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1 Problem Statement

Suppose a client has a small collection of loans (a portfolio) with specific characteristics,
and wants a measure of the portfolio’s credit risk. The client wants us to use a much
larger historical database, called “universe” and pull out a sample of loans that matches
his/her portfolio composition, but consists of much greater number of loans. Figures 1.1
and 1.2 represent the composition of the client’s and universe data, respectively. However,
the greater population of loans we sample, the smaller precision when it comes to matching
sample and client’s data. The first part of the paper explains how to minimize the cost of
choosing a larger sample size. First, we establish the necessary notation.

Suppose we are given a portfolio of loans (it could come from a client, for example) where
each loan is uniquely assigned to ν ∈ N categories. For each category K ∈ {1, 2, . . . , ν} there
are mK possible “buckets” or sub-categories. In other words, for each ν-tuple (i1, i2, . . . , iν),
1 ≤ iK ≤ mK there is a corresponding number of loans n∗(i1, i2, . . . , iν), which we will call
the portfolio frequency. From the portfolio frequencies, we can quickly construct the portfolio
distribution

pi1,...,iν =
n∗(i1, . . . , iν)

S
, S ≡

mν∑
iν=1

. . .

m1∑
i1=1

n∗(i1, . . . , iν). (1)

For example, loans could be classified according to loan size and state of origination cor-
responding to ν = 2. Loan sizes could be from $0-$100,000; $100,000-$250,000; $250,000 -
$500,000; $500,000-$750,000 and $750,000+ forming m1 = 5 subcategories (see figure 1.1).
The loans could originate from m2 = 3 different states and for each pair (i1, i2), 1 ≤ i1 ≤ 5,
1 ≤ i2 ≤ 3 there is a corresponding loan frequency for the client portfolio.

Suppose further that we have access to a historical database of loans; typically the total
number of loans in the database is much larger than the total number in the portfolio (see
Figure 1.2). These loans are also assigned to ν categories in the same way as above. In other
words, for each ν-tuple (i1, i2, . . . , iν), there is a corresponding number of loans within the
database (“universe”) u(i1, i2, . . . , iν), which we call the database frequency.
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Fig. 1.1 Fig. 1.2

Given a total sample size N , the problem is to select a subset of loans from the database
(n1, n2, . . . , nν) – which we call the sample frequency – (clearly 0 ≤ ni ≤ ui) to match the
distribution of the portfolio as closely as possible. From this subset, we can construct the
sample distribution

qi1,...,iν =
n(i1, i2, . . . , iν)

N
, N ≡

mν∑
iν=1

. . .

m1∑
i1=1

n(i1, . . . , iν). (2)

As an example, suppose ν = 1 and our data (n∗
1, . . . , n

∗
5) is given in Table 1:

i n∗
i pi (%) ui ni qi (%)

1 175 22.1 112,607 18,209 22.1
2 275 34.7 44,740 28,614 34.7
3 164 20.7 22,111 17,064 20.7
4 66 8.3 8,888 6,867 8.3
5 112 14.1 11,654 11,654 14.1

Total S = 792 100 200,000 N = 82, 408 100

Table 1: Example of perfectly matching the database distribution to the portfolio distribu-
tion, given N = 82, 408.

If we are required to draw a total of N = 82, 408 samples from the database, then the
solution is easy. We draw {18209, 28614, 17064, 6867, 11654} samples from each category in
the database and we are able to match the loan distribution exactly: qi = pi for i = 1, . . . , 5
(see Figure 1.3). The problem becomes more interesting and difficult if N is larger, say
N = 99, 999. In the case where N = 82, 408, we used all the database loans corresponding
to i = 5. If N is increased beyond 82, 408, there are not enough samples in the database to
accommodate p5 = 0.141. The problem that this paper will address is how to find the “best”
sample frequencies in this case.
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Fig. 1.3

2 Single Category Objective Functions (ν = 1)

Suppose the client wants us to choose a sample so that data is a match based on the loan size
category. For this category we are given desired loan fractions {pi} for i = 1, . . . ,m, database
frequencies ui, i = 1, . . . ,m, and a total sample size N . Then the optimal distribution
(q1, . . . , qm) is found by minimizing

Π(q) =
m∑
i=1

(pi − qi)
2, (3)

subject to the constraints

0 ≤ qi ≤ ui/N, (4)
m∑
i=1

qi = 1, (5)

and the database sample frequencies are ni = qi ×N for i = 1, 2, . . . ,m.
This minimization problem is easily solved using Matlab’s fmincon command.This com-

mand uses iteration to test all the percentages until it finds the ones that are using the
data from Table 1. When N = 99, 999, the optimal database sample sizes are given in the
following Table 2.

i ni qi (%)
1 22,740 22.7
2 35,366 35.4
3 21,351 21.4
4 8,888 8.9
5 11,654 11.7

Total 99,999 100

Table 2: Optimal sample sizes when N = 99, 999.
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Since we obatined the optimal distribution, we can use the SAS procedure surveyselect
to obtain the optimal sample. The procedure surveyselect uses the desired percentages as
the input, randomly selects the specified percent of samples from each category, and outputs
a table representing the new sample. The proximity of this sample to the client’s data can
be seen from the Figure 1.4. Although the distribution has slightly changed, we still have
significantly larger sample population. Note that we have used all samples in the database
for categories 4 and 5.

Fig. 1.4

3 Two-category Objective Functions (ν = 2)

In the previous section we saw how to find the best sample fit when the client specifies one
important category. Now we expand the problem by involving one additional category. For
example, the client wants us to sample loan based on loan size and the state that the loan
was issued in (see Table 3).

State Loan Size 1 Loan Size 2 Loan Size 3
Texas p11 p12 p13

Montana p21 p22 p23
Washington p31 p32 p33

Table 3: Percentages pij specified by the client, by two categories

Suppose we are given a joint loan distribution {pij} i = 1, . . . ,m1, j = 1, . . . ,m2. Then
given a total sample size N and database frequencies uij we wish to minimize

Π1(q) =

m2∑
j=1

m1∑
i=1

(pij − qij)
2, (6)
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subject to the constraints

0 ≤ qij ≤ uij/N, (7)
m1∑
i=1

m2∑
j=1

qij = 1, (8)

from which we construct the database samples qij ×N .
Alternatively, we may be given weaker data in the form of loan marginal distributions

{Q1, Q2, . . . , Qm1} and {R1, R2, . . . , Rm2}, in which case we should find {qij} to minimize

Π2(q) =

m1∑
i=1

(
Qi −

m2∑
j=1

qij

)2

+

m2∑
j=1

(
Rj −

m1∑
i=1

qij

)2

, (9)

subject to the constraints

0 ≤ qij ≤ uij/N, (10)
m1∑
i=1

m2∑
j=1

qij = 1. (11)

This second approach does not have a unique solution, but hybrid approaches involving
minimization of combining Π1 and Π2 will give us an optimal solution. For example, we can
minimize

Π3(q) =

m1∑
i=1

(
Qi −

m2∑
j=1

qij

)2

+

m2∑
j=1

(
Rj −

m1∑
i=1

qij

)2

+ β

m2∑
j=1

m1∑
i=1

(pij − qij)
2 (12)

where β(∗) (small value) will serve the purpose of a correction term to the flexibility of
the second cost function. If the client desires to match the exact p′ijs in the chosen sample, we
can set β be a small number close to zero, which will get us a closer match. However, if the
client does not care about the exact p′ijs but wants to have specific marginal distributions,
than β could be set equal to zero.

In order to test our approach, we chose to sample from the universe data based on loan
size and state code categories. After creating the code in Matlab and sampling in SAS, we
obtained a sample of 10,000 loans that closely matches the client’s distribution (see figure
1.5).

4 Hazard Function Problem

The second part of the paper deals with the risk of the loan to either default or prepay. After
choosing a good sample, the client wants us to produce some measure of risk of the resulting
portfolio that we sampled out of the universe database. The second part of the paper will
demonstrate how to find the hazard function which is a good measure of the risk.
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Fig. 1.5

The hazard function is the probability of failure, in a given year i, given that the subject
has survived up till year i. This function is a measure of risk, since the greater the hazard is
in year i, the greater the risk of failure or death is in that year. However, for our model we
are rather interested in finding the hazard function {λi} as the probability of the risk that
the loan will die when it is of age i.

In this section we create the best possible hazard function of the loan portfolio with the
composition specified by the client. Denote the hazard function by {λi} for i = 1, . . . , 13,
denoting the age of the loan. Suppose that the client is interested in a single category
of the loan, such as loan size, and suppose that the loan size category has m different
sections. The client specifies that the desired portfolio composition based on the category is
p = (p1, p2, . . . , pm), where p

′
ks are the percentages corresponding to each category section k.

Then we can find the hazard function {λi} for this particular composition.

We derive the hazard function by following these steps:

1. The client specifies p and the sample size N .

2. We use the optimization problem to generate N samples from the universe, that rep-
resent the specified portfolio composition to the best precision.

3. We analyse the sample by year and by loan age. For example, Figure 1.6 presents a
nice scenario of how we calculated it the hazard function.P denotes the number of loans
prepaid each year, D denotes the number of loans disbursed each year, P+D denotes
number of loans prepaid or defaulted each year, and M denotes number of loans that
matured each year. Then λ1 = 200+88+10

1000+2000+100
, λ2 = 100+110

700+1100
, λ3 = 100

500
. In general case,

we let
wj = # of deaths in year j and dj = # of disbursments in year j. Then

λi =

∑M
j=iwj∑M
j=i dj

,
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where M is the number of years we would like to consider. In our model, M = 13 since
we have data for period 2001-2013.

Fig. 1.6

4. Use SAS to select 1000 different samples from the universe data.

5. For each sample, computer the hazard rates depending on the loan age.

6. Calculate the 10th and 90th percentiles and denote them as the error bounds for our
hazard rate.

5 Hazard Rates Results

Suppose the client would like us to find the death risk of the loan sample that we have
sampled based on the loan size category. However, since our optimization formula can give
us different samples, we would like to estimate the error. We create a loop in SAS that will
compute the hazard rates, {λi}, 1,000 times (see Figure 7) and output the average values,
10th and 90th percentiles. We will use the 10th and 90th percentiles to determine the error
bounds, i.e. we are disregarding the outliers of the individual distributions. In the Figure 1.8
we can see the averaged hazard rates for each loan age, together with the error bar with lower
and upper ends representing the 10th and 90th percentile of 1,000 computations. Note that
we used a sample of 10,000 loans since choosing a large sample relative to our universe to
compute the error will not produce desired results. Choosing a large sample will inevitably
lead to the selection of the same data multiple times, but we would like to minimize this by
choosing a smaller sample.
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Fig. 1.7

Fig. 1.8

Notice that the error is getting greater as age increases. This makes sense since as the
loans get older, more loans die and mature and leave us with much smaller number of loans
in the sample. The smaller number of loans, the smaller the precision, and thus the greater
the error. The same analysis can be done with the region characteristic,
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Fig. 1.9

We can also repeat the same process to model the hazard rates for the sample that we
chose based on two categories. Choosing a sample based on two categories as opposed to
only one category will produce a better match sample to the clients data. Thus the following
graph, for a sample based on the loan size and state categories, is a better prediction of the
hazard rates for the client’s portfolio.

Fig. 1.10

We could repeat the same analysis with three different characteristics. In this case, the
characteristics are loan size, region, and maturity of the loan.
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Fig. 1.9

Our models show that young loans have small probability to default or prepay, a greater
probability of death at ages 5 to 8, and then the risk decreases for the rest of their life.
This result makes sense in practice. Young loans are not likely to default because bad loans
are usually not issued, and not likely to prepay since the cost to prepay is high while other
interest rates in the industry is approximately at the same level. The risk increases with
time since time presents more opportunities to prepay and economy changes might influence
the loan to prepay. After year 8, the loan is not likely to default since a business will usually
either fail at early stage or survive. Prepayment is also less likely since a big portion of the
loan is paid off.

6 Future Work

We have implemented a code to match a portfolio with five distinct characteristics. The next
thing in our analysis will be to derive results for such scenario. We will also look at solving
the inverse problem, i.e. given a hazard function, we will need to provide the client with
a suitable portfolio. Then we investigate if there is a “diversification benefit” of the loan
portfolio. Given

(p1, p2, p3, . . . , pm) → λ∗

(1, 0, 0, . . . , 0) → λ1

(0, 1, 0, . . . , 0) → λ2

...

(0, 0, 0, . . . , 1) → λm,
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we investigate if the superposition holds, i.e. if λ∗ ≈ p1λ1 + p2λ2 + · · · + pmλm. If this is
indeed the case, then it implies no diversification benefit.
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