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Abstract

In recent times, there has been a growing interest in the machining of amorphous metallic

alloys, which are also called bulk metallic glasses (BMGs). These materials differ from common

polycrystalline metallic alloys, because their atoms do not assemble on a crystalline lattice, and

as a result, they have unique physical, mechanical, and chemical properties. A number of BMGs

have been found to produce shear-localized chips during machining operations. Furthermore, a

number of theoretical studies have argued that this strain localization is not controlled by rapid

heating, but rather by a change in the concentration of free-volume in the material. In this work

we study shear band formation in BMGs by studying a geometrically simple deformation of the

material, a homogeneous shear flow. We perform a linear stability analysis of the homogeneous

shear flow, obtaining a non-autonomous linear system of ODEs. Using numerical simulations of

this system we show that free-volume instabilities dominate the growth of localized shear bands.

Furthermore, we compare our results with simulations of the full system of PDEs. Finally, our

simulations suggest that the simple shear model is not valid for long times and should only be

used as an onset equation.
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1 Introduction

Metallic glasses, particularly bulk metallic glasses, have become an area of particular interest in

recent years because their unique physical properties are well suited for a wide array of applications

in science and engineering. Metallic glasses are formed by cooling a liquid metal or alloy to its

glass transition temperature fast enough to prevent the formation of the typical crystalline or

polycrystalline structure of the solid. As a result, metallic glasses exhibit the amorphous structure

of a liquid at a solid state, giving the material elasticity and strength. Figure 1.1 shows the structure

of a polycrystalline solid compared to that of a metallic glass at the atomic level.

Figure 1.1: Microscopic structure of a common metal (left) versus that of a bulk metallic glass (right). From

[14].

Until relatively recently, the creation of metallic glasses required very high cooling rates in order to

prevent crystallization, thus limiting the quantity that could be produced at one time. However in

recent decades, scientists have engineered metallic glasses, typically from alloys, that can be cooled

to a glassy state more slowly. As a result, these materials, called bulk metallic glasses (BMGs),

can be manufactured in large quantities.

Although the amorphous structure of BMGs causes resistance to plastic deformation, it leaves

them vulnerable to catastrophic failure at high strain rates. Polycrystalline solids experience strain

hardening, wherein enhanced shear at the grain boundaries is redistributed throughout the crystals,
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and the solid actually strengthens as it becomes permanently deformed. At low temperatures, this

leads to a relatively homogeneous deformation. Because BMGs lack a crystalline structure they

cannot redistribute shear, and strain becomes localized in a very small region. Heat generated by

the high shear rate causes the material to dilate and weaken, leading to lower shear resistance and

an even higher shear rate. This strain softening causes the formation of extremely narrow shear

bands at low temperatures, which leaves the material susceptible to fracture. Since the formation of

shear bands precedes the failure of the material through fracture, it is useful to model the formation

of these shear bands in order to understand the failure potential of the BMG.

In this paper, we explore the theoretical model of deformation in metallic glasses presented in [1],

[4], and [3]. For a thorough review of the literature, see [6]. This paper is organized as follows, first

we explore the theoretical model of deformation in metallic glasses presented in [1], [4], and [3].

Section 2 introduces the PDE model and dimensionless PDE model. In Section 3, we reconstruct

the non-autonomous ODE system for perturbations of the homogeneous solutions and examine the

linear stability analysis found in [3]. Section 4 explores the notion of Hadamard instability and

the method of frozen coefficients to detect asymptotic stability in our model. Section 5 is devoted

to the analysis of the PDE dynamics, and Section 6 contains final remarks and potential further

research.

2 PDE Model for Shear Band Formation

We use a thermo-mechanical free-volume model built from the governing equations of continuum

mechanics is given by

ρ
∂v

∂t
=
∂τ

∂y
(2.1a)

∂γ

∂t
=
∂v

∂y
(2.1b)

ρCp
∂θ

∂t
= k

∂2θ

∂y2
+ ταTQf(ξ, θ, τ) (2.1c)

∂ξ

∂t
= k̃

∂2ξ

∂y2
+ g(ξ, θ, τ) (2.1d)

∂γP

∂t
= f(ξ, θ, τ) (2.1e)

∂τ

∂t
= µ

(
∂v

∂y
− ∂γP

∂t

)
(2.1f)

where (2.1a) is the Cauchy momentum equation, (2.1b) is the compatibility equation, (2.1c) is the

energy equation, (2.1f) is the elastic condition, and (2.1d) is the free-volume evolution equation. The

parameters γ, τ , θ, ξ, and γP are the applied shear strain, shear stress, temperature, free-volume,

and plastic shear strain, respectively. The constants ρ, Cp, k, αTQ, k̃, and µ are, respectively, the

material density, specific heat, thermal conductivity, Taylor-Quinney coefficient (fraction of plastic

work converted to heat), diffusion coefficient of free-volume, and shear modulus. The constitutive

laws f and g are given by,
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f(ξ, θ, τ) = 2ve
−αv

∗
ξ e
−∆Gm

kBθ sinh

(
τΩ

2kBθ

)
g(ξ, θ, τ) = v∗ve

−αv
∗
ξ e
−∆Gm

kBθ

(
2αkBθ

ξµ∗

[
cosh

(
τΩ

2kBθ

)
− 1

]
− 1

nD

)
where v is the frequency of atomic vibration, α is a geometrical factor of order 1, v∗ is the hard-

sphere atomic volume, ∆Gm is the activation energy, kB is the Boltzmann constant, Ω is the

atomic volume, µ∗ is the effective elastic modulus, and nD is the number of atomic jumps needed

to annihilate a free-volume equal to v∗, and is usually taken to be between 3 and 10. All the

parameters were obtained from [3] and are listed in appendix A.

In experiments and simulations, the strain rate has been shown to be low enough implying the

irrelevance of the inertia force in the momentum equation. Such an assumption, denoted as the

quasi-static approximation, has prevously been utilized by [4], [1], & [3]. As a result, the stress is

uniform with respect to the space variable. We also plug equation (2.1b) into equation (2.1f), and

the respective system (2.1) simplifies to

ρCp
∂θ

∂t
= k

∂2θ

∂y2
+ ταTQf(ξ, θ, τ) (2.2a)

∂ξ

∂t
= k̃

∂2ξ

∂y2
+ g(ξ, θ, τ) (2.2b)

∂γP

∂t
= f(ξ, θ, τ) (2.2c)

∂τ

∂t
= µ

(
∂γ

∂t
− ∂γP

∂t

)
. (2.2d)

2.1 Dimensionless Model

We now nondimensionalize the system (2.2a)-(2.2d) in order to facilitate the ensuing stability

analysis. To this end, we take ȳ = y/L, T̄ = θ/T0, τ̄ = τ/τ0, µ̄ = µ/τ0, ξ̄ = ξ/αv∗, and t̄ = t/t0,

where T0 = 300K, τ0 = 2kBT0/Ω, L2 = kt0/ρCP , and t0 = v−1e∆Gm/kBT0 . In a slight abuse of

notation, we subsequently drop the bar when referring to dimensionless parameters, and write our

dimensionless model as

∂θ

∂t
=
∂2θ

∂y2
+ β3τ

∂γP

∂t
(2.3a)

∂ξ

∂t
= β4

∂2ξ

∂y2
+ g(ξ, θ, τ) (2.3b)

∂γP

∂t
= f(ξ, θ, τ) (2.3c)

∂τ

∂t
= µ ·

(
∂γ

∂t
− ∂γP

∂t

)
(2.3d)
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Where nD, µ, µ∗, and α are dimensionless parameters and our constitutive laws take the dimen-

sionless form given by,

f(ξ, θ, τ) = 2eβ2e
− 1
ξ e−

β2
θ sinh

(τ
θ

)
g(ξ, θ, τ) =

eβ2

α
e
− 1
ξ e−

β2
θ

(
θ

β1µ∗ξ

[
cosh

(τ
θ

)
− 1
]
− 1

nD

)
.

3 Linear Perturbation Analysis

In this section we perform a stability analysis using the linearized form of our dimensionless system

and compare it to those in the literature [3], [4], & [6]. Before doing so we outline and try to fill in

the argument given in one specific, but often cited, reference [3].

If spatially homogeneous initial conditions are inserted into the dimensionless equations (2.3a) -

(2.3d), the solution profiles will remain so as time evolves. We denote such solutions as γPh (t), ξh(t), θh(t)

and τ(t). Hence in this setting, the diffusion terms can be dropped, and our system can be treated

as a system of ODEs. These equations can then be numerically integrated using the MATLAB

ODE suite. See Figure 3.1 for plots of these solutions. We assume that the applied strain rate is

constant so that the total strain γ = γ̇0t is linear in time, and thus can be treated as a scaled time

variable. We shall use the two interchangeably. Also, as it will be useful in the remainder of our

discussion, we denote γM = γ̇0tM to be the strain at which τ attains its maximum and initiates

the onset of instability.
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Figure 3.1: Homogeneous solutions with γ̇0t = 2 · 10−4 and t0 = 1 · 10−5. The maximum in the stress strain

peak occurs at γM ∼ 0.0535.

5



To leading order, the insertion of the perturbed solution

γ = γh(t) + δγ(t)eiωx (3.1)

ξ = ξh(t) + δξ(t)e
iωx (3.2)

θ = θh(t) + δθ(t)e
iωx (3.3)

(3.4)

into the dimensionless model yields the following non-autonomous linear system of ODEs

∂δγ
∂t

=
∂f

∂ξ
δξ +

∂f

∂θ
δθ

∂δξ
∂t

=

(
∂g

∂ξ
− β4(Lω)2

)
δξ +

∂g

∂θ
δθ

∂δθ
∂t

= −(Lω)2δθ + β3τ

(
∂f

∂ξ
δξ +

∂f

∂θ
δθ

)
.

In matrix form we write this system as

δ̇ = A(t)δ (3.5)

where A(t) : R→ R3×3, δ = (δγ , δξ, δθ)
T and

A(t) =


0 ∂f

∂ξ
∂f
∂θ

0 ∂g
∂ξ − (Lω)2 ∂g

∂θ

0 β3τ
∂f
∂ξ ι̃(t)

 . (3.6)

Here

ι̃(t) = ι(t)− ω̃2 (3.7)

with

ι(t) = β3τ
∂f

∂θ
, and ω̃ = Lω.

Recall that the partial derivatives are all time-dependent. For example ∂f
∂θ = ∂f

∂θ (ξh(t), θh(t), τ(t)).

Here we have made the quasi-static approximation so that the momentum equation is reduced to

τ = τ(t).

3.1 Main Argument of [3]

We now wish to summarize and elucidate the thermal instability argument given in [3]. The authors

argue that for parameter regimes near the peak of the stress-strain curve the terms ∂f
∂ξ , ∂f

∂θ , and
∂g
∂ξ are positive functions of t. Thus for a small initial perturbation, δ0, whose components are all

positive, the term
dδγ
dt will be positive for all t > 0. Given some trajectory δ(t) with initial condition

δ(0) = δ0, this implies that the first component of δ(t) will grow. Next [3] argues that since the

equations for δξ and δθ are linearly coupled, the dynamics of the former are determined by those

of the latter.
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Figure 3.2: Instability curve given in [3].

Now since ∂f
∂ξ > 0, they argue if

ω̃ < Mi :=
√

max
t∈R+

ι(t). (3.8)

there exists some finite interval Iu on which dδθ
dt > 0, implying that δθ(t) must grow in this interval.

They then use this fact to conclude that any initial perturbation in the first octant will grow during

this time interval. Since the linear perturbation analysis is only looking at small time scales they

then conclude any wave numbers ω̃ satisfying this condition are unstable. The curve Mi(γ̇0) is

given in Fig 3 of [3] and is reproduced in Figure 3.2.

Though in the text of [3] the authors state that this curve gives only a necessary condition for

instability, it is noted in their Fig. 3 that wave numbers ω̃ > Mi(γ) are stable. Furthermore, they

arrive at physical implications from this line of reasoning. Because of this we comment on their

analysis in the following section.

3.2 Analysis of ODE Dynamics

In the following, we numerically solve the perturbation equations (3.1) - (3.3) alongside the ho-

mogenous equations and compare our results with the arguments given immediately above. As the

equations are linear, solutions scale linearly with the scaling of initial conditions. Hence we choose

δ0 = (0, 1, 1)T so that free-volume and temperature are perturbed. The solutions profiles can be

found in Figure 3.3 for wave numbers above and below the stability line Mi(γ̇), plotted alongside

the homogeneous solution of the stress-strain curve of the dimensionless model (2.3). Since the

applied strain rate is assumed to be constant, γ = t · γ̇0, we plot against the total strain γ.
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(a) γ̇0t = 2 · 10−6, ω̃ = 0.1, and t0 = 1 · 10−5.
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(b) γ̇0t = 2 · 10−6, ω̃ = 0.01, and t0 = 1 · 10−5.

Figure 3.3: Solutions of the perturbed equations for (a) ω̃ > Mi and ω̃ < Mi.

Note that the perturbations obtain their maximum as γ reaches the peak of the stress-strain curve

at γM , and then begin to decay as γ goes past the first minimum of τ(γ). Since shear band

localization is a transient behavior, for the moment we only focus on the dynamics leading up to

the first peak in the solution profile.

As described in the previous section, reference [3] characterizes a perturbation as unstable if δθ
grows as γ increases past γM , the stress-strain peak time. Observe from Figure 3.3 that both δθ
and δξ grow for values of ω̃ both above and below the instability curve Mi. This suggests that the

instability index Mi(γ̇0) does not delineate a bifurcation.

Figure 3.4 gives the values of Cθ := maxt≥0 δθ(t) and Cξ := maxt≥0 δξ(t) for a range of ω̃ values.

The value of Cθ decreases as the wavenumber increases, while Cξ is approximately constant before

decaying for large wavenumbers.

Since β4 is very small, the term −β4(ωL)2 has very little affect on δξ until ω̃ is correspondingly

large. As we have scaled wavenumber with the thermal length scale, localized shear bands, which

have a much smaller wavelength, will have large scaled wavenumber ω̃. Therefore, in accordance

with [4], [6], and [10], we conclude from this figure that free-volume instabilities govern the growth

of a perturbation. In other words, to study the linear stability of a perturbation, one must analyze

the growth or decay of perturbations in free-volume. This was also observed in the numerical

solution of the full dimensionless system of PDEs, where perturbations in free-volume dominated

those in temperature.
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Figure 3.4: Maximum of the perturbations in free-volume and temperature for varying ω̃. Applied Strain

rate is fixed at γ̇0t = 2 · 10−6.

3.3 Simple Shear Model for Machining Experiments

The work of [5] incorporates free-volume dynamics into an altered homogeneous simple shearing

model formulated in [12]. This model approximates the local dynamics (usually called the ‘Primary

Shear Zone’) of machining experiments. In such experiments, if the machining depth is too large,

a Hopf bifurcation occurs, causing a transition from continuous to discontinuous chip formation.

The altered simple shear model is as follows

γ̇p = f(θ, τ, ξ) (3.9)

ξ̇ = η(ξ0 − ξ) + g(θ, τ, ξ) (3.10)

θ̇ = υ(1− θ) + βτγ̇p (3.11)

τ̇ = Λ(γ̇ − γ̇p) (3.12)

where ξ0 is the initial free-volume, υ is a heat flow coefficient, η is a free-volume flow coefficient,

Λ is an apparent shear modulus which incorporates the machining depth, and all other variables

are the same as before. The first terms in the second and third equations model the diffusivities of

free-volume and temperature in the material. This model gives a bridge between our analysis and

actual experiments. See Figures 3.5a - 3.5d for numerical solutions.

4 Analysis of the Hadamard Instability and Method of Frozen

Coefficients

The method of frozen coefficients looks at the autonomous system obtained by fixing an initial

time t0 and computing the eigenvalues of the now time-independent coefficient matrix A(t0) to

determine the asymptotic stability of the corresponding solution. If the eigenvalues have negative

real parts, then the solution to the frozen system is asymptotically stable. When the autonomous
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Figure 3.5: Solutions of machining model for various parameters (a)+(b) υ = 0.4 & η = 0.1, (c)+(d)

υ = 0.4 & η = 0.4. Bifurcation point occurs η ∼ 0.132.

system is Hadamard stable for all values t0, we expect the stability of the frozen system to coincide

with the stability of the non-autonomous system.

For a fixed time t0, the non-zero eigenvalues of the coefficient matrix A(t0) are simply the eigenvalues

of the 2× 2 matrix  ∂f
∂ξ

∂f
∂θ

∂g
∂ξ

∂g
∂θ

 (4.1)

Our simulations show that for k sufficiently large, the eigenvalues of (4.1) are negative for all fixed

t0. This suggests that the amplitudes of high-frequency perturbations do not grow without bound.

As a result, we avoid the problem of Hadamard instability and conclude that the stability of the

non-autonomous system follows from the stability observed in the frozen systems as shown in Figure

4.1. These results coincide with the observed behavior of the dimensionless PDE system.

Although the method of frozen coefficients can be used to examine asymptotic stability of the

perturbed solutions, the results of such analysis are not always valid for the non-autonomous

system.
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Figure 4.1: The stress-strain curve is plotted in red. The blue curves show the behavior of the real part of

the eigenvalues of matrix A(t) as ω̃ increases.

5 Analysis of PDE’s Dynamics

5.1 Initial and Boundary Conditions

The model (2.3) is at rest initially with no stress. The initial free-volume concentration and

temperature are uniform, representing the perfect material. In subsequent simulations, a periodic

perturbation will be added to the initial condition values in both free-volume concentration and

temperature.

ξ|t=0 = 0.05

θ|t=0 = 1.

In equations (2.3), the energy equation and the free-volume equation are reaction-diffusion equa-

tions. Here no flux boundary conditions are imposed as suggested by [6] to mimic the physical

situation. The model is driven by a constant rate of strain on the boundary:

∂ξ

∂y
|y=0 = ∂ξ

∂y |y=L = 0

∂θ

∂y
|y=0 = ∂θ

∂y |y=L = 0

γ|y=0 = γ|y=L = γ̇0t.
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5.2 Numerical method

Due to time restriction. we choose a simple numerical scheme. Being a reaction-diffusion equation,

fast transients and sharp spikes may appear. For these a more sophisticated method will be needed.

In the simple shear model, the reaction terms are dealt with explicitly, and the diffusion terms are

dealt implicitly using Crank-Nicolson method to eliminate the restrictive CFL condition. Our

scheme is as follows,

γPn+1 = γPn + ∆tf(ξn, θn, τn)

θn+1 = (I −KA

2
)−1[(I +K

A

2
)θn + β3τn

γPn+1 − γPn
∆t

]

ξn+1 = (I − β4K
A

2
)−1[(I + β4K

A

2
)ξn + g(ξn, θn, τn)]

τn+1 = µ(γ̇0tn+1 − γPn+1)
∣∣∣
y=L

with K = ∆t/∆x2 and the second order center differentiation matrix with homogeneous Neumann

boundary conditions

A =



1 −1

−1 2 −1
. . .

. . .
. . .

. . .
. . . −1

−1 1


Moreover, to accelerate the simulation and better resolve the fast transition in time, we implement

an adaptive time stepping scheme. The time steps are controlled the by the change in the free-

volume and the temperature between steps.

5.3 Comparison with ODEs

We first check that the spatially homogeneous PDE solutions agree with the ODE solutions, as

expected, in Figure 5.1.

To study and validate our linear perturbation analysis, small sinusoidal perturbations are added to

both the free-volume concentration and temperature initial conditions:

ξ|0 = ξh + δ cos(wx)

θ|0 = θh + δ cos(wx).

In [3], Gao et al. show that there is a critical curve for wavenumber as a function of loading strain

rate which delineates thermal instability, see Figure 3.2. In order to analyze this curve we choose

two perturbations, one below and one above the critical line Mi. The amplitude of the perturbation

is chosen to be small enough in order to match the linear perturbation analysis. In both Figures

5.2a and 5.2b, we see good agreement between the PDE solution and the linear perturbation results.
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Figure 5.1: Comparison of spatially homogeneous solution from PDEs and ODEs.

This indicates that the perturbation is regular, and hence the ODEs are a good approximation of

the PDE dynamics, at least for small perturbations. However, for such small amplitudes, we can

barely see any sharp shear band formation. Furthermore, if the long time behavior is reliable,

the results tell us the shear band (perturbation) will eventually disappear and only homogeneous

solutions could be observed as we can see from Figures 3.3 and 5.3.

If a gaussian perturbation of sufficiently large amplitude is added to the initial free-volume concen-

tration, we can see an exponential strain growth in the position where the perturbation is largest.

See Figure 5.4. In this case, the time step length will decrease and the model cannot move forward.

The sharp spike indicates the shear band is forming. Outside the shear band, the plastic strain

increases slowly. However, there is not enough evidence to say that this is a finite time blowup.

For smaller gaussian perturbations, the amplitude of the perturbation starts to decay after the

stress-strain curve turns down. This shows the same trend as in the linear perturbation analysis

above. See Figure 5.5.

5.4 Stability Criteria

Figure 5.6b studies stability of perturbations. Here the color depicts the norm of fluctuation in

temperature at a given strain rate and wavenumber. Similarly, Figure 5.6a give a similar plot for

fluctuations in strain. It can be seen that both fluctuations get bigger as the strain rate becomes

13



0 0.1 0.2 0.3 0.4
0

2

4
x 10

−5

δ ξ

 

 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3
x 10

−4

δ θ

0 0.1 0.2 0.3 0.4
0

2

4
x 10

−4

γ

δ γ
ODE
PDE

(a)

0 0.1 0.2 0.3 0.4
0

0.5

1
x 10

−4

δ ξ

 

 

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5
x 10

−3

δ θ

0 0.1 0.2 0.3 0.4
0

0.5

1
x 10

−3

δ γ

γ

ODE
PDE

(b)

Figure 5.2: Perturbation in ξ and θ of magnitude 5 · 10−8 and wave number .01 for (a) and .1 for (b).

higher for small wavenumbers. Though the trend is similar, there is not a clear boundary on the

amplitude of the perturbations in temperature or strain, unlike the critical line given from [3] or [4].

5.5 Strain Rate Hardening

If we vary the strain rate, we can see the maximum of stress is bigger for faster strain rate, while

there is no obvious change when wavenumbers vary. Clifton denoted this as stain-rate sensitivity

[1]. Numerics show that the strain rate hardening exhibits a logarithmic growth. One may draw

the analogy with viscous fluids when a large velocity gradient causes large viscous force. However,

in the dimensionless model, change in strain rate is equivalent to a rescaling of time; hence, faster

movement may bring back the inertial force. In this case, stress will not be spatially homogeneous.

6 Conclusions

In this work we have performed an analysis of the simple shearing model for strain localization

in bulk metallic glasses. In step with much of the previous literature, we performed a linear

stability analysis, obtaining a system of non-autonomous linear ODEs which describe the evolution

of periodic perturbations of the homogenous solution. To our knowledge, our study is the first

work which has actually simulated these non-autonomous equations. From these simulations we

have found that free-volume, and not temperature, dominates the growth of instabilities in most
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Figure 5.3: The evolution for different wavenumbers, (a) .01 and (b) .1

regimes, disagreeing with the work of [3] and agreeing with the frozen coefficient analyses of [6] and

the experimental results of [10].

We also use simulations of the full 1-D constitutive PDE model to confirm our linear (ODE) results.

In particular, we find that the nonlinear dynamics are well-approximated by the linearized system

for small perturbation sizes and surprisingly long time scales. Additionally, we find for long times

all perturbations decay. As shear bands usually do not decay in experiments, this suggests that

the underlying model is not accurate in the long time regime. Hence, we postulate that the simple

shear model should only be implemented as an onset equation and a more sophisticated physical

model be used once the material begins to localize into one or more shear bands.

There are still many open avenues for mathematical analysis in this area. To our knowledge the

transient and asymptotic behavior of the non-autonomous equations have yet to be subjected to a

full theoretical study. Additionally, a mathematically rigorous PDE stability analysis has not yet

been performed. Such an analysis would shed light on how perturbations evolve and possibly lead

to wavenumber predictions in machining and indentation experiments. Finally, a study (numerical

and theoretical) of these equations in higher dimensional spatial domains is needed to compare to

experiment and molecular dynamics simulations.
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A List of Parameters

Parameter Description Values from [3]

τ Shear Stress

γ Total Strain

θ Temperature θ/T0 = 1

ξ Free-Volume Scaled ξ/αv∗ = 0.05

α Geometric Factor 0.15

ν Poisson’s Ratio 0.3

v Atomic Vibration 1 · 1013s−1

v∗ Critical Volume (Hard-Sphere Atom) 2 · 10−29m3

∆Gm Activation Energy 0.4762 (0.2 - 0.5) eV

Ω Atomic Volume 2 · 10−29m3

nD # Atomic Jumps needed to fill ξ equal to v∗ Ranges from 3- 10

µ Elastic Modulus µ/τ0 = 120

µ∗ Effective Elastic Modulus 2
3µ

1+ν
1−ν

τ0 Scaling Factor for τ 2kBT0/Ω = 414 MPa

kB Bolzmann’s Constant 8.6173324 · 10−5 eV/K

ρ Material Density 6810 kg/m3

CP Specific Heat of Material 330 J/(kgK)

k Thermal Conductivity 20 W/(mK)

l Characteristic ξ Diffusion Length 0.1 · 10−9m

k̃ Diffusivity of ξ ν · exp(−∆Gm/kbT0) · l2

t0 Characteristic Time Scale 1 · 10−5 s

αTQ Phenomenological parameter 0.9

β1 Dimensionless Parameter v∗/Ω = 1

β2 Dimensionless Parameter ∆Gm/kBT0

β3 Dimensionless Parameter αTQτ0/ρCPT0 = 0.553

β4 Dimentionless Parameter k̃ρCp/k = 1 · 10−10

t0γ̇0 Normalized strain rate 2 · 10−6

L Heat Conduction length
√
kt0/ρCp = 9.4µm

Tg Glass Transition Time
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