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ABSTRACT
This research consisted of evaluating diagnostic performance results using SVM 
outputs previously obtained from an integrated  Duke/DDSM USF data  set 
and  the  GRNN oracle.  The  SVM kernels used  in  this  research  included 
Additive, Multiplicative, S2000, and Spline kernels. GRNN results are presented 
for the following combinations of gate variables: age, mass margin (MM), age 
and  MM, and  all  6  BIRADS™ indicators  plus age.  For  all  experiments, 
Differential Evolution (DE) was used to train the GRNN.  A summary of the 
DE  process  is  described,  independent  of  the  software  application.  The 
experiments described in this paper show that the GRNN oracle, with all of the 
gate variable combinations, performed better than any of the individual SVM 
kernels alone at or below 98% sensitivity.      

INTRODUCTION
Carcinoma of the breast is second only to lung cancer as a tumor-related 

cause of  death  in women.  For 2003, it has been reported that  211,300 new 
cases and  39,800 deaths  will occur just  in  the  US . It  has  been  proposed, 
however, that  mortality from breast cancer could be decreased by up to 25% 
provided that  all women in appropriate age groups were regularly screened . 
Currently,  the  method  of  choice  for  early  detection  of  breast  cancer  is 
mammography, due to its general widespread availability, low cost, speed, and 
non-invasiveness. At the  same time, while mammography is sensitive to the 

1



detection  of  breast  cancer,  it  has  a  low positive  predictive  value  (PPV), 
resulting in costly and invasive biopsies that are only 15%-34% likely to reveal 
malignancy at histological examination [15].

Computational  intelligence  has  been  applied to  the  problem  of  breast 
cancer screening by several researchers. Earlier work by Floyd et al. [5] and Lo 
et al. [16] demonstrated the applicability of back propagation-trained Multiple 
Layer Feed  forward  Neural Networks (MLFNs) to  this  task. EP-based feed 
forward networks were applied by Fogel et al. [7-9] and Land et al. [13]. These 
applications were able to achieve similar or better results than those trained by 
back propagation, but with much simpler architectures (i.e., fewer nodes in the 
hidden  layer).  Evolutionary-Programming  (EP)  based  linear  discriminate 
analysis [10], and an adaptive boosting/EP hybrid [14] also were investigated as 
potential classification mechanisms. This paper extends the knowledge gained 
from previous breast cancer research through a description of the development 
and preliminary evaluation of a new SVM/GRNN oracle hybrid.

THE GENERALIZED NEURAL NETWORK (GRNN) ORACLE
 

Designing the GRNN Oracle 

We have two or more different models, each of which predicts the same scalar 
output variable [17].  (Extension to multiple outputs is easy, but in practice we 
never want to do this.)  If there are multiple outputs, use a separate oracle for 
each.)  We do not care about the nature of these models, nor do we care about 
their inputs.  In fact, the model inputs do not enter into this discussion in any 
way.  We also have one or more gate variables whose values presumably have 
an effect on deciding which of the competing models is most valid.  For our 
purposes now, we do not care about the individual prediction models.  They 
are assumed to be black boxes that work reasonably well.  Our current goal is 
to design an oracle that used the gate variables to intelligently combine the 
outputs of the competing models. 
  

 EXPERIMENTAL DESIGN TO EVALUATE INTEGRATED 
HARDWARE/SOFTWARE SYSTEM AND SENSITIVITIES ANALYSIS
This section describes the experiential design approach that will be used. The 
measures of performance which will be used are: the overall ROC Az index, 
the specificity and PPV at 95% (5% false positive errors (FPE)), 98% (2% FRE) 
and 100% sensitivities (0% FPE). As previously described, these MOPs provide 
a quantities measure of how well the system decreases false negative errors 
(FNE), while maintaining the 95%, 98%, and 100% sensitivities. K-fold cross 
will be employed.  

Using the GRNN oracle.
We will accomplish data fusion of several learning machine models using the 
GRNN oracle. This oracle intelligently combines the outputs of several of these 
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models by using gate variables. The inputs are from several Support Vector 
Machine models (to be described subsequently). These sevearl SVM learning 
machines are comprised of the following kernel types: s2000, Gaussian Radial 
Basis Function (GRBF), polynomial kernels, spline kernels, sum and product 
kernels whose components are the GRBF and polynomial kernels. Secondly, 
the gate variables used in this research are (also subsequently described): (1.) 
age, (2) mass margin (MM) and (3) age and MM. Suppose we have two or 
more prediction models of any type, each of which predicts the same scalar 
output variable.  Extension to multiple outputs is easy, but in practice we never 
want to do this. If there are multiple outputs, use a separate oracle for each.) 

Our  current  goal is to  design an  oracle that  uses the  gate variables to 
intelligently combine the outputs of the competing models. Once the expected 
error of each prediction model is estimated, we use these expected errors to 
compute the weights for each model. When an unknown case is processed, the 
gate variables are used by the GRNN to decide which models are likely to be 
best for this particular case. These models are weighted more heavily than the 
likely inferior models. 

SUPPORT VECTOR MACHINES AND DIFFERENTIAL EVOLUTION

Several references are available that  provide extensive information  about 
development  of  the  mathematical foundation  of  SVMs [3,4,11,12]. The  key 
concepts of SVMs generally are covered in these references and will not  be 
discussed here.

DIFFERENTIAL EVOLUTION

Price and Storn [18] reported on a variation of genetic optimization 
called differential evolution. This variation appears to be much more appropriate 
than traditional genetic methods when optimizing a multivariate function. It is 
especially valuable  when  the  scalings  in  the  different  dimensions  are  not 
commensurate, a situation commonly found  in GRNN training using poorly 
prescaled or  highly correlated  variables. Unfortunately, differential evolution 
shares the  principal weakness of  all stochastic methods in that  it can arrive 
frustratingly close  to  the  global  minimum,  then  fail  to  converge  to  the 
minimum in a reasonable period of time. The problem is that these algorithms 
generally operate in total ignorance of the local properties of the function being 
minimized. Sometimes this is out of necessity because the derivatives cannot 
be computed.  More importantly, it is because we must  be careful to  avoid 
excessive use of local information if we are to preserve the global quality of the 
search  for  the  minimum.  But  when  we  do  have  easy  access  to  local 
information, it often makes sense to make modest use of it. Such is the case 
when using differential evolution to train a GRNN.

Differential evolution  is similar to  ordinary genetic optimization  in 
that  it starts with a collection of parameter sets that  we will call the  source 
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population. The individuals comprising this population are combined with each 
other via crossover and subjected to  mutation to produce the members of the 
destination population. The members of the destination population, taken as a 
group, are generally expected to  be superior to  the  members  of  the  source 
population. By repeating this process enough times, the  best member of the 
final population is hopefully close to the global optimum.

There  are  several important  differences  between  traditional  genetic 
optimization and differential evolution. Probably the most important difference 
is in the nature of the mutation. In traditional genetic optimization, mutation 
takes the form of a random perturbation of a fixed type, such as flipping bits 
in a binary representation of a parameter set, or adding random numbers to 
individual  parameters.  The  problem  with  this  approach  is  that  it  fails  to 
account for the fact that what might be a small perturbation for one parameter 
might  be  gigantic for  another.  Also, random  bit  flipping can  be extremely 
destructive. Differential evolution avoids these problems by using the  source 
population itself to determine the nature and degree of mutation. It does this 
by randomly  selecting  a  pair  of  individuals  and  computing  the  difference 
between their parameter vectors. This difference vector is multiplied by a fixed 
constant  (typically around  0.5  or  so)  and  added  to  the  individual  being 
mutated. When the optimization begins, the average difference will be about 
the  same  for  all  variables  being  optimized.  But  as  generations  pass,  the 
difference will tend to adapt to the natural scaling of the problem. Variables 
having a  large natural  scale will be  distributed  over  a  larger  range in  the 
population,  so mutations  for  these variables will also be relatively large. As 
convergence approaches,  those  variables having a  narrow and  well defined 
range around  the  minimum  will have small variation among the  population 
members, resulting in their  mutations  being relatively small. This automatic 
adaptation  significantly improves behavior  of  the  algorithm  as  convergence 
nears.

Another  important  difference is that  differential evolution  does not 
involve selection of parents based on fitness. Instead, fitness determines which 
children are kept. In particular, one parent, called the primary parent is selected 
deterministically:  each  individual  in  the  source  population  is  chosen  as  a 
primary parent exactly once. The other parent, called the  secondary parent, is 
randomly chosen. Two other  individuals which make up the  differential pair 
are also selected randomly. These two are subtracted and their difference is 
multiplied by a small fixed constant. This scaled difference vector is added to 
the secondary parent to induce mutation. Ordinary crossover is applied to the 
primary parent and the mutated secondary parent. The resulting child's fitness 
is compared to that of the primary parent. The winner becomes a new member 
of the destination population. This entire process is illustrated in Figure 2.

PRELIMINARY RESULTS
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This section describes the  experiential design approach that  will be used. 
The  measures of performance which will be used are: the overall ROC Az 
index, the specificity and PPV at 95% (5% false positive errors (FPE)), 98% 
(2% FRE) and 100% sensitivities (0% FPE). These MOPs provide a quantities 
measure of how well the system decreases false negative errors (FNE), while 
maintaining  the  95%, 98%, and  100% sensitivities.  K-fold  cross   will  be 
employed.  

Several research experiments were performed to evaluate the performance 
of  the  seperate support  vector  machine  models, and  the  use of  differential 
evolution to train the GRNN oracle. These familes of SVMs were evolved over 
40 genrtations , with a population size of 30, using Evolutionary Programming.

GRNN SVM Difference (GRNN – SVM) % Improvement

Az 81.62% 81.21% 0.41% 0.51%

Az-90 32.01% 29.61% 2.4% 8.11%

100% Spec 5.56% 3.27% 2.29% 70.03%

100% PPV 48.23% 47.59% 0.64% 1.35%

98% Spec 22.15% 17.85% 4.3% 24.09%

98% PPV 52.67% 51.33% 1.34% 2.61%

97% Spec 24.23% 23.46% 0.77% 3.28%

97% PPV 53.16% 52.81% 0.35% 0.66%

95% Spec 32.38% 29.44% 2.94% 9.99%

95% PPV 56.96% 54.27% 2.69% 4.96%

Table 1: Performance Comparsion betweeen SVMs and GRNN oracle

CONCLUSIONS
The  experiments  just  described  demonstrated  the  following:  (1.)No 

measurable  performance  accuracies  difference  resulted  for  variation  in  the 
differential  evolution  crossover  constant,  (2.)The  Az  and  partial  Az  are 
essentially  constant  for  all  values  of  the  differential  evolution  crossover 
constant,  holding at values of 81.6% and 32%, respectively.  A patrial Az of 
32% means  that  ,  on  the  average, approxiamtely 432 women  would avoid 
biopsy when compared to all cases being biopsied, (3.)Produces a PPV of from 
48% to 55% as the sensitivity is decreased from 100 to 95%, respectively, (4.) 
specificity is increased from about 5% to about 36% as sensitivity is decreased 
from  100 to  95%, and  (5.)Improvements  from  about  0.5% to  24% were 
observed  in  the  GRNN  oracle  performance  when  compared  to  the  SVM 
diagnostic accuracy. This is not surprising when one observes that  SVMs can 
be trained to a global minimum, given that  the learning machine parameters 
are properly computed.
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