%Program 1.1 Bisection Method %Computes approximate solution of f(x)=0 %Input: inline function f; a,b such that f(a)*f(b)<0, % and tolerance tol %Output: Approximate solution xc function xc = bisect(f,a,b,tol) if sign(f(a))*sign(f(b)) >= 0 error('f(a)f(b)<0 not satisfied!') %ceases execution end fa=f(a); fb=f(b); k = 0; while (b-a)/2>tol c=(a+b)/2; fc=f(c); if fc == 0 %c is a solution, done break end if sign(fc)*sign(fa)<0 %a and c make the new interval b=c;fb=fc; else %c and b make the new interval a=c;fa=fc; end end xc=(a+b)/2; %new midpoint is best estimate