
Meta-analysis Workshop

David B. Wilson, PhD
George Mason University

November 2010

David B. Wilson, PhD Meta-analysis Workshop



The End-Game

Forest-Plot of Odds-Ratios and 95% Confidence Intervals for the
Effects of Cognitive-Behavioral Programs on Recidivism

 Porporino & Robinson, 1995  

 Johnson & Hunter, 1995  

 Robinson, D., 1995  

 Porporino, Fabiano, & Robinson, 1991  

 Little, Robinson, & Burnette, 1991a  

 Little & Robinson, 1989  

 Little, Robinson, & Burnette, 1994  

 Burnett, 1996  

 Ross, Fabiano, & Ewles, 1988  

 Mean
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 Odds−Ratio Effect Size
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A Great Debate

Eysenck 1952: Psychotherapy doesn’t work

Dizzying array of mixed results followed

Glass (with Smith) average results from 375 studies

Glass coined the term meta-analysis
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Deep Roots

Pearson (1904): averaged correlations between inoculation for
typhoid fever and mortality

Fisher (1944): independent studies individually may not be
significant, yet the aggregate seem improbable

W. G. Cochran (1953): developed methods of averaging
means across studies

A. Wicker (1967) average correlations between attitudes and
behavior

Concurrent with Smith and Glass (1977) were

Hunter and Schmidt (1977) Validity generalization
Rosenthal and Rubin (1978) Interpersonal expectancy effects
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Why Meta-Analysis?

Narrative review methods:

Focuses on statistical significance
Lacks transparency and replicability

Weakness of statistical significance:

Significant effect is a strong conclusion
Non-significant effect is a weak conclusion
How do you balance a collection of significant and
non-significant effects?

Meta-analysis:

focuses on direction and magnitude
approaches task as a research endeavor
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Overview

Some preliminaries (searching for studies, etc.)

Effect Sizes

Basic aggregation method

Testing for Homogeneity

Fixed and Random Effects Models

Moderator Analysis
ANOVA type
Regression type

Publication bias

Comparison of approaches
Hedges and Olkin: Inverse Variance Weight
Hunter and Schmidt: Psychometric

Advanced topics
Dependent effect sizes
Structural equation models
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Some Preliminaries

A meta-analysis should adopted systematic review methods

Comprehensive search for all relevant studies
Explicit inclusion/exclusion criteria
Systematic and reliable coding
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Effect Size

Encodes relationship of interest into a common index

Must be:

comparable across studies
independent of sample size
have a computable standard error

Many different effect size indices

Multiple methods of computing each

Most common:

Correlation coefficient (r)
Standardized mean difference (d)
Odds-ratio
Risk-ratio
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Computing Effect Sizes

Must compute effect size from information provided
Conversions from other statistics

t-test
p-value
descriptive statistics
etc.

Manipulation of data

collapsing across subgroups
adding “drop-outs” back into the treatment condition

Some conversions better than others (algebraic equivalents;
rough approximations)

Some studies simply do not provide necessary information
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Standardized Mean Difference

Fundamental relationship:

Group contrast
Continuous dependent variable

Logic: scaling effects based on standard deviation

Definitional equation:

ES sm = X 1−X 2
spooled

Example: meta-analysis of the effectiveness of
cognitive-behavioral therapy in reducing depression
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Standardized Mean Difference

Based on a t-test

ES sm = t
√

n1+n2
n1n2

Based on a correlation

ES sm = 2r√
1−r2

Based on 2 by 2 table (dichotomous outcome; logit method)

ES sm = ln
(
ad
bc

) √
3

π
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Correlation as Effect Size

Fundamental relationship:

Two inherently continuous constructs

Correlation “comes” standardized

ES r = r

Example: Relationship between GRE scores and performance
in graduate school
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Odds-Ratio

Fundamental relationship:

Group contrast
Dichotomous dependent variable

Data can be represented in a 2 by 2 contingency table

Success Failure

Treatment Group a b

Control Group c d

Odds-ratio effect size computed as:

ESOR = ad
bc
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Software for Computing Effect Sizes

Computing correlation and odds-ratio effect sizes from studies
is generally easy

Computing standardized mean difference effect sizes can get
complicated

Software can be helpful

Effect Size by Shadish, Robinson, and Lu
(http://assess.com)
ES Calculator by Wilson
(http://www.campbellcollaboration.org/resources/
effect_size_input.php)
Comprehensive Meta-analysis by Biostat
(http://metaanalysis.com)
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Effect Size Computation Exercise

See handout.
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Basics of Meta-Analysis

Goal:

Describe the distribution, including its mean
Establish a confidence interval around the mean
Test that the mean differs from zero
Test whether studies tell a consistent story (are homogeneous)
Explore the relationship between study features and effect size
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Determining the Mean Effect Size

Problem: some effect sizes are more accurate than others

What we need is an index of precision

Standard error is a direct measure of precision

Hedges and Olkin solution:

Weight by the inverse variance
Provides a statistical basis for:

Standard error of the mean effect size
Confidence intervals
Homogeneity testing
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Some Preliminary Transformations

Small sample size bias correction for the standardized mean
differences:

ES ′sm =
(

1 − 3
4N−9

)
ESsm

Fisher’s Zr transform of correlations (ES r ):

ESzr = 1
2 log

(
1+r
1−r

)
Log transform of Odds-ratios ESOR :

ES ln(OR) = log (ESOR)
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Inverse Variance Weights

Standardized mean difference ES sm:

sesm =
√

n1+n2
n1n2

+ ESsm
2

2(n1+n2)

Correlation ES r (actually, the Fisher’s Zr ):

ser = 1√
n−3

Odds-ratio ESOR (actually, the logged odds-ratio):

seOR =
√

1
a + 1

b + 1
c + 1

d

Inverse variance weight w :

w = 1
se2
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Almost ready

At this point, we have for each study:

An effect size
An inverse variance weight

Problem: statistical models assume independence

Only include one effect size per study (or independent sample)

Multiple analyses for different subsets of independent effects

Different outcome constructs
Different time periods
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Inverse Variance Weighted Mean Effect Size

Meta-analytic mean effect size is:

ES =
∑

wiESi∑
wi

where ESi is the effect size for each study (i) and wi is the inverse
variance weight

Standard error of the mean effect size is:

seES = 1∑
wi
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Inverse Variance Weighted Mean Effect Size

Meta-analytic mean effect size is:

ES =
∑

wiESi∑
wi

where ESi is the effect size for each study (i) and wi is the inverse
variance weight

Standard error of the mean effect size is:

seES = 1∑
wi
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Some Basic Inferential Statistics

Confidence intervals can be constructed in the usual manner:

ES lower = ES − seES1.96

ESupper = ES + seES1.96

And a z-test can be performed as:

z = ES
seES
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An Example: Group-Based Cognitive-Behavioral Programs
for Adult Offenders

Author Sample Size Odds-Ratio Logged OR w

Burnett, 1996 60 2.25 0.81 1.727
Johnson & Hunter, 1995 98 1.22 0.20 4.843
Little & Robinson, 1989 180 1.52 0.42 7.614
Little et al 1991 152 1.49 0.40 8.466
Little et al 1994 1381 1.86 0.62 45.742
Porporino et al 1991 63 1.33 0.28 3.633
Porporino & Robinson, 1995 757 1.08 0.08 19.919
Robinson, D., 1995 2125 1.25 0.20 56.895
Ross et al 1988 45 10.29 2.33 1.958

Note: These studies are a subset of studies included in Wilson et al. (2005) and
represent two specific treatment programs (Moral Reconation and Reasoning
and Rehabilitation) and studies that were randomized or used high quality quasi-
experimental designs.
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Forest-Plot

Forest-Plot of Odds-Ratios and 95% Confidence Intervals for the
Effects of Cognitive-Behavioral Programs on Recidivism

 Porporino & Robinson, 1995  

 Johnson & Hunter, 1995  

 Robinson, D., 1995  

 Porporino, Fabiano, & Robinson, 1991  

 Little, Robinson, & Burnette, 1991a  

 Little & Robinson, 1989  

 Little, Robinson, & Burnette, 1994  

 Burnett, 1996  

 Ross, Fabiano, & Ewles, 1988  

 Mean

 .5  .75  1  1.5  2  4  10  20  40
 Odds−Ratio Effect Size
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An Example: Group-Based Cognitive-Behavioral Programs
for Adult Offenders

Stata output from “meanes.ado”

. meanes lgor [w=w]

(analytic weights assumed)

Version 2005.05.23 of meanes.ado

No. of obs = 9 Homogeneity Analysis

Minimum obs = .0764 Q = 14.19

Maximum obs = 2.331 df = 8

Weighted SD = 0.307 p = 0.07695

--------------------------------------------------------------------------

| Mean -95%CI +95%CI SE Z P

----------------+---------------------------------------------------------

Fixed effect | 0.37107 0.21146 0.53067 0.08143 4.55671 0.00001

Random effect 1 | 0.40218 0.14349 0.66086 0.13198 3.04718 0.00231

Random effect 2 | 0.38438 0.17673 0.59203 0.10595 3.62808 0.00029

------------------------------------------------------------------------

1 Random effects variance component (method of moments) = 0.05542

2 Random effects variance component (full information ML) = 0.02054
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An Example: Group-Based Cognitive-Behavioral Programs
for Adult Offenders

Stata output from “meanes.ado”

. meanes lgor [w=w], print(exp)

(analytic weights assumed)

Version 2005.05.23 of meanes.ado

No. of obs = 9 Homogeneity Analysis

Minimum obs = 1.08 Q = 14.19

Maximum obs = 10.290 df = 8

Weighted SD = . p = 0.07695

--------------------------------------------------------------------------

| Mean -95%CI +95%CI SE Z P

----------------+---------------------------------------------------------

Fixed effect | 1.44928 1.23548 1.70008 . 4.55671 0.00001

Random effect 1 | 1.49507 1.15430 1.93645 . 3.04718 0.00231

Random effect 2 | 1.46870 1.19331 1.80765 . 3.62808 0.00029

------------------------------------------------------------------------

1 Random effects variance component (method of moments) = 0.05542

2 Random effects variance component (full information ML) = 0.02054

Results are the exponent of computed values (i.e., results are odds-ratios)
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Homogeneity Testing

Homogeneity analysis tests whether the assumption that all of
the effect sizes are estimating the same population mean is a
reasonable assumption.

If homogeneity is rejected, the distribution of effect sizes is
assumed to be heterogeneous.

Single mean ES not a good descriptor of the distribution
There are real between study differences, that is, studies
estimate different population mean effect sizes.
Three options:

model between study differences
fit a random effects model
do both
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Computation of the Homogeneity Q Statistic

Q is simply a weighted sums-of-squares:

Q =
∑

wi (ES i − ES)2

There are easier computational formulas:

Q =
∑

wiES i
2 − (

∑
wiES i )

2∑
wi

It is distributed as a chi-square with k − 1 degrees of freedom,
where k is the number of effect sizes
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Alternative to Q

Q is statistically under-powered when the number of studies is
low and when the sample size within the studies is low

I 2 = 100% × Q−df
Q

Larger values of I 2, the more heterogeneity

75%: large heterogeneity

50%: moderate heterogeneity

25%: low heterogeneity
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Random versus Fixed Effects Models

Fixed effects model assume:

there is one true population effect that all studies are
estimating
all of the variability between effect sizes is due to sampling
error

Random effects model assume:

there are multiple (i.e., a distribution) of population effects
that the studies are estimating
variability between effect sizes is due to
sampling error + variability in the population of effects

Known versus unknown influences of true effects

Mixture (mixed) models

Current advise: assume random effects model a priori
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Computing a Random Effects Model

Fixed effects model: weights are a function of sampling error

Random effects model: weights are a function of
sampling error + study level variability

Thus, we need a new set of weights

First, compute τ2 (random effects variance component):

τ2 =
Q−df Q∑
wi−

∑
wi

2∑
wi

Second, re-compute the inverse variance weights:

wi = 1
se i 2+τ2

Third, re-compute meta-analytic results using new weight
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An Example: Effectiveness of Correctional Boot-camps
relative to Prison in Reducing Re-offending

Stata output from “meanes.ado”

No. of obs = 55 Homogeneity Analysis

Minimum obs = -.58 Q = 219.65

Maximum obs = 3.194 df = 54

Weighted SD = 0.434 p = 0.00000

--------------------------------------------------------------------------

| Mean -95%CI +95%CI SE Z P

----------------+---------------------------------------------------------

Fixed effect | 0.44902 0.39160 0.50645 0.02930 15.32515 0.00000

Random effect 1 | 0.50430 0.37920 0.62941 0.06383 7.90050 0.00000

Random effect 2 | 0.50848 0.37654 0.64042 0.06732 7.55340 0.00000

------------------------------------------------------------------------

1 Random effects variance component (method of moments) = 0.14711

2 Random effects variance component (full information ML) = 0.17046

(Note: effect size is the logged odds-ratio.)

David B. Wilson, PhD Meta-analysis Workshop



Fixed versus Random: Which to Use?

Random effects models become fixed-effect models when
distributions are homogeneous

Assumptions of fixed effects model rarely plausible

Consequence: standard error that is too small; confidence
intervals that are too narrow

Historically, most meta-analyses in Psychological Bulletin have
used fixed effects models

General advise within meta-analytic literature: use random
effects models

Area of active debate and work among statisticians
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Moderator Analysis

Modeling between study variability

Categorical models (analogous to a one-way ANOVA)
Regression models

Fixed and random effects versions of each (latter often called
“mixed” models)
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Analog to the ANOVA

Useful for a single categorical independent variable

Produce a separate mean effect size for each category

Recall that Q is a sum-of-squares

The total sum-of-squares (Q) can be partitioned

Variability between groups (Qbetween)
Residual variability within groups (Qwithin)

Qbetween analogous to an F -test between means

Qwithin assesses whether residual distribution homogeneous

Note: in a random effects (mixed effects) version of this, the
Qwithin is not meaningful
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Analog to the ANOVA Example: Experimental versus
Quasi-experimental Studies in the Domestic Violence

Meta-Analytic Analog to the One-way ANOVA, Mixed Effects Model

--------------------------------------------

Source | Q df P

--------------------------------------------

Between | 0.0072 1 0.93227

Within | 15.2630 12 0.22737

--------------------------------------------

Total | 15.2702 13 0.29079

Descriptive Fixed Effects Meta-Analytic Results by: random

---------------------------------------------------------------------------

random | Mean St. Er. [95% Conf. Int.] z P>|z| k

---------------------------------------------------------------------------

0 | .285 .17366 -.05493 .62579 1.6437 0.10025 7

1 | .264 .18284 -.09435 .62236 1.4439 0.14876 7

---------------------------------------------------------------------------

Total | .275 .12591 .02848 .52206 2.1862 0.02880 14

Random effects variance component (via iterative max. likelihood) = .1513908

Standard error of random effects variance component = .0818776
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Notes on the Analog to the ANOVA type Analysis

Random effects variance component estimated based on
residual variance, not total variance

Random (mixed) effects model has low statistical power

Can only examine one categorical variable at a time

David B. Wilson, PhD Meta-analysis Workshop



Meta-analytic Regression

Conceptually identical to multiple regression

Effect size is the dependent variable
Study moderator variables are the independent variables

Can handle multiple variables simultaneously

Don’t use standard OLS regression procedures (even if
weighted)

OLS assumes “iid” data
Meta-analytic data independent but not identically distributed
Consequence

With weighting, you get correct regression coefficients
Standard errors and related statistics off
Can be corrected by hand
No method of computing a random (mixed) model

A solution: use available macros, such as mine
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Meta-analytic Regression: Example

***** Inverse Variance Weighted Regression *****

***** Random Intercept, Fixed Slopes Model *****

------- Descriptives -------

Mean ES R-Square k

.1483 .2225 38.0000

------- Homogeneity Analysis -------

Q df p

Model 14.7731 3.0000 .0020

Residual 51.6274 34.0000 .0269

Total 66.4005 37.0000 .0021

------- Regression Coefficients -------

B SE -95% CI +95% CI Z P Beta

Constant -.6752 .2392 -1.1439 -.2065 -2.8233 .0048 .0000

RANDOM .0729 .0834 -.0905 .2363 .8746 .3818 .1107

TXVAR1 .3790 .1438 .0972 .6608 2.6364 .0084 .3264

TXVAR2 .1986 .0821 .0378 .3595 2.4204 .0155 .3091

------- Method of Moments Random Effects Variance Component -------

v = .04715
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Publication Selection Bias

Statistically significant effects are more likely to be published
than nonsignificant effects

Important threat to the validity of meta-analysis (and any
other method of reviewing studies)

Search for and included unpublished studies that meet
eligibility criteria

Examine difference between published and unpublished studies

Statistic approaches to assessing publication bias

Funnel plot: Scatterplot of effect size against standard error of
effect size
Trim-and-fill method (Tweedie and Duvall)
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Comparison of Approaches

Discussion so far has focused on the inverse variance approach
(Hedges and Olkin)

HO approach is dominant in medicine and
treatment/intervention focused areas of psychology and
education
Focus is on the observed effect across studies

Hunter and Schmidt method differs

Evolved within I/O psychology (psychometric research)
Dominant approach within I/O and social psychology
Adjusts for methodological artifacts
Focused on estimating the underlying strength of the
relationship (results given perfect research)
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Statistically Dependent Effect Sizes

Studies often report multiple effect sizes

Only one effect size per study (or sample) is allowed using
basic methods

Sometimes important to include multiple effect sizes in single
analysis, such as

Multiple end-points
Multiple treatments with a single control group

Gleser and Olkin (1994) Handbook of Research Synthesis
provide a method
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Statistically Dependent Effect Sizes

Weights as a matrix rather than a vector

ES =


.23
.12
.52
.81
.32

 w =


1.23 0 0 0 0

0 2.92 0 0 0
0 0 4.27 0 0
0 0 0 3.83 0
0 0 0 0 1.77


The zeros in the off-diagonals reflects the assumption of
independent
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Statistically Dependent Effect Sizes

Incorporate estimates of the covariances between effect sizes

ES =


.23
.12
.52
.81
.32

 w =


1.23 .25 0 0 0
.25 2.92 0 0 0
0 0 4.27 .41 .38
0 0 .41 3.83 .49
0 0 .38 .49 1.77


Re-run the meta-analysis with the new weight matrix. (Note: this
is a fixed effects model.)
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Statistically Dependent Effect Sizes

Multiply experimental conditions contrasted with a single
control condition

Same outcome, multiple end-points

Different measures of same construct

Existing model is fixed effects

Active area of research; a new random effect approach is
being developed by Hedges
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Meta-analysis and SEM

Some relevant publications:

Cheung and Chan (2005) Psychological Methods
Schmidt, Hunter, and Outerbridge (1986) Journal of Applied
Psychology
Becker and Schram (1994) Handbook of Research Synthesis

General approach:

Synthesis individual bivariate correlations of desired matrix
Use synthesized correlation matrix to estimate SEM model

Challenges

Determining appropriate sample size
Non-positive definite matrix
Ignoring heterogeneity across studies
Using a correlation matrix instead of a covariance matrix
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Meta-analysis and SEM

GLS alternative (based on Becker’s work)

Use GLS to pool correlation matrix in one step
Analogous to Gleser and Olkin method for dependent effect
sizes

Two Stage SEM alternative (Cheung and Chan)

Use multi-group CFA to test homogeneity of matrices across
studies
Can handle “missing” paths in some groups
If homogeneous, SEM pooled correlation matrix can be used
for SEM analyses (as with above)
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Final Comments

Methods continue to advance

Publication selection-bias an important area of active research

Analyzing dependent effect sizes also actively advancing

Methodological quality

Confounding of study features

Meta-analysis’ role in identifying “gaps” in literature
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Questions?
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