%Project 3 problem 7: finding the value of A where sstable equilibrium becomes unstable. %Computes approximate solution of stablized inverted pendulum %Input: inline function f; a,b such that f(a)*f(b)<0, % and tolerance tol %Output: Approximate solution xc function xc = bisectpend2(a,b,tol) if sign(func(a))*sign(func(b)) >= 0 error('f(a)f(b)<0 not satisfied!') %ceases execution end fa=func(a); fb=func(b); k = 0; while (b-a)/2>tol c=(a+b)/2; fc=func(c); if fc == 0 %c is a solution, done break end if sign(fc)*sign(fa)<0 %a and c make the new interval b=c;fb=fc; else %c and b make the new interval a=c;fa=fc; end end xc=(a+b)/2; %new midpoint is best estimate function pn = func(theta) A=oscillatingpivot([0 50],[0.00000001 0],2000,theta,0,1); [~,~,time]=size(A); pn=1; for i=1:time if A(2,4,i)==1 pn=-1; break end end % The smallest value of the forcing strength A = 14.727873288228963
Error using bisectpend2 (line 7) Not enough input arguments.