1. Histogram Equalization

2. Contrast Stretching

3. Convolution

Convolution involves averaging all of the pixels in the target window. The number of additions required is about $I_{w} \times I_{h} \times W_{w} \times W_{h}$, where I is the number of pixels in the image, and W is the number of pixels in the window.

4. Perspective Projection

My results seem incorrect, and seem extremely large in the XY direction.
5. Rigid Body Transformations

(a) A rotation matrix of $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ will have a determinant of $\cos (\theta)^{2}+\sin (\theta)^{2}$
(b) However, the rotation matrix $\left[\begin{array}{cc}\sin (\theta) & \cos (\theta) \\ \cos (\theta) & -\sin (\theta)\end{array}\right]$ will have a determinant of $-1 \times\left(\sin (\theta)^{2}+\cos (\theta)^{2}\right)$
(c) T_{2} is not a rigid body transformation, the figure T_{2} is reflected across the diagonal before the rotation, while T_{1} is only rotated.
6. Rigid Body Transformmation Composition
(a) The relative displacement $g_{31}=g_{21} \times g_{23}^{-1}$.
(b)

$$
\begin{gathered}
R(2,1)=\left[\begin{array}{ccc}
R 1_{11} & R 1_{12} & T 1_{1} \\
R 1_{21} & R 1_{22} & T 1_{2} \\
0 & 0 & 1
\end{array}\right] \\
R(2,3)=\left[\begin{array}{ccc}
R 2_{11} & R 2_{12} & T 2_{1} \\
R 2_{21} & R 2_{22} & T 2_{2} \\
0 & 0 & 1
\end{array}\right] \\
R(3,1)=\left[\begin{array}{ccc}
R 1_{11} \times R 2_{11}^{-1}+R 1_{12} \times R 2_{21}^{-1} & R 1_{11} \times R 2_{12}^{-1}+R 1_{12} \times R 2_{22}^{-1} & R 1_{11} \times T 2_{1}^{-1}+R 1_{12} \times T 2_{2}^{-1}+T 1_{1} \\
R 1_{21} \times R 2_{11}^{-1}+R 1_{22} \times R 2_{21}^{-1} & R 1_{21} \times R 2_{12}^{-1}+R 1_{22} \times R 2_{22}^{-1} & R 1_{21} \times T 2_{1}^{-1}+R 1_{22} \times T 2_{2}^{-1}+T 1_{2} \\
0 & 0
\end{array}\right]
\end{gathered}
$$

7. Vanishing Point
(a) For the lines $X=X_{0}+a t$

$$
\begin{aligned}
& Y=Y_{0}+b t \\
& Z=Z_{0}+c t
\end{aligned}
$$

we get $Z\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=K\left[\begin{array}{cc}R & T \\ 0 & 1\end{array}\right]\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]$ So as Z approaches infinity, we can use l'Hopital rule to show that the equation for x converges to $\frac{X_{0}+a t}{Z_{0}+c t} \Rightarrow \frac{a}{c}$ regardless of $X_{0} a n d Z_{0}$.
(b)

$$
\begin{aligned}
& A=\left[\begin{array}{c}
5+3 t \\
1+2 t \\
t
\end{array}\right] \\
& B=\left[\begin{array}{c}
2+3 t \\
1+2 t \\
t
\end{array}\right]
\end{aligned}
$$

as t approaches infinity, both equations converge at $(3,2)$
(c) the system of equations never converge if Z doesnt take t as a parameter, in other words when the lines don't vary over the Z-axis

