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Long-Memoried Processes, |
Unit Roots, and Causal Inference
in Political Science

John Freeman, University of Minnesota
Daniel Houser, University of Minnesota
Paul M. Kellstedt, Brown University
John T. Williams, fndiana University

Theory: It has been argued that because researchers have not taken into account the long-
memoried natures of certain political processes—especially the fact that some political
time series appear to contain unit roots—some users of level Vector Autoregressions may
have reached erroneous conclusions about the validity of important causal relationships
and model specifications.

Hypaothesis: For the first time, this argument is evaluated. The diffrculties associated with
modeling long-memoried political processes are reviewed. Then several approaches to
dealing with them are discussed. One of the most promising approaches, Fully-Modified
Vector Autoregression (FM-VAR) is studied in detail.

Method: The usefulness of FM-VAR is evaluated in a stylized Monte Carlo investigation
and in reanalyses of major existing studies in political science—reanalyses that are repre-
sentative of the ways in which level-VARs are employed in our discipline.

Resulrs: Our experiments indicate that FM-VAR performs well (particuiariy in terms of
size) in small and large sampies, in fuily and near-integrated systems, and in stationary
systems. Most important, use of FM-VAR calls into question some of the major causal
findings and specification test results in pubiished studies. The implication, therefore, is
that taking into account the trend properties of political processes is essential in theory
building in political science.

The position that political theory often does naot justify the strong restric-
tions which appear in our statistical models, but rather only weak restrictions,
became well established in political science by the late 1980s (Freeman, Wil-
liams, and Lin 1989). In the years that followed, political scientists used this

This articie has been through several revisions, largely due to comments we have received at profes-
sional conferences. Most recently, it was prepared for presentation at the Political Methodolagy
Summer Meetings, Ann Arbor, July 18-21, 1996. An earlier version was presented at the annual
meeting of the Midwest Political Science Association, Chicago, Apil 18-20, 1996. Freeman’s work
was supportad by a grant from the Bank Austria Foundation, The authors thank Neal Beck, Suzanna
DeBoef, lim Granato, Mel Hinich, Yaichi Kitamura, George Krause, Mike MacKuen, Peter Pedroni,
Janet Box-Steffensmeier, Renée Smith, and anonymous referees for their comments and sugges-
tions. Neither these individuals nor the Bank Austria Foundation are responsible for the contents
herein. The data and computer code necessary to replicate the findings herein can be abtained by
contacting Paul Kellstedt at Paul_Kellstedt@hrown.edu.
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methodology—VAR in levels, or level VAR—to evaluate competing theories
in numerous fields (Goldstein and Freeman 1990, 1991; Freeman and Alt
1994: Williams 1990) and to assess the validity of the restrictions in their re-
gression models (MacKuen, Erikson, and Stimson 1992). These evaluations
were primarily based on Granger causality tests. The innovation accounting
associated with VAR was used mostly for descriptive purposes.

At about this same time, econometricians identified and began to evalu-
ate the problems that long-memoried processes like unit roots and cointegra-
tion praduce in vector autoregression and related time series methods. These
problems had to do with the validity of Granger causality tests which are at
the heart of level VAR. This research was important because econometri-
cians had discaovered years before that many economic time series appear to
be long-memoried (Nelson and Plosser 1982). In fact, economic theory pre-
dicts that certain time series will be random walks and that there will be no
long-term relationships between them (see, for instance, Hall 1978; Juselius
and Hargreaves 1992). Studying the trend properties of economic time se-
ries, therefore, became essential in time series econometrics. L

Taking note of these developments in economics, political scientists re-
cently have argued that some of our time series processes are similarly long-
memoried. Hence studies that employ level VARs could be in error. The first
claim is based on both experimental and theoretical research—analyses of
the trend properties of certain political time series, on the one hand, and
derivations from rational-choice models of politics on the other (Ostrom and
Smith 1993; Durr 1993a; Williams and McGinnis 1988; Chrystal and Peel
1986). The second claim is more conjectural. Scholars have speculated that
by failing to account for the unit roots or, more generally, the trend proper-
ties of some political data in our level VARs, we may have drawn incorrect
inferences about the validity of competing theoretical claims and
misspecified our regression models (Granato and Smith 1994). Yet, to date,
no political scientist has made any such demonstration, let alone explained
what should be done to put our results on sounder footings if, in fact, some
of our level VARs are faulty.”

I'The main distinction in terms of trend properties is that between difference and trend
stationarity. The former is associated with unit root processes while the latter with deterministic time
trends. See, for instance, Hamiiton 1994 (Chapter 15) and such applied works as Nelson and Kang
1981. Same branches of macroeconomics employ nonlinear conceptions of trends. Real business
cycle theory is one such branch {see Freeman and Houser 1998). The focus in this paper is on cau-
sality tests. But as new work in econometrics (Phillips forthcoming) shows, unit raots alse have im-
partant implications for the innovation accounting associated with VAR. See note 5.

2t ts worth noting that, in some cases, theory implies political processes that are staticnary.
Hence, in those cases, the problem studied here may not apply. See, for example, the exchange be-
tween Smith (1993), Williams (1993), and Beck (1993). However, the experimental studies cited in
the taxt indicate that, in many other cases, political time series are well approximated by random
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This paper is the first demonstration of this kind applied to political sci-
ence. In it, we explain the problems that unit roots and cointegration produce
in level VARs—why it is so important to take into account the trend proper-
ties of one’s data. We then review several approaches to solving these prob-
lems. One of these approaches, the Phillips (1995) Fully Modified Vector
Autoregression (FM-VAR), is singled out for closer study. The nature of
FM-VAR is explained, and some practical difficulties in implementing the
associated estimation techniques and hypothesis tests are discussed. Finally,
the usefulness of FM-VAR is explored in a stylized Monte Carlo analysis
and in several analyses that parallel the main uses of level VARs in political
science. The latter are a reanalysis of the Freeman (1983) study of arms
races and a retest of the specifications of the MacKuen, Erikson, and
Stimson. (1992) model of approval.

The results are very enlightening. The Monte Carlo investigation shows
the FM-VAR Wald test statistic performs well in terms of size and power in
small and large samples in fully and near-integrated systems as well as in
stationary systems. Using this statistic, we confirm Freeman’s (1983) find-
ing that Indian arms spending Granger causes Pakistani arms spending in the
period 1948-1975; provision for theoretically expected unit roots in the re-
spective series (Williams and McGinnis 1988) leaves Freeman's basic find-
ing unchanged. A second reanalysis reveals potential problems with
MacKuen, Erikson, and Stimson’s (1992) study of the sources of presiden-
tial approval. Application of FM-VAR shows evidence of simultaneity be-
tween approval and business expectations. This calls into guestion
MacKuen, Erikson, and Stimson’s use of recursive models in madeling ap-
proval. To be more specific, the existence of unit roots and cointegration in
some of those authors’ time series casts doubt upon their specification test
results (and hence model inferences as well). The implications of these find-
ings for theory building in political science are discussed in the conclusion
of the paper..

1. TaE ProBLEM

The view that much political theory produces only weak restrictions on
statistical models is akin to the idea that, at most, we can analyze the reduced
forms of what are in reality unknown structural-equation maodels of politics.
Much political theory is a loose collection of causal claims, claims that are
best assessed through causality testing and innovation accounting in the con-
text of a level VAR, a model that makes comparatively weaker assumptions

walks with infinite variance (just as in physics, investigations show that Brownian maotion usefully
approximates processes that do not have infinite energy; Melvin Hinich, personal communication).
Similarly, the formal-modeling papers cited in the text shaw rational political agents of various types
behave like random walks (just as rational-expectations theory does in economics).

C
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than the conventional structural-equation models (see Freeman, Williams,
and Lin 1989, especially 853-35; see also Hamilton 1994, 326-7).

When there are no stochastic trends in the data, the procedures for cor-
rectly estimating vector autoregressions are well known. That is, if the errors
are serially uncorrelated, OLS yields consistent estimates of the coefficients,
and familiar distribution theory is justified asymptotically. Also, certain
methods are available ta deal with such problems as time series outliers.?

The problem is this: If a level VAR contains a process that has a unit
root (or a cointegrated relationship), it will not be a reduced form. And cau-
sality tests based on OLS estimation of such a level VAR can yield results
which are second-order biased. In particular, the limit distribution of the sta-
tistics for tests of the joint statistical significance of combinations of coeffi-
cients—some of which are coefficients of the nonstationary variables—may
have nonstandard shapes (that is, fatter tails than the standard distributions).
If this fact is not taken into account and standard distributional assumptions
are made, the respective causality tests may yield mistaken inferences.*

1.1 Formal Statement

The problem can be explained formally as follows.” Suppose one fits a
first order n-vector autoregression of the form:

¥i= Ayt—l + &, (L

where €, is iid(0,Z,,), Z,, is p.d., and the initialization y; 1s any random n-
vector. Suppose further that A in Equation 1 has the form

30N the estimation of single-equation autoregressions, see Hamilton (1995, Sectien 8.2, case
4). On the paraliel multi-equation (VAR) estimations see Hamilton’s Chapter 18. For solutjons to the
problem of time-series specification in the presence of outliers see Martin 1980, Tsay 1936, and Le,
Raftery, and Martin 1996; see also Kitagawa 1987,

“First-order bias has to do with familiar conditions of consistency; second-arder bias is defined
in terms of the jocation and shape of the limiting distribution of estimators. Denote the variables by
y,. the ervars by e, and let T be the sample size, Then it is true by construction that the expectation
of e, given v, | is zero. However, if there is a unit root or cointegration in the level VAR, plim T
Ty (& s not zera.

SWhat follows is a condensation and slight elaboration of Phiilips 1995, Section 2. See also
Phillips 1992a,b. Faliowing Phillips, we use “simuitaneity bias™ and “endogeneity.” (See note 4.}
Again we focus here on causality tests. But in a new paper, Phillips (forthcoming) shows that, for
VARs with roots at or near unity and some cointegration, the associated innovation accounting is
problematic. [n particular, the. long petiod ahead impulse responses are inconsistent; as the sample
size grows, the estimated impulse response becames a random variable rather than the true impulse
response. In addition, forecase emar variance decampasitions for such VARs are inconsistent. Fail-
ure ta accaunt for (near) unit roots and cointegration, can, result in estimates of the forecast emror vari-
ance at long horizons that are in error; usually one will underestimate this variance.
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0 &’
A= |i0 Iu—r} = (Aij)

where B is an r by (n-r) matrix and [ is the corresponding (n-r) identity
matrix. This suggests a partitioning of the original y, vector, (¥,, ¥5,)" so
that Equation [ can be rewritten

Y =By +€, (la)
Yu=¥u + & (1b}

Thus y,, is a full rank I{1) process, and y,, is cointegrated with y,,. In other
words, the simple first-order level VAR in (1) is a system in which there are
(n-r) unit roots and r cointegrating vectors. The latter have the form B’ =
[f, — B}, Premultiplication of Equation 1 by [}’ gives the stationary relation-
ship:

Fy= ¥~ Byy = fe,. (1a)

Now, if we naively fit the level-VAR model in Equation 1, we will treat
that system as a reduced form and assume that y, ; is predetermined. In fact,
the y,, is endogenous; it embodies the endogeneity evident in Equation 1a”.
This can be seen by adding and subtracting Be,, to the right side of (1a):

¥1.= {(Bya + Bey) — (Bey - £)). {lc)

Note from Equation 1b that the first two terms on the right side of this equa-
tion are equivalent to By,,. So Equation lc implies

¥, = By~ By + £ =By + B’E‘t' (1d)

Thus we have shown that the endogeneity that is present in Equation 1a’also
is present in Equation 1a.

This endogeneity has seemingly serious consequences for causal infer-
ence. ¥,,.; satisfies the orthogonality condition for a predetermined variable,
namely, E(g,y%, ) = 0. But since y,, 1s nonstationary, the sample covari-

T
ance T—IEL €,:¥2,_; does not converge to zero. Rather

T 1
T_lze-uyi:—l d delB‘.; )
1 0
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where —d means converges in distribution, B,(r X 1) and B,(n-r X 1) are
subvectors of Brownian motion B = (B[, B;)’ ~ BM(Z,.), B is the limit
process of partial sums of €,,, and B, is the limit process of T2y, |
(Phillips 1988a).5 If the correlation between €,, and &, is nonzero so that %,
is not block diagonal, the limit processes B, and B, will be correlated
Brownian motions. This is due to the effect in the limit of the “endogeneity”
of the regressor y,,_, in Equation 1a.

Consider the OLS estimation of the B matrix in that equation. Accord-
ing to asymptotic distribution theory (proposition 18.1 in Hamilton 1994,
547-8), the limit distribution for the respective coefficients will be given by

T T
T(B - B) = (T ) €, 95, XTI, Yar¥heey )
1 1

1 1 -l @
d ( _[0431 B ]( _[GBZB;]

The right side of Equation 3 can be decomposed into

[J:dBl,gBi )U;B’ B; )_1 TP [ leBng ]U;Bz B, ]_l @

= -1p = j ; = -1
The first term in the expression is the limit distribution of the optimal esti-
mator of B under Gaunssian errors in Equation 1. The second term is the “si-
multaneous equation bias™ that is due to the endogeneity of the nonsta-

“Brownian motion—also known as a “Weiner process”—is the continuous time version of the
discrete time random walk, It has three main features: the Markov property (the probability distribu-
tion for all future values of the process depends only on its current value and is unaffected by past
values of the pracess), independent increments, and changes that are normally distributed. Formally,
if z(t) is Brownian motion, then any change in z, Az, correspanding to time interval At, is such that

Az=gt

where €,is N((,1) and E¢ge,} = 0 for t # 5. These canditions imply that the variance of the change in
Brownian motion graws linearly with the time horizon just as it does in a discrete-time random walk.
The continuous time representation is obtained by letting At become small:

dz= E(V[dt;

and, E(dz} = 0, and Variance(dz) = E[(dz)?] = dt. The concept of vector Brownian motion is just an
extension of these ideas that includes provision for the covariance between the respective terms. The
key rale of stochastic integration in relation to the derivation of the relevant limit distributions here
is explained in such works as Phillips 1988b. The present explanatian is condensed from Dixit and
Pindyck 1994 (Chapter 3). See also Hamilton 1994, 474-9, Granato and Smith 1994 (fo. 4), and
Malliaris and Brock 1982: 36-§.
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tionary regressor y,,; in Equation la. It is this term that causes the limit dis-
tribution for P to be miscentered and skewed and to depend on nuisance pa-
rameters. Again, the nonstandard limit distribution in Equation 3 means that
standard t and F statistics cannot be used to make inferences about the statis-
tical significance of 3.

1.2 Discussion

VAR was pioneered in the social sciences by Sims (1980). The method
always has baffled mainstream time series analysts because, as Harvey
(1990, 83) puts it, “The usual approach adopted by VAR aficionados is . . .
to work in levels, even if some of the series are nonstationary.” Hence, by
implication, VAR maodelers are prone to the problem outlined above. But
" how serious is this problem? For example, are all the Granger causality tests
that VAR modelers use necessarily in error?

To begin with, note that in all cases working in levels provides estimates
that are asymptotically efficient, a result that owes to Fuller (1976, 347-9) in
the univariate case. And, as long as the order of the VAR is greater than one,
all estimated coefficients are asymptotically normal, and all t-tests of hy-
potheses about individual coefficients are asymptotically valid (Hamilton
1994, 553). Sims, in advocating level VARs, clearly believed Fuller’s result
held in the generalized VAR case. He also clearly believed that typical trans-
formations of variables are merely convenient simplifications that poten-
tially produce losses of information. In both cases, he was correct. Sims,
Stack, and Watson (1990) show that Fuller’s results generalize to a VAR
without drift; they extend the results with similar findings to the case with
drift. Seen in this light, differencing is merely a convenience for making sure
that standard distribution theory applies in all situations.”

Sims’ intuition regarding information losses resulting from differencing
also turned out to be correct, however. Differencing rids series of a long-
term component and, therefore, makes it impossible to model the respective
elements of time series. In this sense, a VAR in levels is more consistent with
concepts like cointegration, the idea that two or more time series share a
commoan trend in levels (Hamilton 1994, 579-80).

In addition, a VAR in levels has a useful property that plagues the con-
ventional cointegration and ervor correction approaches to model building.
Cointegration and unit root tests provide knife-edge results insofar as they
lead to yes or no decisions regarding the trend properties of a (set of) time
series. A level VAR user need not make these knife-edge decisions. For ex-
ample, the coefficient on the first lag of the lhs variable is allowed to take on

"Differencing may increase the speed of convergence and thus improve small sample perfor-
mance (Hamilton 1994, Chapter 18).
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an estimated value without an arbitrary judgment that the series is I(1) or
I{(Q). Furthermore, it is not hard to conceptualize a system with nearly co-
integrating relationships among variables for which the VAR in levels does
not make such arbitrary restrictions. For this system, the moving average
representation (MAR) for the level VAR will chart responses that may be
somewhere in between long-term and short-term dynamics. It is conven-
tional wisdom among VAR analysts that systems with unit roots often ex-
hibit covariance stationarity in precisely these cases with the MAR provid-
ing dynamic responses in a number of situations with dampening rather than
explosive dynamics.

Once more, the primary cost in modeling a VAR in levels is that even if
its order is greater than one, tests of a linear combination of coefficients—
sonre of which are coefficients on nonstationary variables—may have statis-
tics with nonstandard limit distributions. To see this more clearly, consider
the following representation:

S
Y=o+ Y By e 5)
s=1

where y and e again are n-vectors, B, now is an n by n coefficient matrix for
cach lag s, and ¢t is a n-vector of constants. Suppose that instead of this rep-
resentation we differenced all the variables in y, and reestimated the system
of equations. This would effectively force the B, coefficients on the lagged
y's in Equation 5 to equal unity. The differenced representation also would
require the coefficients for lags two through § to be linear transformations of
the original elements of f3,._; while again stipulating that the coefficients on
the lagged lhs variables sum to unity.

With these facts in mind, we can write the level VAR in Equation 5 in
the following way:

J-1
yv=o+tpy_ + Eba‘Ayf-s U1, (6)

s=1

where p is an n by n matrix. In keeping with the derivation above, Sims,
Stock, and Watsan (1990) show that in terms of the representation in Equa-
tion 6, the b, ,; will have the usual Gaussian limit distributions (assuming
that the roots of the corresponding characteristic equation lie outside the unit
circle) but the limit distributions for the p will be nonstandard. Mareover,
the coefficients in B, are linear transformations of coefficients in bg,_,
meaning that the VAR in levels provides coefficients in B ,_; that follow
standard Gaussian distributions (see Hamilton 1994, 550-4).

As regards hypothesis testing, the implication is that Wald tests on by, _;
or B, will have standard distributions. Thus model order can be tested
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with conventional statistics because these statistics rarely if ever involve re-
strictions on p. A test for a VAR(S) against a VAR(S+1) with S>1 in Equa-
tion 6 will have a limiting distribution that is standard.

The difficulty will arise in Granger causality tests because they involve
restrictions based ir part on the coefficients on the first variable on the rhs of
Equation 6, py,_;. The statistics for these tests will have nonstandard limit
distributions; these distributions will have fatter tails than the standard ones.
What is even more vexing is the fact that these nonstandard limit distribu-
tions may depend on nuisance parameters in the level VARs.#

2. SOLUTIONS

Several approaches to estimating and testing hypotheses with VARs
have been suggested.? One of these was proposed by Sims, Stock, and
Watson (1990). The intuition behind the Sims, Stock, and Watson method is
straightforward, if the actual calculations are not. A Granger causality test
implies restrictions, under the null of noncausality, on p and b in Equation 6.
To test, say, that variable y,, Granger causes y,,, requires that the null be set
up such that a single element from p and S-1 elements of bg._; be set equal
to zero. Thus, standard distribution theory applies to the S-1 elements; in
particular, these elements are distributed as an F. The inclusion of the p co-
efficient, on the other hand, will necessitate the use of a nonstandard distri-
bution. To test the null hypothesis of non-Granger causality a composite dis-
tribution must be constructed, one that is made up both of the nonstandard
and standard distributions just mentioned; finding the p-values associated
with such tests requires integrating over the combination of the two distribu-
tions. In practice, these integrations are usually intractable and, therefore,
must be carried out using numerical methods such as Gaussian quadrature
or, more generally, Monte Carlo integration. ¢

Sims, Stock, and Watson (1990, 129 and following) study a trivariate VAR in which each vari-
able has a unit root with nonzero drift in its univariate representation. They consider four cases: (i)
no cointegration, time trend excluded from maodel; (i) no cointegration, time trend included; (iii)
cointegration, time trend excluded; and (iv) cointegration, time trend included.

The only two articles we have found that propose methods to deal explicitly with level VARS
are Sims, Stock, and Watson {1990) and Phillips (1993).

Y9Fqr instance, Sims, Stock, and Watsan (1990) show that for their case jii (see cur footnote 8),
if there are two cointegrating vectors in the 3 X 3 system, all coefficient estimators will be asymp-
totically notmally distributed and all test statistics will have the usual asymptotic chi-square distri-
butions. The implication. is that a Granger causality test for this case will have an asymptotic x,p
distribution, where p is the order (lag length) of the matrix polynomial that defines the VAR model,
This is true as long as there is a particular cointegrating vector invalving a particular rhs variable. If
1o such cointegrating vector exists, the test statistic will have a nonstandard distribution {1994, 132—
6, fn. 3: 136). The authors also provide the farmula for calculating the composite F statistic for one
set of conditions related to case iii {136). A more general analysis of this kind can he found in Tada
and Phillips 1993. '
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In their article “Interpreting the Evidence on Money Income Causality,”
Stock and Watson {1989} illustrate this approach. First, the data are pretested
for unit roots, deterministic trends, and common trends. Next, on the basis of
the results of step one, an appropriate composite distribution is identified,
and numerical integration is used to calculate the corrected p values for cer-
tain individual test statistics. In this way, the confusion about the relation-
ship between money and income is clarified; conflicting results are shown to
be the result of the application of the incorrect distribution theory in cases
where pretesting and appropriate adjustments in p values were not made in
existing works.'!

While writers like Hamilton maintain the Sims, Stock, and Watson ap-
proach is promising (1994, 653}, it has a number of drawbacks. First, this ap-
proach is subject to pretest bias (1990, 136-7; Stock and Watson 1989, 178;
Phillips 1995, 1028-9). Discovering the trend properties in step one is prone
to error which, in turn, can lead to misapplication of (non)standard distribu-
tion theory.'? Second, determining when nonstandard distribution theory is
required is difficult. Sims, Stock, and Watson derived results only for a
trivariate system. and then for a small number of cases associated with that
system. As Phillips (19935, 1053) notes, the Sims, Stock, and Watson analysis
does not “provide an asymptotic theary that justifies the general use of VAR
regressions for causality testing at least in correctly specified models.”!3

A second approach is Johansen’s maximum-likelihood method, or what
is sometimes called “reduced-rank regression.” To implement this approach,
" one begins with the assumption that each of the individual y, in Equation 1
are I(1). Then, as with the Stock and Watson approach, one proceeds to use
pretests to determine the number, h, of cointegrating relationships between

UMare specifically, Stack and Watson (1988) show that the confusion ahout money-income
causality is a result of schalars failing to take into account the use of differences and linear and poly-
nomial trends in the presence of unit raots and cointegrated series, or failing to note the need for the
use of nonstandard distribution theory in some specifications but not in others, They explain how
Monte Carlo integration 13 used to caleulate the nonstandard p values in the appendix to their paper.

2Consider, for instance, testing for deterministic trends. This ig straightforward insofar as
standard distribution theory applies to the coefficients on the respective variables (Hamilton, 1994,
Chapter 16). The inclusion of time trends, howewer, will influence the nonstandard distributions of
other hypothesis tests when other coefficients have nonstandard distributions; the existence of deter-
ministic trends can change the resulis of standard (stabonary) and nonstandard Granger cansality
tests if these trends are ignored. Thus, specifying the exact nature of these “nuisance” parameters is
crucial. Unfortunately, there is no clear and best way to determine whether a time series has a deter-
ministic vs. stochastic trend. The respective tests have low pawer, and, in small samples such tests
are very fragile (Dejong et al. 1992}, A good intraduction ta the problem of testing for unjt roots are
the papers by Evans and Savin (1981, 1984).

3Stack and Watson Kindly supplied us with the code they used for their study of money and
income. However, that code applied only to the specific system that they had constructed on the ha-
sis of their pretesting of the relevant money-income series.
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the elements of y,. It is well known that if the system involves h cointe-
grating relationships, then the coefficient p on y,_; in Equation 1 can be
expressed as p = A*B, where A and B are n by h and h by n matrices, respec-
tively. Johansen then shows how to obtain the maximum likelihood esti-
mates of the parameters in Equation 1 subject to the constraint that p = A*B
(and that the distribution of the system’s errors is Gaussian). Juselius and
Hargreaves (1992) and others use this method to study the long-run proper-
ties of money demand and other economic processes. On the basis of the se-
quence of hypothesis tests just described, they characterize the long-run re-
lations between certain monetary and income aggregates.'*

There are several problems with the Johansen method. Most important
is that of correctly identifying the number of cointegrating vectors in the
system. If this is not done, the maximum-likelihood estimates (and, there-
fore, the hypothesis tests) can be seriously in error; the results of any hy-
pothesis test about causal relations in the data can be inaccurate if one errors
in determining the dimensionality of the cointegration space. The severity of
the problem hinges on such things as the relative variances associated with
the different cointegration vectors. There are other problems with the
Johansen method: for example, apparent sensitivity to the lag-length speci-
fication in the error-correction setup.!?

14This description is based on Juselius and Hargreaves (1992) and Hargreaves (1994} The
former saurce explains the connection hetween Johansen's method and the probability approach of
Hendry and Richard (1983); the latter explains the relation between Johansen’s method and the
Engle and Yoo three-step method (1991). Suppose z, is a vectar time series with dimension p. As-
sume the lag arder is 2 so the process is simply:

2,=AZ, tAZ gt e, e, ~ NID{0.L)
Then the Johansen methad facuses on the error-correction farm:

ﬂZL = FlAzr—l + Hzr—l té
Az =T Az +of7,  +e

whete ¥, = —A, and o’ is the matrix product discussed in the text (and equal to = 1 - A — Ay).
Juselius and Hargreaves (1992) show how dummy variables, deterministic time trends, and mare
complex error processes are incorparated into this setup. They also describe the likelihood function,
which {s made up of product-moment matrices which, in turn, are compased of the levels residuals
and difference residuals from the auxiliary regressions. The same source describes the different hy-
pothesis tests which are performed with the Johansen method and the test’s connection to problems
like overparameterization. A useful discussion of the general problems in estimating cointegrating
relationships is Saikkonen (1991}.

L3A R evaluation of Johansen's approach can he found in works such as Hargreaves (1994}, Far
instance, after comparing the performance of it and various single-equation approaches, Hargreaves
concludes, “Results can change dramatically if ane changes the dimensionality of the caintegration.
space” (1994, 103). In a companion piece he and Juselius add, “Since all subsequent [hypothesis]
tests are valid under the condition that the [cointegration] rank is comrectly determined, the choice of
r is very crucial in the analysis” (1992, 268: see alsa 271 and their footnotes 2 and 3).
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Phillips and his associates have proposed an alternative approach. Origi-
nally, this method—FM-OLS-—was designed to estimate cointegrating rela-
tionships in single equations. Recently the approach has been extended to
cover the more general time series situation in which a VAR might contain
unit roots and(or) cointegrating vectors. This is the new FM-VAR estimator
(Phillips 1995). Because the older FM-OLS is based on the same logic and
is much easier to explain than FM-VAR, we describe it 1n detail. We then
sketch the properties of the FM-VAR estimator.

Consider the following madel’S:

¥ = Bx oy, N
X =Xy + Uy

where v, and x, are vectors for which the regressor variables are not co-
integrated, and their differences are stationary (u, and u,, are stationary pro-
cesses and u,, is white noise so x, is a random walk). Say that the mode] de-
scribes a system of relationships, and y is dimension r, and x is dimension
p-r. Then the model can be rewritten as a simultaneous equation system:

SRR L]
B B, | x, por 0 I J A uy, or

where A is the difference operator. Let u; be AR(L):
up=pu e Ipl<l (9

and suppose that

el [O i 0,0,
Uy, 0| 966, o3

s0 e, and u,, are both stationary. Therefore, uy, is also stationary. Since its
first difference is stationary, x, is I{1). And, because y, is a linear combina-
tion of an I(1} variable and an I(Q) variable, it also is I(1). Since the linear
combination of these two vectors is I(Q), they are cointegrated.!” As we saw
earlier, the asymptotic distribution of the OLS estimator of § becomes

18The following is a condensation of Hargreaves 1994, Section 2.3.

1"The equation. system in Equation § {s equivalent to that in Equation 7 with fi = —A, ™' A;. The
linear combination of y, and x, is u,, which is I(0). Hence the twa vectors are cointegrated by con-
straction. It should be noted that the model in Equation 7 is nat assumed to be the structure of eco-
nomic reality but rather an approximation of the same (*. . . in a similar way to a Box-Jenkins time
series ARIMA madel paralleling a causal structural model. One assumes that the effects of other sta-
tionary variables are modeled equivalently by the ARMA pracess on the errots . . . [in this sense the
model] is 2 device used to efficiently estimate the cointegrating relationship” Hargreaves 1994, 95)
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r(ﬁ—ﬁ)_c_{(ja) ‘* ‘[Bde+ ‘9‘5‘) ij'Bdeﬁ“;i-_l? (10)

where W = BM(1) is independent of B,. The last two terms again are due to
serial correlation in the unit root regressor and endogeneity. It is these two
terms that FM-OLS tries to estimate and asymptotically remove.'®

This is done in the following way. First, we stack the errors into one
vector

w, | .
i, = [uij i | (11

b-r

We then form the curnulative sum of u, which is a multivariate random walk.
In terms of continuous time we have

[T]
wr(T) = — Zu,f_{ﬂcr)—[ 2] = BM(Q) (12)
r-r

for T € [0,1] and T—e0. The covariance matrix, €2, of the Brownian motion
is called the “long-run covariance matrix.” Itis defined as

Q= lm L3S s a3)

f'—ljl

as such it represents the sum of all the covariances backwards and forwards
of u; and u,. Q can be decomposed into a contemporaneous variance and
sums of autocovariances

T

T!jjf_? 2 Etuul) + 22 Euu)) + 2 2 E(wy
p=2 j=1 =2 j=1

oo

Q= E(uu]+2E(ﬂu£)+zE(au) (14)

t=

Q=Z+r+r'

16The first term in. Equation 10 is independent of the ather twa since B, and W are indepen-
dent. If %, is strictly exogenous @ is zero and the second and third terms in Equation 10 are bath zero.



1302 John Freeman et al.

where I is the contemporaneous covariance matrix. Define
A=Z+T (15)

Then we can write £ and A conformably with u,:

Qll Q12:|r |:All A12:|r
Q= and A = {16)
[921 G, Ay Aml,,

Given what we have assumed about the structure of the errors we have:

_{e6i/il-p?) ¢oi0

2= [ l‘PGLG:L ‘51% 2} a7
_{ oifil-0%) ©o,06,/0-p)

Q- {‘9‘51161/(1 —-p) L 20% (8)

_[po2/[a - px1 - p2)] 0}
I [ 005G, /(L—p) 0 (19)

Define the long-run variance of u;, conditional on u,, as

Q5 = Q) - Q070 (20)
and the bias due to the endogeneity of the regressots as

Afy = Ay - 80510 (21)

Because it is second-order stationary, the long-run autocavariances are y,’s
spectral density evaluated at the origin. And a kernel estimator with an ap-
propriate bandwidth specification can be employed along with the OLS esti-
mates of the errors to make the indicated calculations (see Lee and Phillips
1994). Denoting these estimated autocovariances with a hat, these calcula-
tions yield

€y, =€y - Q050 (22)

3;1 = Ay — 80510, (23)
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The original dependent variable then is transformed to be
¥o=y- Qligizlﬁﬂr' ’ (24)
The FM-OLS estimator, then, is:

-1
i

B =3 otxt - 0Ag N Y 2 (25)
i=[

t=|

With this method, one can obtain asymptotic standard normal t statistics
which can be used for hypothesis tests which include the coefficients on
nonstationary variables. However, the distribution of the estimator is non-
normal and skewed. Hence confidence intervals cannot be calculated in the
conventional way.'?

The Fully-Modified estimator is very complicated. It involves trans-
forming the standard VAR model into an equivalent form on which one fo-
cuses for estimation and hypothesis tests. Say the level VAR model is ex-
pressed as

vi=KLl)y,_ +g (26)

k
where J(L) = Z J.L'71 and L the lag operator. We analyze the equivalent
form: i=1

¥o= T (LAY + Ay, + € 27
k-1 k
where 1"(L) = Y J'Li- and I} = = 3 I, A = I(1) and A is the differ-
i=1 bh=i+1

ence operator®® This model is transformed into another (orthogonalized)
coordinate system, and the FM-VAR estimator and its limit theory is de-
rived. Then these results are translated back into parallel results for the
ariginal coordinate system corresponding to the form in Equation 27. The

1%Since it is conditional an o(B,(¥), 0 < ¥ < 1} the estimator is asymptotically normally disirib-
uted. Unconditionally it is a mixture of normals like all so-called “unit root estimators.” Phillips
(1995) derives the limit theory for FM-OLS, relates this theory to Wald tests, and shows how deter-
ministic regressors can be incorporated in the estimation.

“Note that Equation 27 has the equivalent VECM representation: Ay, = T LAy, +{(ADy,,
+ €, where the notation is that used in the text.



1304 Jahn Freeman et al,

actual estimator of the coefficients f§ is a more complex, alternative matrix
product than its OLS counterpart; it amounts to a transformation of the
original lhs variables in order to remove the endogeneity bias resulting
from unit roots and cointegrating vectors in the original VAR system. The
FM-VAR estimator in the terms of the original coordinates is:

Fa = [vzivy, - Q,05ar v, - Thy,)|x%)™ (28)

where the : represents a partitioned matrix, Z is a vector of first differences
in lags of y,_|, and the © and A are kernel estimates of the appropriate long
run covariance matrices akin to those described above for FM-OLS. In this
way, one transforms the original data in terms of corresponding auto-
covariance matrices to obtain a new estimate of the coefficients in Equation
27 in a manner parallel to that which was done by the FM-OLS estimator
(cf. Eqns. 28 and 25).

While the theory behind Fully-Modified estimation is somewhat com-
plicated, the intuition that underlies it is straightforward. As discussed ear-
lier, when nonstationary variables are included in Equation 5, standard
OLS will estimate B, with second-order bias. In particular, its limiting dis-
tribution will be asymetric and leptokurtic. Loosely speaking, this bias is
caunsed by endogeneities in the predetermined variables resulting from
those variables’ nonstationarity. To see this, note that in Equation 5, by con-
struction, plim T-'Zy,_ e, does not converge to zero. The long-run covari-
ance between the regressors and the errors is not zero. It is this nonzero
long-run covariance matrix that leads to the biased limiting distributions of
the coefficient estimates. FM-VAR, then, deals with the fact that the VAR is
not a ‘reduced form’ by adopting a semiparametric estimation technique .
that corrects the OLS-VAR formula by accounting for the endogeneity bias.
Importantly, these adjustments are made without prior information about
the cointegrating space, thus obviating the need for pretests and the poten-
tial for pretest bias.

Phillips explains that the FM-VAR estimator is preferable to its FM-
QLS counterpart. This is because (1) in nonstationary directions the latter
contains second-order bias (that is, simultaneous-equation bias), and (2} it
entails a camposite of a matrix unit root distribution and a mixed normal in
the estimation of the system’s unit roots {1993, Remark 5.8). He also notes
that when the original VAR contains stationary components, the FM-VAR
estimates of the respective coefficients will have the same asymptotic distri-
bution as the level VAR OLS estimates. Finally, Phillips shows that the Wald
test on FM-VAR coefficients has a limit distribution that is a linear combina-
tion of chi-square variates. This limit variate is bounded above by a %2 statis-
tic with degrees of freedom equal to the number of restrictions being tested.
Therefore, conservative but asymptotically valid hypothesis tests like those
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associated with the concept of Granger causality can be performed with the
FM-VAR approach.?! -

Practically speaking then, this third approach involves three steps. Fisst,
one rewrites his or her model in a form similar to Equation 27. Standard lag
length tests then are implemented along the lines suggested earlier. Next
FM-VAR is used to obtain estimates of the coefficients in the transformed
model; these estimates are based on those of the long-run autocovariances
described above. Finally, Granger causality tests are performed on fitted
models; the joint statistical significance of the appropriate FM-VAR esti-
mated coefficients is assessed. This yields a test statistic for the null of non-
Granger causality whose distribution is bounded above by the distribution of
a chi-square random variable with degrees of freedom equal to the number
of imposed linear restrictions. In other words, one may use the test statistic
and the appropriate chi-square distribution to determine a p value for the null
of non-Granger causality that is greater than or equal to the p value we
would obtain if we were to use the test statistics’ true (but complicated) dis-
tribution.

FM-VAR has a number of advantages over the Sims-Stock-Watson and
Johansen approaches. Most important, FM-VAR avoids pretest bias while at
the same time achieving equivalencies with the Johansen method:

In VAR models with some unit roots and cointegrated variables (a composite
system) the FM-VAR estimates of the identified components of the cointe-
grating matrix have a mixed normal limit theory which is equivalent to the op-
timal estimator in Phillips (1991a) or the reduced rank regression estimator in
Johansen (1988). Mareover, optimal estimation of the cointegration space is
attained in FM-VAR regression VAR regression without knowledge of the di-
mension of the cointegration space and without pretesting for the number of
caintegrating vectors, Thus an investigator can perform unrestricted regression
by FM-VAR and effectively disregard the 1(1) and I(0) nature of the data. Any
cointegrating relations are implicitly estimated as if one was performing a
maximum likelihood estimation of the model with the cointegrating rank
known correctly. (Phillips 1995, 1056, emphasis in original)

Second, in comparison to the Sims, Stock, and Watson approach, the need
to derive an expression for the exact nonstandard limit distribution of the

UThe other main properties of the FM-VAR estimator are: {1} when there is cointegration in
the system its limit theory is normal (asymptatically equivalent o OLS) for stationary coefficients
and mixed normal for elf of the nonstationary coefficients including unit roots {there are no unit root
distributions, and there is no asymptatic bias in the estimation of the cointegration space in the FM-
VAR limit theory) and (2), when the system has a full set of unit raots, the FM-VAR estimator of the
complete unit root matrix is hyperconsistent in the sense that the rate of convergence of the estima-
tor exceeds the O(T) rate of the OLS and MLE estimator (Phillips 1993, 1025-6). As regards its rela-
tive virtues in relation to FM-OLS, Phillips notes that the latter is applicable in models with either
full rank or cointegrated I{1) regressors and in models with stationary regressors (10563
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estimator and test statistics is lessened to some degree. A Granger causal
hypothesis involving stationary and nonstationary coefficients in a FM-
VAR estimated system produces a Wald statistic with a limit distribution
which is a linear combination of independent chi-square variates. The 7y, 2
distribution (for a test of q total restrictions) is an upper bound for this sta-
tistic. Hence it can be used to make conservative evaluations of the hypoth-
eses of non-Granger causality (Philips 1995, Section 7, especially 1057).
Moreover, since the FM-VAR estimator is unaffected by their presence in
the equation system, the causality tests need not make provisions for drifts,
trends, and other nuisance parameters. With FM-VAR, then, we may not
obtain exact p values for hypothesis tests, but we can make some useful in-
ferences ahout the validity of our causal claims.?? Finally, Phillips contends
that because it does not employ pretests and sequential testing, FM-VAR is
more “in the spirit” of VAR than the Johansen method (1995, 1029).

There are several issues surrounding FM-VAR. To begin with, kernel
estimation of the spectral density associated with the long-run covariances is
required. Often, the Parzen kernel along with an automatic bandwidth selec-
tor is used for this purpose. Some researchers suggest using alternative ker-
nel estimators and additional procedures like VAR prewhitening. Most of
these recommendations are based on comparisons of FM-OLS estimators
rather than FM-VAR estimators, however. But work on the properties of the
FM estimators really has just begun.?? In addition, one must exercise care in

220f course, in principle, with the Sims, Stock, and Watson approach we can abtain an xact p
value for our Granger causality test statistics. This p value would be arbitrarily accurate, although jt
would still be subject to specification error due ta the poar performance of pretest estimators and
ather problems.

BThe long-run covariance concept is a multivariate extension of the same idea that is at the
heart of the KPSS test for stationarity and the modified R/S statistic and variance ratio tests for frac-
tional integration. (On this connectian see Box-Steffensmeier and Smith 1996.)

Because the long-run covariatices are infinite sums we can only approximate their values.
Since the relevant series is second-order stationary, its long run eovariances are equivalent to their
spectral densities evaluated at the origin times a canstant (Lee and Phillips 1994). Kernel estimation
of these spectral densities is passible; the bandwidth for this estimation normally is chosen by an
automatic procedures (see, for instance, Hamilton 1994 (Chapter 6, especially 165 and following);
see alsa Ng and Perron 1995). Below we show that the use of alternative procedures for bandwidth
selection does not appreciably affect the performance of the FM-VAR estimatar,

Illustrative of the alternative pracedures which have been suggested in FM-OLS estimation is
that of Cappuccio and Lubian (1995). They propase capturing some of the dependence in the G, =
{i(8), which are ohtained from a consistent estimate of € in the class of kernel consistent estimators
of Q) and I. In particular, Cappuccio and Lubian propose to fit a VAR{1) model of the u and use the
resulting residuals to obtain the lang-run covariances matrixes. The VAR(1) residuals presumably
are ¢loser o white noise process than 6, In a2 Monte Carlo experiment Cappuccio and Lubian find
that VAR prewhitening of FM-OLS yields empirical t-ratios that are hetter approximations to the
standard normal t distribution than those obtained with conventional methods. For more details
ahout kernel estimation procedures and a brief review of somne new warks evaluating FM estimation,
see in addition to Cappuccio and Lubian (1995}, Phillips (1995, 1025). See also Hargreaves (1994.}
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interpreting and using the Granger causality test statistic produced by FM-
VAR. Again, the respective p values are calculated using a chi-square distri-
bution that is an upper bound, not the true distribution of the test statistic.
The actual p value for a Granger causality test is less than that indicated by
the relevant ¥ distribution. This means, in effect, that FM-VAR Granger
causality tests are biased toward confirming the null of non Granger causal-
ity; ceteris paribus, users of FM-VAR will tend to accept the hypothesis of
no Granger causal relationship. Whether this is a serious problem—whether
FM-VAR based Granger causality tests lack statistical power in finite
samples—remains to be determined in Monte Carlo experiments like those
we conduct below (cf. Phillips 1995, 1055).2%?5 Finally, the general pitfalls
of Granger causality testing—omitted variables bias, mistaken inference due
to sampling design, etc.—all still apply (Freeman 1983).

3. IMPLICATIONS FOR POLITICAL SCIENCE

Political science certainly appears to be prone to the problems outlined
above. Many of us have not addressed the possibility that our political time
series contain unit roots or are cointegrated. We also have failed to make any
provisions for nonstationary coefficients in our level VARs and, concomi-
tantly, for nuisance parameters in our estimator’s limit theory. In our desire
to demonstrate the robustness of our results to a variety of specifications, we
have differenced variables and included various kinds of trend terms in our
level VARs without taking into account how the limit theory for test statis-
tics varies for alternative specifications.?® Critics like Ostrom and Smith
(1993} and Granato and Smith {1994), therefore, are right to question the
validity of our findings. Where there are sound theoretical and conceptual

The use of such hounds in statistical inference is not unusual. One encounters them in. time
series regression analysis with nan-Gaussian errars, for instance (Hamilton 1994, 214).

“Kitamura (1994) construets a test statistic for FM-VAR estimators and proves it has & simple
distribtition whenever the pracess under consideration is stationary or cointegrated (if the process is
full-rank integrated the disuibution of the statistic is again bounded by a ¢hi-square distribution).
Using his method, therefore, in integrated systems, it is possible to obtain exace p values when con-
ducting Granger causality tests. Kitamura's approach is still under development; it is not yet avail-
able for use in investigations like the present one.

Pglitical science assessments of trend praperties of time series usually are incomplete and
unsystematic. Some of our studies use level data and allow for the existence of deterministic linear
trends (Freeman, Williams, and Lin 1989}, ather investigations test for unit raots and for the exist-
ence of comman trends (Ostrom and Smith 1993; Duer 1993a); still athers use level data and test
neither for deterministic trends nar univariate or multivariate stochastic trends {Williams 1990}, The
tests which ate done usually are quite unreflective. For instance, in testing for deterministic trends,
canstant rates of change are assumed implicitly. The possibility of palynomial trends or that long-
term rates of change, for example, in growth rates, are deterministic but non eanstant also often are
ignored. In general, while stochastic trends are increasingly understood and evaluated, deterministic
trends are often ignored and no meaningful substantive interpretation of them is provided. For a fur-
ther elaboration of this critique see Freeman and Stimson (1994).
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reasons to expect cointegration and (or) unit roots, our causality tests may
well have been plagued by the biases described above. With FM-VAR, we
now can gauge the accuracy of these causal inferences. It is to this vitally
important task that we now turn.

4, EVALUATION AND REANALYSIS
4.1 Monte Carlo Experiment

In order to better explain the nature of FM-VAR and to gauge its finite
sample performance, we begin with a brief report of results from several
Monte Carlo experiments. We generated data for these experiments using
the simple two equation system.

Yu=& ¥ e HE, (29.1)
Yo =¥ T OV + Ey (29.2)

The errors were specified to have unit variance and to be serially and con-
temporaneously uncorrelated. We chose the parameter values to examine
four important types of stochastic processes: full-rank integrated, nearly in-
tegrated, stationary, and mixed stationary-nonstationary. The particular pa-
rameter values used for our experiments will be discussed in detail below.
Samples of 25, 50, 100, and 500 were studied for each type of system.

Each data set was used to estimate a level, second-order VAR that in-
cluded neither constants nor deterministic trends. In particular, we analyzed
the following system:

i ¥2d' =0 e Yool + 82 ¥ ea Yaal '+ My Mad’ (29.3)

Here, the 8, are 2 by 2 matrices whose elements were estimated. We as-
sumed the 1), were serially uncorrelated, and we produced estimates for the
contemporaneous covariance matrix. Both OLS and FM-VAR techniques
were used to produce parameter estimates.

As discussed above, FM-VAR estimation entails a kernel and bandwidth
choice. We chose the Parzen kerel (Parzen 1957) becaunse its use guarantees
positive semi-definite covariance estimates {Andrews 1991) and because its
use is common in the spectral estimation Monte Carlo literature (see, for ex-
ample, Andrews 1991, Kitamura 1994, and Yamada and Toda 1996). We
compared the results of three different bandwidih selection procedures. One
was simply to fix the bandwidth at 3 for each sample magnitude. The other
two methods were data-based. One method was taken from Andrews (1991)
and the other from Schwert (1989).%7

"Mare precisely, we used the AR(1) formula from Andrews 1991 (Equatien 6.4, 835) to deter-
mine the Andrews automatic bandwidth. So chosen, the bandwidth can take any value on the posi-
tive real line and will generally vary from sample to sample. In our case, the values were smallest in
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We compared the ability of different statistical tesis to detect the exist-
ence (or absence) of Granger cdusal relationships between the variables in
our system. In particular, we chose to compare the FM-VAR Wald test
(henceforth, W-FM) with the more familiar OLS F test (henceforth, F-OLS)
and the OLS Wald test (henceforth, W-QLS).?8 This choice was made for the
following reasons. First, because FM theory is entirely asymptotic and be-
canse very little is known about the finite sample properties of FM-VAR es-
timators, it is necessary to appeal to asymptotic results when conducting hy-
pothesis tests.?” The Wald test was the natural choice as it was fully
described and characterized for the FM environment by Phillips (1995).
Given the decision to use W-FM, it is natural to also include W-OLS as a
point of comparison. Finally, we included F-OLS because of its familiarity
and because it has been used to generate many empirical results reported by
political scientists and economusts in published work.

We compared the size and power of F-OLS, W-OLS, and W-FM for
Granger causality tests. To assess the size of each test, that is the tendency of
the test to reject the null hypothesis when it is true, we proceeded as follows.
First we set b = 0 in Equation 29.2. The parameters (a,, a,) took the values
(1.0, 1.0}, (0.95, 0.95}, (0.90, 0.90), (0.50, 0.50), and (0.5, 1.0) in different
experiments, corresponding to the full-rank integrated, nearly integrated,
stationary, and mixed cases, We then estimated system (Equation 29.3} and
tested the null hypothesis that y,, does not Granger cause y,,, that is, that
6,(2,1) = 8,(2,1) = 0. To determine the power of the test, or the probability
that the test will reject a false null hypothesis, we generated data with the
same set of values for a; and a,, but set b = 0.1, We again estimated (Equa-
tion 29.3) and then tested the false null hypothesis that lags of y,, do not help
predict y,,, or again that 8,(2,1) = 8,(2,1} = 0. All tests were canducted at the
5 percent nominal level. Empirical rejection probabilities were found by av-
eraging over 1000 trials for each parameter configuration. Each data set was

the full-rank integrated, 25 observation case (typically between 1.0 and 2.0) and largest in the sta-
tionary, 500 observation environment (typically between 3.5 and 4.5).

The Schwert rule defines the bandwidth as an integer function of sample size. In our case, the
bandwidths implied by the Schwert rule were 2, 3, 4, and 6 for sample sizes 25, 50, 100, and 500,
respectively.

H[f the estimated coefficients p have estimated covariance matrix S, then by a Wald test of the
J linear restrictions Rp = r we mean to determite the value x* = (Rp — 1 {RSR' Y Y(Rp — r) and then
compare x* against the critical values from a ¥%(j) distribution. By an F-test we mean to compare the
value x*/j against the apprapriate eritical values from an F(j,n) distibution, where n ig the degrees
of freedom from the sample used to generate the parameter estimates.

MThe usual F statistic is a finite sample statistic which is appropriate in the case where one
knows that the finite sample distribution of the estimator is approximately normal with 2 consis-
tently estimated mean and variance. However, including lagged endagenous variables as regressors,
as is required for Granger-causality regressions, renders the F test only asymptotically valid because
the estimates themselves only have asymptotic properties {Hamilton, 1994, 304-5).
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initialized with 100 presample observations, and these were not used in the
experiments. This ensured the stationary components of the system, if any,
had reached their long-run distributions before observations were taken. The
coefficients were estimated with a corrected version of Gauss’ COINT sub-
routine, FM-VAR 30

The results of the size tests are reported in Table 1, and the results of the
power tests are reported in Table 2. The first column of each table describes
the data generating process employed. The second column gives the sample
magnitude. The third through seventh columns give the empirical rejection
probabilities for each bandwidth selection rule. Note that the size results are
almost invariant to the bandwidth, and the power results exhibit only modest
variability in this regard. A few cases where these differences were signifi-
cant will be noted below,

Consider the full-rank integrated process (row 1 of Table 1). In this case,
testing the true null hypothesis that y; does not cause y, requires testing a
nonstationary coefficient (namely, that on the first lag of y,). It is well
known that in such cases F-OLS and W-OLS will tend to over- reject, and
our results again demonstrate that fact.?! The tests were conducted at the 5
percent level, but the empirical sizes were around 11-12 percent for any
number of abservations for both OLS tests. On the other hand, note that the
size of the W-FM test declined monotonically with the number of observa-
tions, from a high of 9 percent (twenty-five observations; Andrews 1991) to
a low of 1 percent (500 abservations, Fixed and Schwert). This finding is
consistent with the theoretical result that in full-rank integrated environ-
ments, the size of W-FM tends to zero as the number of observations be-
comes large (see Phillips 1995, Theorem 6.3 and Remark 6.4, 1055). That is,
the probability of a type I error, finding evidence of causality when none ex-
ists, is extremely small when the sample magnitude is large.

To clarify this idea we generated the empirical CDF of the W-FM statis-
tic for the 100 observation, full-rank integrated case and plotted it against
the CDF of a ¥*(2) random variable (see Figure 1), We plotted the %*(2) dis-
tribution because it is the ‘bounding’ distribution used to generate ‘conserva-
tive’ critical values for our W-FM hypothesis tests. From the figure, it is

The original version of the FM-VAR subrautine was found to have a number of serious bugs.
These were corrected with the help of one of the co-authars of COINT, Samuel Ouliaris. Copies of
the new code are available fram the authors. The Monte Carla expetiments were coded in MATLAB
(version 4.2c.1}. The MATLAB random number generator RANDN was used to generate the
Gaussian disturbances to the data generating process; it was initialized with the seed 1029345 for
each experiment. The programs were submitted to SUN Sparcl() workstations.

*For early work in this area see Granger and Newhald (1974). A mare recent study of this
prablem is Ghanian (1988).
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Tabte 1. Sizes Under Various Data Generating Process
and Bandwidth Specifications®

F-OLS W-OLS W-FM
Sample

Data Generating Process Size Fixed Andrews Schwert
Full Rank Integrated 25 Q.12 0.15 0.07 0.09 0.09

50 Q.11 0.13 0.03 0.04 0.a3
Y1+ =Y 1(t) + elit+1) 100 0.11 Q.13 .03 0.04 0.03
Y2(t4l) = Y2UE) + e2(0+)) 500 0.11 0.11 0.01 0.02 0.01
Near Integrated 25 0.11 Q.12 Q.07 (.08 0.07

50 0.08 0.09 0.03 003 0.03
Y10+ 1) =095*Y1(t) + el(t+1) 100 0.07 0.08 0.03 0.03 Q.03
Y20+l) = 0.95*Y2(0) + e2(t5l) 500 0.05 0.05 a.01 0.01 0.01

Near Integrated 25 0.09 a1t 0.07 0.08 0.08

50 .07 0.08 0.03 0.04 0.03
Y1(+1) = 0.90*YIt) + el(e+l) 100 0.06 0.07 0.03 0.03 0.03
Y2(t+) = 0.90*Y2(t) + e2(i+l) 500 0.05 0.05 0.01 0.02 0.02

‘Mixed"

HO: Y1 does not cause Y2
25 0.07 Q.11 (.09 0.10 0.09
Y1{t+#1)=05*Y1{t) + el (t+1) 30 (K4S Q.07 0.05 .05 .05
Y2(e+1) = Y2(t) + e2(t+1) 100 .05 (.06 0.03 0.04 0.04
500 0.05 0.05 042 0.02 0.03

HO: Y2 does not cause Y1
25 0.08 0.10 {1.05 0.06 0.06
Y1(t+13 =0.9*%Y (1) + el(t+1} 50 0.06 0.06 {1.03 0.03 0.03
Y(t+1) = YD) + e2(t+]) 100 008 0.08 0.02 0.03 0.03
500 .06 0.06 0.02 0.02 0.02

Stationary 25 007 0.08 0.08 0.08 0.08

50 005 0.06 0.05 0.05 0.05
VI(t+1) = 0.50%Y (1) + el(tt1) 100 0.05 0.05 0.04 0.04 0.05
Yort+1) = 0.50%Y2(0 + e2(t+1} 500 0.04 0.04 0.03 0.03 0.04

*[Jnless atherwise noted, the null hypothesis is HO: Y1 does not Granger cause Y2.
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Figure 1. Empirical CDF of FM-VAR Wald Statistic

for I(1) Specification
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clear that the true 5 percent critical value for the W-FM statistic is around 4.3
{for this specific case). The reason that W-FM displays sizes smaller than 5
percent, then, is that the bounding distribution’s critical value of 5.99 actu-
ally is used in the hypothesis tests, instead of the smaller true critical value.

The nearly-integrated cases are reported in rows two and three of Table
1. Although the environment is stationary, W-FM still rejects the Granger
causality null hypothesis less than 5 percent of the time. For instance, with
500 abservations the empirical size never exceeds 2 percent. Observe also
that F-OLS and W-OLS still tend to over-reject the (true) null hypothesis at
all but the largest number of observations. In the case a; = 0.95, samples as
large as 100 still produce F-OLS and W-OLS tests that reject the Granger
causality hypothesis 7 percent of the time at the nominal (5 percent) level.
This size distortion arises because of the very complicated small-sample dis-
tributions of the estimators in near integrated environments.

* Next, consider the mixed system (row four of Table 1). This system is
not symmetric; the coefficients on the y, process are stationary, while those
on the first lag of y, are nonstationary. We, therefore, tested two hypotheses:
that y, does not cause y,, and that y, does not cause y,. As expected, the
OLS tests performed very well when stationary coefficients are restricted
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and slightly less well otherwise. For example, with sample magnitude 100
the empirical size of F-OLS was identical to its nominal size, 5 percent
when the stationary coefficients were tested, but 8 percent when the
nonstationary coefficients were tested. Similarly, the sizes of W-FM are
larger in the stationary case, especially when there are few observations in
the sample.

The last row of Table 1 summarizes the results for the stationary case.
As expected, F-OLS and W-OLS have sizes that very closely resemble their
levels. F-OLS, of course, performs slightly better when the sample magni-
tude is not large. W-FM exhibits sizes that are very close to those of the OLS
tests. This result was expected. It is consistent with the theoretical finding
that in stationary environments W-OLS and W-FM are equivalent.

Finally, consider briefly Table 2, which details the results of our power
experiments. Given the size results, the outcome of the power tests are not
surprising. In particular, we saw that the empirical size of W-FM was much
smaller than F-OLS or W-OLS in integrated and near-integrated environ-
ments. Thus, as expected, the power of W-FM is also smaller than F-OLS or
W-OLS in those enviranments. For instance, for 100 observations in the in-
tegrated environment F-OLS accurately finds evidence of causality in 87
percent of the time, while W-FM finds such evidence in as few as 28 percent
of the cases (Schwert bandwidth) and no more than 49 percent of the cases
(Andrews bandwidth). It is interesting to note, however, that W-FM also has
less power than F-OLS and W-OLS when the environment is stationary.
From the last row of Table 2, we see that, for all sample magnitudes and
bandwidth selection rules, W-FM rejects the null a smaller number of times
than the OLS tests, and the difference does not seem to diminish as the
sample magnitude increases. When the sample magnitude is 500, the QLS
tests reject the null of noncausality in 62 percent of the trials, while W-FM
does s0 40 percent of the time (fixed bandwidth) and 54 percent of the time
(Schwert bandwidth),

Overall, the results of our Monte Carlo experiment are as expected.
The FM-VAR Wald test is attractive in that it has consistently smaller sizes
than either the QLS F-test or the OLS Wald test. On the other hand, the
QLS tests had greater power. Both results were robust to the bandwidth se-
lection rule employed. Together, the results revealed the ‘conservative’ na-
ture of the FM-VAR approach to hypothesis testing. In particular, for
Granger causality tests, the FM-VAR Wald test statistic was biased toward
accepting the null hypothesis (no causality) when its value was compared
against a critical value from the appropriate hounding %? distribution. The
stage is, therefore, set for a reevaluation of some existing, level VARs in
political science.
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4.2 The Arms Race Dehate Revisited:
India’s Culpability Reconsidered

The late 1970s witnessed much debate about the existence and nature of
so-called “arms races” International relations scholars were convinced that
many countries were locked in dangerous, mutually reinforcing arms build-
ups. But they were unable to show this joint causality in the relevant time
series data (for instance, see Majeski and Jones 1980). Freeman ¢1983) ar-
gued that the confusion derived from the use of inappropriate statistical
methods. Using a direct Granger test in the context of what was essentially a
VAR model in differences, Freeman found that there were robust Granger
causal relationships between Indian and Pakistani arms spending series,
namely, Indian arms spending Granger caused Pakistani arms spending but
not vice versa. Interestingly, current accounts of Indian-Pakistani relations
also express concern about a nuclear arms buildup provoked by political de-
velopments within India (The Economist, May 4, 1996: 35-7).

Freeman’s inferences could be flawed in several ways. First, he used
differences in order to reduce serial correlation without any concern for the
effect this would have on the long-run relationship between arms spending
processes. In addition, in order to show the robustness of his results, Free-
man added linear deterministic trends to his equations without knowing how
this might change the limiting distribution of his estimator if the arms ex-
penditure series had unit roots. This possibility of unit roots (cointegration)
was never considered by Freeman. In fact, since he wrote, both theoretical
(Williams and McGinnis 1988) and experimental studies (Rajmaira 1995)
have appeared which suggest the existence of unit roots and(or) cointegra-
tion in India and Pakistan spending data.? For all these reasons, Freeman’s
study is prone to the problems discussed in part one of this paper.

The Indian-Pakistani arms buildup was reanalyzed in the following way.
First, a comparable data set was constructed from the original source for the
same period, 1948-1975.3 Then a standard, level VAR model of the Indian

*2 Freeman (1983) did not explicitly build a VAR madel. He ran direct Granger tests on sys-
tems of equations with two lagged endogenaus terms and two and four lagged {presumably} exog-
enaus terms. He logged and differenced the Majeski and Jones data. He also used a Zellner-Ajtken
carrection for correlation of the errors in the equations. What we praduce here then is essentially a
level VAR henchmark: what Freeman would have found had he built the copventional madel. As
noted in the text, the results are qualitative identical to those which Freeman reports in Tahle 4
(1983, 352-3) of his article.

Far events time series in the periad 1930-1990, Rajmaira (1993, especially 16) finds much evi-
dence of unit roots and cointegration in Indian and Pakistani foreign palicy behavior,

31t has been 15 years since the Majeskt and Jones study appeared. Freeman no longer has the
data set those authors sent to him. And Majeski (personal communication} also does not have it. Sa
we tried to construct the sedies from the original source cited by Majeski and Tanes. We found that
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and Pakistani arms spending system was constructed (without any provision
for the possibility of nonstationarity}. Twa lags of the variables, a constant,
and no time trends were included in the respective equations. As in the Free-
man study, natural logs of the series were used. This yielded qualitative re-
sults identical to Freeman’s: the F-OLS test indicated that Indian arms
spending Granger caused Pakistani arms spending but not vice versa; the test
of the hypothesis that Indian arms expenditures do not Granger cause Paki-
stani arms expenditures had a F-OLS p value of .01, and the hypothesis that
Pakistani arms expenditures do not Granger cause Indian arms expenditures
had a F-OLS p value of .65 (Table 3).

Next, the system was estimated with FM-VAR. Because FM techniques
have not yet been used in political science it is useful at this point to describe
the way in which the estimates are obtained in this particular case. This
specificity will help make more concrete the necessarily abstract discussion
pursued above. It will also help highlight the importance of bandwidth and
kernel selection to the estimation procedure.

The practitioner's practical goal is to obtain values for the elements as-
sociated with Equation 28, which is repeated here for convenience (slightly
moedified to take account of the model’s constant, which is a column of ones
denoted by 1).

Fr=(Y'Z Y'Y — QolAY Y. — TAgyay) § YUXX)T 30)

Within the context of the Indian-Pakistani analysis, we proceed as follows.
The matrix ¥ is simply the two-column data matrix. The first colurmn is
the data for India, and the second is the data for Pakistan, so that Y =
[¥inDs ¥eakl- Because in this analysis we include only two lags, the matrix
Zisgivenby Z = [(A}’IND) 1(A¥pak)_ 1. The matrix X is then given by X =
[(Z,Y_;, 1], where, again, L is a column of ones. Notice that the VAR in lev-
els with two lags and a constant can simply be expressed as Y = XF' +
E, where F' is a 5 by 2 coefficient matrix. It is useful to let E=Y-XF
be the typical OLS residuals associated with the level VAR regression.

It remains to define the one-sided and two-sided long-run covariance
matrices. Although the notation is confusing (we have adopted the Phillips
(1995) notation), the estimated matrix flev is the two sided long-run co-

those authors apparently never corrected far the use of different price deflators by the Stackholm
Peace Research Institute between 1948 and 1973, We used the series for the 1973 price deflator for
the abservations for the years 1954-1975. For the remaining five abservations (1948-1953) we con-
verted the 1960 price data to data in 1973 prices. Qur lag-length tests {available on request) indicate
that two lags of each rhs variable are called for.} Again, far aur naive level VAR, the results were
qualitatively identical to those reported 1n Freeman (1983).
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Table 3. India_-Pakistan Causality Tests

_ p-value*
Equation Block of Coefficients F-OLS W-FM
India .00 0.00
India
Palcistan 0.65 0.53
India .01 0.00
Pakistan :
Pakistan 0.00 .00

*W-FM p-values are upper bounds for the ‘true’ values.

variance between E and AY_;. Similarly, the estimated matrices €2yy and
A Avay are, respectively, the two-sided and one-sided long run covariance
matrices for AY_;. The covariance matrices are estimated using well known
nonparametric techniques, as we next briefly describe.

In general, if u, and v, are {not necessarily distinct) vector processes we
can form kernel estimates of their two and one sided long-run covariance
matrices (see, e.g., Priestley 1981)}. These have form

Oy = Ej:—T+1,T—1m(j/K)f(j) 31

Aw = Zicorn/KITG) (32)
The values T are just the sample covariances and are given by
£G) = WT) ey njertivegs Ve (33)

The weights @(+) are given by a kernel function, and the value K = 0 is the
bandwidth parameter. The bandwidth value defines the number of lagged co-
variance terms to be included in the estimation of the long-run matrices. In
particular, kernels are usually defined so that w(j/K) = O whenever /K| 2 1.

We chose ta use the Parzen kernel for our empirical work. As mentioned
earlier, the Parzen kernel has been frequently used in covariance matrix esti-
mation and has attractive properties (see, e.g., Phillips 1995, 1031). The
Parzen kernel is defined by

1-6x* -6y if 0<x<12
o(x) = | 2(1 - [x])? if 1/2<x%51 (34)
0 otherwise
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To determine the value for the bandwidth parameter we used the Andrews
(1991) data based antomatic bandwidth estimator for the Parzen kernel (his
equation 6.2, 834). The value of four was selected by this estimator.

The results of the estimation are found in the far right hand column of
Table 3. The same lag-length specification was used in this system; the
bandwidth parameter was set by an automatic routine at 4. The results are
reported in the far right-hand columns of the table. They indicate that the p
value associated with the null hypothesis that Indian arms spending does nat
Granger cause Pakistani spending is as great as .00, while the p value asso-
ciated with the null that Pakistani arms spending does not Granger cause In-
dian arms spending is as great as .53. Hence the implication is that India is
indeed responsible for the arms race in the indicated period. The Indian-Pa-
kistani dyad still is characterized by one-way causation when the possibility
of unit roots and cointegration is taken into account. In view of the results of
our Monte Carlo experiment, we are relatively confident that this result is
accurate, despite the relatively short lengths of our time series in this case.

4.3 Approval and Expectations: A Reevaluation

Virtually every student of political economy believes that there is a di-
rect connection between the state of the economy and presidential popular-
ity. Recently, however, MacKuen, Erikson, and Stimson (1992) questioned
this, arguing that the linkage between the economy and approval is indirect
and mediated by aggregate economic perceptions about the economy (in
particular, about expectations of future business conditions}. They claim that
economic conditions are exogenous to economic perceptions and that eco-
nomic perceptions are then exogenous to presidential approval. The evi-
dence for this is a set of Granger causality tests on the respective system of
time series; these tests define what they call the basic “causal web” govern-
ing the economy and presidential approval. On the basis of these Granger
causality results, MacKuen, Erikson, and Stimson proceed to construct a re-
cursive structural model for approval, a model which assumes no simultane-
ity between business expectations and approval.

Qur central concern is the ways in which unit roots in time series data
undermine Granger causality tests. This concern is obviously relevant for
MacKuen, Erikson, and Stimson (1992). The authors do not test for the pres-
ence of unit roots in any of their time series. However, others who have stud-
ied presidential approval and inflation {Ostrom and Seith 1993, Table 2)
and economic expectations (Durr 1993b) have concluded that the relevant
time series do, in fact, contain unit roots. For these reasons, MacKuen,
Erikson, and Stimson’s results may suffer from simultangity bias.

But there are other reasons to question the veracity of MacKuen,
Erikson, and Stimson’s results. There are both theoretical and empirical rea-
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sons to suspect that approval drives economic expectations. For example, in
his analysis of the relationship between economic expectations and policy
mood, Durr (1993b) does not simply use raw economic expectations to pre-
dict policy mood. Rather, he first regresses economic expectations on four
indicators of the objective economy. (He does this to isolate the variance in
that series that truly represents economic expectations, as opposed to other
forces.) But the residuals from that regression are not random.

Tudging from the pattern exhibited [in the residuals], it is certain that some-
thing far more systematic than random errors of sampling or perception is at
waork. Indeed, the residuals suggest the existence of a political component of
long-term business expectations. Peaks in the time series correspond well to
presidential elections, suggesting that consumer sentiment, like presidentizal
approval, is vulnerable to a honeymoon effect. {(Durr 1993b, 161, italics in
original)

This provocative finding suggests the possibility that economic expectations
are, to some extent, a function of presidential approval, rather than (or in ad-
dition to) a cause of approval, as MacKuen, Erikson, and Stimson argue.
This possibility, while certainly less flattering a portrait than the “bankers”
that MacKuen, Erikson, and Stimson describe, is very real.

With the help of MacKuen, Erikson, and Stimson, we reconstructed
their dataset.* With this data and using the authors’ specification, we repli-
cated the qualitative findings of their Table 1.33 Specifically, although the
exact p values from our estimation are not identical to theirs, the results of
all of our causality tests are identical to those which MacKuen, Erikson, and
Stimson report. .

We then estimated a five-variable system composed of presidential ap-
proval, business expectations, personal expectations, the unemployment
rate, and the consumer price index as the endogenous variables. We chose
these five variables because they are central to MacKuen, Erikson, and
Stimson’s causal claims that economic conditions (unemployment and the
cpi) cause economic perceptions (personal and business expectations),
which, in tum, cause approval.

34 Unfortunately, the authors® original dataset no longer exists. MacKuen, Frikson, and
Stimson were extremely helpful in recreating the data. Their assistance is gratefully acknowledged.

33 The replication table is not presented here. It is available from the authors upon request,

3All of the results reperted here include six deterministic variables: a dummy variable for a
series of events (detailed in MacKuen, Enkson, and Stimson’s endnote $); a variable for the huldup
to the Vietnamn war (detailed in MacKuen, Erikson, and Stimson's endnoete 3); and four dummy vari-
ables for the first four quarters of a new administration. However, hath the need for four lags as well
as all causal findings remain unchanged if these variables are amitted.
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Before proceeding to the results, the issue of lag length specification
must be acknowledged. MacKuen, Erikson, and Stimson never test for the
appropriate lag length specification. Rather they simply posit one lag for
their endogenous variable and two lags for the other variables on the right-
hand side of their equations. When we tested for the appropriate lag specifi-
cation for our five-variable system, we found that four lags of all right-hand
side variables are called for. Therefore, it is clear from the outset that
MacKuen, Erikson, and Stimson’s Granger causality analysis suffers from
omitted variables bias (see Freeman 1983). Because we are primarily inter-
ested here in the problems caused by unit roots, we worked with the four-lag
system for our comparison of the relevant F-OLS and W-FM statistics.

These results are presented in Table 4. The OLS results show that, con-
sistent with MacKuen, Erikson, and Stimson’s claims, the objective economy
has no direct effect on approval; the respective p values for the unemploy-
ment rate and the cpi are .96 and .95. Also, expectations of future business
conditions drive approval (p = .02), but the reverse is not the case (p = .29).
The OLS results, then, are exactly consistent with the MacKuen, Erikson,
and Stimson findings. Of course, these results do not take into account any
trends or cointegration that might be present in this system. For these, we
need to examine the second column of Table 4. The W-FM statistics indicate
that the p value associated with the null that business expectations do not
Granger cause approval is as great as .10, and the p value associated with the
null that approval does not Granger cause business expectations is as great as
.0337. In other words, the W-FM results indicate that the MacKuen, Erikson,
and Stimson recursive system is incorrectly specified. Once the possibility of
1nit roots and cointegration is entertained, their causal findings are reversed
using this method. The FM-VAR results suggest that economic expectations
do not drive approval; rather, approval drives expectations.*® In light of this,

¥0n a substantive note, however, it is important to mentior that the sum of the approval coef-
ficients in the economic expectations equation are negative, which is exactly the opposite of what
would be expected. That js, high levels of approval lead to decreases in economic expectations, and
low approval leads ta net increases in expectations. Note that this result is consistent with those that
Williams (1990) obtained. Williams found that high approval allows policymakers to adapt stringent
motetary policies and to make other controversial choices they could not make if approval were low.
The ctitical point is that MacKuen, Erikson, and Stimson’s results ate in error.

A technical note: In our equations, we did not difference the unemployment rate of the con-
sumer price index, as most scholars have done. Such arbitrary detrending naturally defeats the pur-
pose of FM-VAR, the goal of which is to specify systems without pretesting or detrending.
Differencing, of course, is an implicit statement about the trend properties of a variable—specifi-
cally, that the variable contains a unit root. That said, we should note that the cpi, when left
undifferenced, grows exponentially. Including this variable in the system made bandwidth selection
a sensitive issue. Therefore, in order to test the robusiness of our results, we tested a four-variable
systern that excluded the cpi {not shawn). The results differed somewhat, with the key finding being
that approval and economic expectations were mutually endogenous, While this leads to somewhat
different substartive conclusions than these presented in Table 4, such findings still undermine the
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Table 4. Approval and Expectations: A Re-evaluation

) p-value*
Equation Block of Coefficients F-OLS W-FM
APPROVAL 0.00 0.00
UNEMPLOYMENT RATE (.96 0.86
APPFROVAL CPT 0.95 .75

PERSONAL EXPECTATIONS 0.84 (.80
ECONOMIC EXPECTATIONS 0.02 G.10

APPROVAL 0.69 G.44
UNEMPLOYMENT RATE (.00 0.00
UNEMPLOYMENT RATE CPT 0.36 0.04

PERSONAL EXPECTATIONS .79 0.57
ECONOMIC EXPECTATIONS 0.46 0.05

APPROVAL 0.87 0.51
UNEMPLOYMENT RATE .00 0.00
CPT CPT 0.00 0.00
PERSONAL EXPECTATIONS 0.21 0.35

ECONOMIC EXPECTATIONS 0.79 0.86

APPROVAL 069 0.40
UNEMPLOYMENT RATE 036 003
PERSONAL EXPECTATIONS  CPT 011 0.23

PERSONAL EXPECTATIONS 0.00 0.00
ECONOMIC EXPECTATIONS 0.08 0.13

APPROVAL 0.29 .03

UNEMPLOYMENT RATE 0.06 0.01

ECONOMIC EXPECTATIONS CPT 0.28 G.15
' PERSONAL EXPECTATIONS 0.64 C.08

ECONOMIC EXPECTATIONS .00 .00

*W-FM p-values are upper bounds for the 'true’ values.

the MacKuen, Erikson, and Stimson models that specify economic expecta-
tions to be exogenous to approval, therefore, may be misspecified, and their
conclusions should be reconsidered.

4.4 Summary

These reanalyses suggest that to some extent, level VAR results are un-
sound. Some of the respective sets of causal inferences are plagued by the
failure to take into account the possibility of unit roots and cointegration. In-
ferences about the causes of certain arms buildups remain the same when
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FM-VAR is applied. However, the use of FM-VAR suggests that MacKuen,
Erikson, and Stimson may have misspecified the causal relationships of the
determinants of presidential approval. Because they did not take into ac-
count the possibility of unit roots and cointegration in their time series, those
authors may have obtained inaccurate results from their causality tests and,
in turn, posited a recursive structure for their model when such a structure, in
fact, was not supported by their data. Clearly, the dynamics of approval and
perceptions about the economy deserve further study along these lines.

5. CancLusron

The primary conclusion here is that political scientists must pay atten-
tion to the trend properties of their data. Conceptually, we must be clearer
about why particular political processes are characterized by one type of
trend rather than another. Theoretical progress must be made in deriving the
likely trend properties of various political processes. Hlustrative is the article
by Williams and McGinnis (1988} that showed how a well-established
theory of arms races implied random-walk behavior on the part of the super-
powers. More work of this kind must be done by political theorists. For ex-
ample, formal modelers need to be clearer about exactly what their models
imply insofar as trend properties are concerned and then subject those impli-
cations to empirical tests.* Statistically, the impact of unit roots and cointe-
gration on the innovation accounting in published works needs to be
explored (cf. Phillips forthcoming). And the usefulness of various model-
selection methods in this context ought to be examined. In addition, further
study of FM-VAR and its performance relative to other approaches certainly
is called for. As regards the latter task, Sims, Stock, and Watson’s approach
and its successors (Toda and Phillips 1993) is exceedingly complicated; no
general software exists for it. The Johansen method is more feasible. Re-
searchers simply have to keep in mind the possibility of pretest bias and
other problems outlined above. There are still other, newer approaches ap-
pearing, such as the overfit method (Toda and Yamamoto 1995; Dolado and
Lutkepohl 1996). These methads ought to be studied as well. Amaong these
challenges for political science, we feel that the first two are more pressing
than the third; statistical work is ahead of conccptual and theoretical work in
political science, in our opinion.

As regards time-series modeling, at this point, political scientists have
several options. FM-VAR is an appealing method for several reasons. First,

MacKuen, Erikson, and Stimson assertion that expectations drive approval (but not the reverse).
Surely this study will not be the last word on the relationship between these two variables; rather, we
hope that it leads to subsequent investigations that carefully consider what variables belong in the
system, and allow for the possibility of trends and cointegration in the data.

A very useful (if analytically challenging} contribution in economics here is Singleton
(1988).
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it does not require exact knowledge of the trend properties of one’s time se-
ries data. Second, Monte Carlo analysis shows that FM-VAR outperforms its
OLS counterpart in important respects, principally size. Hence it can be used
to perform stringent causality tests, where the risk of a Type I error will be
minitmal. On the other hand, as we have noted, FM-VAR has some short-
comings. For example, FM-VAR produces the upper bounds for p values for.
tests of non-Granger causality. (And if one believes that statistical inference
already errs too much of the side of Type I error, exact p values may be de-
sired, if difficult to obtain.) In particular, the risks of Type II errors are po-
tentially larger with FM-VAR than with its OLS counterpart; findings that
exist in reality may go undetected. Individual scholars may wish to choose
the method that best fits the particular purposes of their research. Also, there
remain several important research questions regarding the method, including
how best to estimate the long-run covariances that are at the heart of this es-
timator (Cappuccio and Lubian 1995; see also Yamada and Toda 1996).

Some political scientists may want to continue pretesting data, using
unit root tests to decide whether or not to difference data or to employ an er-
rar-correction transformation, and ultimately applying the Sims, Stock, and
Watson, or Johansen approaches to causality testing. [t is important to reiter-
ate several things about this strategy. First, the respective tests are always
subject to mistaken inference about the existence of unit roots and cointe-
gration. Moreover, because the null of many of these tests is that a unit root
is present, the “pretest mindset” may lead to inappropriate differencing of
time series. Time series can be more or less cointegrated, just like series can
have a more or less long-term component. Using levels does not throw out
this nearly-integrated component like differencing does. Third, if one prefers
the functional form which students of unit roots recommend, the VECM, the
analyst can simply posit it as a reduced form whether or not there is evi-
dence of integrated regressors {Beck 1993). In fact, FM-VAR estimation
employs a functional form which is easily transformed into a VECM formu-
lation {see note 20). Last, the causality tests to which pretesting leads, espe-
cially the Sims, Stock, and Watson method, is, as we have argued, every bit
as complex (if not more complex} than FM-VAR. The fact that no political
scientist who advocates pretesting apparently has ever used the Sims, Stock,
and Watson or Johansen approaches to check the accuracy of existing causal
inferences testifies to this.

A third approach is ta analyze our data in levels. If we do this and our
series do not contain cointegration and (or} unit roots, our causality tests and
innovation accounting are sound. If there are cointegrated series and {or)
unit roots in the system, the moving average responses and the decomposi-
tion of error variance will still have some descriptive value. But, our statisti-
cal tests will be biased against the null of Granger non-causality. In fact,
roughly 20 percent of our tests will inaccurately reject this null (Ohanian
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1988). Some econometricians suggest correcting these values through simu-
lation (Christiano and Lungqvist T988). Others suggest that the ori ginal test
statistics be used, noting that under specific Bayesian assumptions, p values
(or probability values in this case) are fine (Sims 1988; Sims and Uhlig
1991}. And even though Bayesian theory behind such an analysis is ques-
tionable (Phillips 1991a,b), the behavior of the likelihood is undeniably de-
scribed by test statistic values. Thus, if we break out of the frequentist
mold—something only a few political scientists have done (Williams
1993)—we can analyze our data in levels. Also note that error-correction
VARSs have an advantage if all variables are cointegrated. If not, this ap-
proach is asymptotically equivalent to a VAR in levels. The choice of a
VECM is in this sense a matter of taste.0

In sum, we believe that all these strategies have some scientific value, If
each recognizes the costs and benefits associated with it, each strategy can
make real contributions. FM-VAR users must address the inability to com-
pute ¢xact p values. Those who favor pretesting must admit that Type II er-
ror is a major problem and not fall back on significance tests. Such scholars
must also apply the more challenging Sims, Stock, and Watson or Johansen
tests eventually to demonstrate the implications of unit roots and cointegra-
tion for causality testing, something that has not yet been done with political
data. VAR analysts who estimate in levels need to be keenly aware that their
test statistics may not have the typical interpretation. They should not inter-
pret the results of the tests on nonstationary coefficients without persuasive
evidence that the respective inferences are legitimate. In the end, all these
caveats and conundrums are beneficial because they require thought from
time series analysts. The contribution of FM-VAR is that it moves this
thought forward, making it possible for the first time to assess the soundness
of our causal inferences in the face of unit roots and cointegration.

Manuscript submirned 22 May 1997.
Final manuscript received 22 December 1997,
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