV shows the results of Spearman
correlation with defects. As we can see, in all of the projects,
CMC has higher correlation with bugs.

To further evaluate the effect of the NCF metric, we
regressed NCF and LOC against defects, and corroborated the
earlier study that NCF has a significant positive impact on
defects. However, as shown in Table V, when we added NCF
in a regression model including our metrics (i.e., CMC and
IMC), we see that the effect of NCF is often not statistically
significant, and it does not have a positive impact on defects.
This is while CMC remains positively correlated with defects,
and its effect is consistently significant across the projects.

This result is interesting, as it indicates that the type of
change (i.e., cross-module versus intra-module) is more impor-
tant than the magnitude of change. It also suggests that using
a metric that distinguishes cross-module co-changes has the
potential to improve bug prediction accuracy. The co-change
differences, in particular from an architectural perspective, is
a factor that has been largely ignored in the prior research.

Conclusion 3: A co-change metric that considers architec-
tural modules have higher correlation with defects than one
that does not distinguish cross-module co-changes.

VIII. DISCUSSION

Conventional wisdom suggests that a software system’s
architecture plays an important role in its evolution and
maintenance, in particular the ease with which changes can
be made to that system. In this study, we have tried to collect
empirical evidence as to the role of software architecture in
the evolution of a software system. We summarize the findings
and the implications of our study here.

A. Role of Architecture in Maintenance

In Section VII-A, we showed co-changes that crosscut mul-
tiple architectural modules are more correlated with defects
than co-changes that are localized in the same module. This

could be attributed to the fact that an architectural module
supposedly deals with a limited number of concerns, and thus
co-changes localized within an architectural module is likely
to deal with less complicated issues than those that crosscut
the modules. In addition, it is reasonable to assume in a large
scale software system, the developers are familiar with only a
small subset of the modules, and thus the more architecturally
disperse the co-changes, the more difficult it would be for
the developer to fully understand the consequences of those
changes on the system’s behavior, and therefore more likely
to make changes that induce bugs.

There are also cases where dispersed co-changes, which
have introduced bugs, have happened in source files without
any apparent architectural dependencies. Further exploration,
however, revealed the existence of tacit (indirect) dependencies
among these files. Our metrics have shown to be effective in
bringing awareness of these hidden coupling and complexities
in the system’s software architecture.

As an example, our cross-module co-changes metric helped
us to discover one such case in Hbase project. This system
utilizes ZooKeeper, an external middleware for providing
high performance coordination in distributed environments.
Furthermore, Hbase implements a master-slave architecture,
where functionalities are clearly divided into separate roles
of Master and Slave servers. But when looking at the re-
covered architecture of the system, and manually investigated
the change logs of this system: we recognized that HRe-
gionServerjava and HRegion.java files, located in the slave
module, and HBase.java and HMaster.java, located in the
master module exhibit very high cross-module co-changes,
even though there is no direct dependency between them.

Our analysis showed that despite the fact that these files
do not have any direct method calls, they are communicating
with one another through ZooKeeper. Therefore, architectural
decisions impacting one module would often impact the other
module, thereby bringing about the observed co-change effect.
Such architectural decisions included regular synchronization
between master and slaves, leader election mechanism to
handle the failure of a master, and data locking and unlocking
used to manage access to shared resources. The existence
of this tacit dependency has turned this part of the system
into a critical spot, exposing inherent complexities that have
resulted in various bugs. By looking at the bug reports for
the involved modules, we observed bugs such as deadlock
due to problematic implementation or modification of locking
decision, performance issues due to excess synchronization
between master and slaves, and various other bugs as the
developers tweaked the code snippets related to the leader elec-
tion mechanism originally used to handle fail over of master
servers. The recurring bugs in this part of the system could
be attributed to the lack of visible architectural dependency in
the code, which our metrics could detect.

This result is useful, as it corroborates the conventional
wisdom that the software architectural decisions (e.g., how
a software system is decomposed into its elements) have a
significant impact on the system’s evolution. In addition, it
underlines the impact of software architecture on open-source
projects, a community that has not been generally at the fore-

254

front of adopting software modeling and architecting practices.
We hope this study serves as an impetus for the open-source
community to document and maintain the architecture of such
systems alongside the code.

B. Building Better Bug Predictors

Co-changes have been used extensively in the past for
building defect predictors [37]. Our study shows that not
all co-changes have the same effect on the system’s quality.
Moreover, in Section VII-C, we showed that our co-change
metric (cross-module co-changes) has a higher correlation with
defects than a co-change metric that has been used previously
in bug prediction models (num-co-changed-files). This implies
that by distinguishing between the types of co-changes, it is
possible to develop more accurate defect prediction models.

C. Architectural Bad Smell Predictors

We experimented with different surrogate representations
of the system’s architecture in our study. Our study shows
that the correlation of cross-module co-changes and defects is
statistically significant at 99% confidence interval in all data
points using all of the views (recall Table II). We believe these
experiments could inform future research in the discovery of
architectural bad smells, i.e., architectural choices that have
detrimental effects on system lifecycle properties. One ap-
proach to identify the architectural bad smells is to leverage the
metrics introduced in this paper. For instance, by collecting the
number of crosscutting co-changes per architectural module
over several releases of a software system, one is able to
identify the architectural modules that contribute the most to
crosscutting co-changes and thus likely to harbor bad smells.

D. Empirical Research

Surprisingly few empirical studies have explored the im-
pact of software architecture on its evolution. We believe
this is mainly because many open-source software projects
commonly used in the empirical software engineering research
do not explicitly document and maintain the architecture of the
system as it evolves. Thus, an implicit contribution of our work
is the research methodology, whereby in the absence of actual
models, multiple surrogate models were used as approximation
of the system’s software architecture. Although these surrogate
models inevitably pose a threat to the validity of our results
(as discussed in more detail in the next section), they also
present a unique opportunity for the research community to
investigate and learn from the vast information available in
the open-source software repositories.

The potential of applying this methodology to study other
relevant questions in light of the system’s software architecture
are promising. For instance, it is said that multi-component
defects (i.e., defects requiring changes to multiple components
of a software system) tend to expedite architectural degener-
ation of a system [27]. Similarly, it is said that architectural
defects could account for as much as 20 percent of all defects,
but compared to other types of defects they could consume
twice as much time to fix [26]. However, adequate empirical
research on open-source projects has not actually verified these
behaviors. We believe the research methodology followed in

TABLE VI: Regression Results Using Random Clusters.
HBase Hive OpenJPA Camel Cassandra
Est. | Pr(> |z]) | Est. | Pr(> |z]) | Est. | Pr(> |z|) | Est. | Pr(> |z]) | Est. | Pr(> |z])
(Intercept) | -3.70 | <2e-16 | -4.04 | < 2e-16 | -443 | < 2e-16 | -4.19 | < 2e-16 | -347 | < 2e-16
log2(IMC) | 0.20 | 0.00078 046 | 5.75e-07 | 0.37 1.63e-05 | 0.22 | 1.73e-08 | -0.07 | 0.466172
log2(CMC) | 0.35 1.35e-08 | 0.31 1.72e-05 | 0.13 0.0595 0.11 0.00068 0.69 | 3.02e-10
log2(LOC) | 0.38 <2e-16 033 | <2-16 | 040 | <216 | 052 | < 2e-16 | 0.18 | 0.000179

our work (i.e., using the reverse engineered views of the
system’s architecture) could pave the way for empirically
investigating such hypothesized phenomena.

IX. THREATS TO VALIDITY

We now describe the main threats to validity of our findings.

A. Construct Validity

Construct validity issues arise when there are errors in
measurement. First threat to validity is in the way we link bugs
with the classes in the system. The pattern matching technique
that we use to find bug references in commit logs does not
guarantee to find all the links. Furthermore, since we are using
bug fixes, not reported bugs, we do not consider faults that
are reported, but not yet fixed. There may be modules with
several reported defects that have not been fixed in the period
of analysis, although the chances of that happening are low.

There is also a threat to validity of the results regarding the
3 months interval for data collection. However, as mentioned
in Section VI, when we repeated the experiments using the
6 months interval, we obtained consistent results as those
reported in the paper. In fact, using equal periods for collecting
co-changes and bug fixes is an approach that we have borrowed
from prior research [33].

There is also a threat to validity regarding the reverse
engineering methods that we used. For example, Bunch uses
several heuristics in a hill climbing approach to find the
clusters and therefore the clustering results may be slightly
different in consecutive runs on the same project. That said,
Mitchell et al. [30] have showed that the result of Bunch is
mostly stable over individual runs. Moreover, we did some
sensitivity analysis and observed that these differences would
not have a considerable effect on the results of our study.
The other reverse engineering techniques have been previously
used by other researchers; we also manually examined their
accuracy and usefulness of their output before incorporating
them in the paper.

One could argue our findings are not due to the recovered
architectures and basically any clustering of files would have
produced the same results. To assess this threat, we repeated
the experiments by replacing the surrogate architectural mod-
ules with randomly constructed clusters. The results (summa-
rized in Table VI) are not consistent across the projects. In
HBase and Cassandra, CMC is greater than IMC, while in the
other three projects we observe the reverse of that.

B. External Validity

External threats deal with the generalization of the find-
ings. First, we intentionally chose projects that have bug-fix
information in the commit logs, but this information may not
be available for other projects. Second threat is related to the

255

projects that we used in this empirical study, since all of them
are developed in Java. An interesting future work could be
to replicate this study on software projects implemented in
other object oriented languages, like C++. Third threat is the
way we defined Package View, which is based on package
structuring of Java language and is only applicable to Java
projects, although one may be able to use similar concepts in
other programming languages, e.g., namespace in C#.

X. CONCLUSION

Software architecture plays an important role in the con-
struction and maintenance of software. In practice, however,
we see it being discounted, in particular by the open source
community that has traditionally placed a premium on the code
rather than the underlying architectural principles holding a
system together. This is not to say such systems are devoid
of architecture, but that the architecture is not explicitly
represented and maintained during the system’s evolution.

This paper reports on an empirical study that aims to provide
concrete evidence of the impact of architecture on the quality
of software during its evolution. Although several studies have
used the co-change history to build bug prediction models,
no prior study investigated the impact of co-changes involv-
ing several architectural modules versus co-changes localized
within a single module. In the absence of explicit architectural
models in open-source projects, to conduct this study we used
surrogate models that approximate the architecture of a system.
Our findings show that co-changes that crosscut multiple
architectural modules are more correlated with defects than
co-changes that are localized in the same module. We also
arrived at the same conclusion when we performed the study
using a commercial project, as well as an open-source project
with a documented architecture. Our study corroborates the
importance of considering software architecture as one of the
key factors affecting the quality of a changing software system.

We are formulating a research agenda that aims to correlate
the revision/defect history of software with its architecture to
shed light on the root cause of problems. The insight in our re-
search is that predicting where bugs are likely to occur, which
has received much attention in the past decade, is not as useful
to the developers as helping them understand why they occur.
To that end, we believe architecture provides an appropriate
level of granularity for understanding the root cause of a large
class of defects that are due to bad architectural choices.

XI. ACKNOWLEDGMENTS

This work was supported in part by awards CCF-
1252644, CCF-0916891, CCF-1065189, CCF-1116980 and
CCF-0810924 from the US National Science Foundation.

(1]

[2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein, “The
missing links: bugs and bug-fix commits,” in /8th ACM SIGSOFT
international symposium on Foundations of software engineering, ser.
FSE ’10. Santa Fe, New Mexico: ACM, Nov. 2010, pp. 97-106.
[Online]. Available: http://doi.acm.org/10.1145/1882291.1882308

L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
2nd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2003.

G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia,
“Improving software modularization via automated analysis of latent
topics and dependencies,” Accepted to appear in ACM Transactions on
Software Engineering and Methodology (TOSEM).

F. Beck and S. Diehl, “Evaluating the impact of software evolution on
software clustering,” in 17th Working Conference on Reverse Engineer-
ing, Beverly, Massachusetts, Oct. 2010, pp. 99-108.

S. Breu and T. Zimmermann, “Mining aspects from version history,”
in 21st IEEE/ACM International Conference on Automated Software
Engineering, Tokyo, Japan, Sep. 2006, pp. 221-230.

L. C. Briand, J. Wst, J. W. Daly, and D. Victor Porter, “Exploring
the relationships between design measures and software quality
in object-oriented systems,” Journal of Systems and Software,
vol. 51, no. 3, pp. 245-273, May 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121299001028
Y. Cai, H. Wang, S. Wong, and L. Wang, “Leveraging
design rules to improve software architecture recovery,” in
Proceedings of the 9th international ACM Sigsoft conference on
Quality of software architectures, ser. QoSA ’13. Vancouver,
Canada: ACM, Jun. 2013, pp. 133-142. [Online]. Available:
http://doi.acm.org/10.1145/2465478.2465480

M. Cataldo, A. Mockus, J. Roberts, and J. Herbsleb, “Software de-
pendencies, work dependencies, and their impact on failures,” IEEE
Transactions on Software Engineering, vol. 35, no. 6, pp. 864-878, 2009.
S. R. Chidamber and C. F. Kemerer, “A metrics suite for object
oriented design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476493,
Jun. 1994. [Online]. Available: http://dx.doi.org/10.1109/32.295895

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Mer-
son, R. Nord, and J. Stafford, Documenting Software Architectures:
Views and Beyond. Pearson Education, Oct. 2010.

J. Cohen and J. Cohen, Applied multiple regression/correlation analysis
for the behavioral sciences. Mahwah, N.J.: L. Erlbaum Associates,
2003.

M. D’ Ambros, M. Lanza, and R. Robbes, “On the relationship between
change coupling and software defects,” in 16th Working Conference on
Reverse Engineering, Lille, France, Oct. 2009, pp. 135-144.

M. Eaddy, T. Zimmermann, K. Sherwood, V. Garg, G. Murphy, N. Na-
gappan, and A. Aho, “Do crosscutting concerns cause defects?” IEEE
Transactions on Software Engineering, vol. 34, no. 4, pp. 497-515, 2008.
S. Eick, T. Graves, A. Karr, J. Marron, and A. Mockus, “Does code
decay? assessing the evidence from change management data,” /IEEE
Transactions on Software Engineering, vol. 27, no. 1, pp. 1-12, Jan.
2001.

S. Eick, T. Graves, A. Karr, A. Mockus, and P. Schuster, “Visualizing
software changes,” IEEE Transactions on Software Engineering, vol. 28,
no. 4, pp. 396-412, 2002.

K. El Emam, S. Benlarbi, N. Goel, and S. Rai, “The confounding
effect of class size on the validity of object-oriented metrics,” IEEE
Transactions on Software Engineering, vol. 27, no. 7, pp. 630-650, Jul.
2001.

H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in International Conference on Software
Maintenance, Bethesda, Maryland, Nov. 1998, pp. 190-198.

J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying
architectural bad smells,” in 13th European Conference on Software
Maintenance and Reengineering, Kaiserslautern, Germany, Mar. 2009,
pp. 255-258.

J. Garcia, I. Krka, C. Mattmann, and N. Medvidovic, “Obtaining
ground-truth software architectures,” in Proceedings of the International
Conference on Software Engineering, ser. ICSE *13. San Francisco,
CA, USA: IEEE Press, May 2013, pp. 901-910. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486911

M. Gethers and D. Poshyvanyk, “Using relational topic models to
capture coupling among classes in object-oriented software systems,”
in IEEE International Conference on Software Maintenance (ICSM),
Timisoara, Romania, Sep. 2010, pp. 1-10.

256

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[40]

T. Graves, A. Karr, J. Marron, and H. Siy, “Predicting fault incidence
using software change history,” IEEE Transactions on Software Engi-
neering, vol. 26, no. 7, pp. 653-661, 2000.

A. E. Hassan, “Predicting faults using the complexity of code changes,”
in 31st International Conference on Software Engineering, ser. ICSE
’09. Vancouver, Canada: IEEE Computer Society, May 2009, pp. 78—
88. [Online]. Available: http://dx.doi.org/10.1109/ICSE.2009.5070510
L. Hochstein and M. Lindvall, “Combating architectural degeneration:
a survey,” Inf. Softw. Technol., vol. 47, no. 10, pp. 643-656, Jul. 2005.
[Online]. Available: http://dx.doi.org/10.1016/j.infsof.2004.11.005

E. Kouroshfar, “Studying the effect of co-change dispersion on software
quality,” in ACM Student Research Competition, 35th International
Conference on Software Engineering (ICSE), San Francisco, CA, May
2013, pp. 1450-1452.

P. Kruchten, “Architecture blueprints—the *4+1° view model of software
architecture,” in Tutorial Proceedings on Ada’s Role in Global Markets:
solutions for a changing complex world, ser. TRI-Ada *95. Anaheim,
CA, USA: ACM, Nov. 1995, pp. 540-555. [Online]. Available:
http://doi.acm.org/10.1145/216591.216611

M. Leszak, D. Perry, and D. Stoll, “A case study in root cause
defect analysis,” in International Conference on Software Engineering,
Limerick, Ireland, Jun. 2000, pp. 428-437.

Z. Li, M. Gittens, S. Murtaza, N. Madhavji, A. Miranskyy, D. Godwin,
and E. Cialini, “Analysis of pervasive multiple-component defects in a
large software system,” in IEEE International Conference on Software
Maintenance, Edmonton, Alberta, Sep. 2009, pp. 265-273.

R. C. Martin and M. Martin, Agile principles, patterns, and practices
in C#. Upper Saddle River, NJ: Prentice Hall, 2007.

M. Mirakhorli, J. Carvalho, J. Cleland-Huang, and P. Mader, “A domain-
centric approach for recommending architectural tactics to satisfy quality
concerns,” in Third International Workshop on the Twin Peaks of
Requirements and Architecture, Rio de Janeiro, Brazil, Jul. 2013, pp.
1-8.

B. Mitchell and S. Mancoridis, “On the automatic modularization of
software systems using the bunch tool,” IEEE Transactions on Software
Engineering, vol. 32, no. 3, pp. 193-208, 2006.

A. Mockus and D. M. Weiss, “Predicting risk of software changes,”
Bell Labs Technical Journal, vol. 5, no. 2, pp. 169-180, 2000. [Online].
Available: http://onlinelibrary.wiley.com/doi/10.1002/bltj.2229/abstract
N. Nagappan and T. Ball, “Use of relative code churn measures to predict
system defect density,” in 27th International Conference on Software
Engineering, St. Louis, Missouri, May 2005, pp. 284-292.

, “Using software dependencies and churn metrics to predict field
failures: An empirical case study,” in First International Symposium on
Empirical Software Engineering and Measurement, Madrid, Spain, Sep.
2007, pp. 364-373.

T. Ostrand, E. Weyuker, and R. Bell, “Predicting the location and number
of faults in large software systems,” IEEE Transactions on Software
Engineering, vol. 31, no. 4, pp. 340-355, 2005.

D. Posnett, R. D’Souza, P. Devanbu, and V. Filkov, “Dual ecological
measures of focus in software development,” in Proceedings of the
2013 International Conference on Software Engineering, ser. ICSE
’13. San Francisco, CA, USA: IEEE Press, May 2013, pp. 452-461.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2486788.2486848
R. Schwanke, L. Xiao, and Y. Cai, “Measuring architecture quality
by structure plus history analysis,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE *13. San
Francisco, CA, USA: IEEE Press, May 2013, pp. 891-900. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2486910

E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E. Hassan,
“High-impact defects: a study of breakage and surprise defects,” in
19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, ser. ESEC/FSE "11. Szeged,
Hungary: ACM, Sep. 2011, pp. 300-310. [Online]. Available:
http://doi.acm.org/10.1145/2025113.2025155

J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1-5, May 2005.
[Online]. Available: http://doi.acm.org/10.1145/1082983.1083147

V. Tzerpos and R. C. Holt, “ACDC: An algorithm for comprehension-
driven clustering,” in Proceedings of the Seventh Working Conference
on Reverse Engineering, ser. WCRE ’00. Washington, DC, USA:
IEEE Computer Society, Nov. 2000, p. 258. [Online]. Available:
http://dl.acm.org/citation.cfm?id=832307.837118

V. Tzerpos and R. Holt, “The orphan adoption problem in architecture
maintenance,” in Working Conference on Reverse Engineering, Amster-
dam, The Netherlands, Oct. 1997.

[41]

[42]

[43]

R. J. Walker, S. Rawal, and J. Sillito, “Do crosscutting concerns
cause modularity problems?” in 20th International Symposium on the
Foundations of Software Engineering, ser. FSE ’12. Cary, North
Carolina: ACM, Nov. 2012, pp. 49:1-49:11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393654

S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software
modularity violations,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11. Honolulu,
Hawaii: ACM, May 2011, pp. 411-420. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985850

J. Wu, A. Hassan, and R. Holt, “Comparison of clustering algorithms
in the context of software evolution,” in 2I1st IEEE International

257

[44]

[45]

Conference on Software Maintenance, Budapest, Hungary, Sep. 2005,
pp. 525-535.

L. Yu, A. Mishra, and S. Ramaswamy, “Component co-evolution and
component dependency: speculations and verifications,” IET Software,
vol. 4, no. 4, pp. 252-267, Aug. 2010.

Y. Zhou, B. Xu, H. Leung, and L. Chen, “An in-depth study of the
potentially confounding effect of class size in fault prediction,” ACM
Trans. Softw. Eng. Methodol., vol. 23, no. 1, pp. 10:1-10:51, Feb.

2014. [Online]. Available: http://doi.acm.org/10.1145/2556777

