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BEHAVIOR IN A DYNAMIC DECISION PROBLEM: AN ANALYSIS
OF EXPERIMENTAL EVIDENCE USING A BAYESIAN TYPE

CLASSIFICATION ALGORITHM

BY DANIEL HOUSER, MICHAEL KEANE, AND KEVIN MCCABE1

Different people may use different strategies, or decision rules, when solving com-
plex decision problems. We provide a new Bayesian procedure for drawing inferences
about the nature and number of decision rules present in a population, and use it to an-
alyze the behaviors of laboratory subjects confronted with a difficult dynamic stochastic
decision problem. Subjects practiced before playing for money. Based on money round
decisions, our procedure classifies subjects into three types, which we label “Near Ra-
tional,” “Fatalist,” and “Confused.” There is clear evidence of continuity in subjects’
behaviors between the practice and money rounds: types who performed best in prac-
tice also tended to perform best when playing for money. However, the agreement
between practice and money play is far from perfect. The divergences appear to be well
explained by a combination of type switching (due to learning and/or increased effort
in money play) and errors in our probabilistic type assignments.

KEYWORDS: Dynamic programming, Gibbs sampling, Bayesian decision theory, ex-
perimental economics, behavioral economics, heuristics.

1. INTRODUCTION

HOW DO PEOPLE actually behave in contexts where optimal decision-making
requires the solution of complex optimization problems? This question is of
fundamental importance to economic analysis. Predictions of individual and
market behavior can differ dramatically between models where: (1) people are
able to solve complex optimization problems, (2) people are “boundedly ratio-
nal” and adopt “rule-of-thumb” behaviors, or (3) people are “confused” or “ir-
rational” and adopt blatantly suboptimal decision rules.2 Recognizing the im-
portance of this issue, there have been a large number of experimental studies
that analyze the behavior of people confronted with complex decision prob-
lems in laboratory settings. Early work in this literature tended to adopt an

1This research was supported by grants from the Russell Sage Foundation (No. 98-00-01), the
CV-STARR Center at NYU, and the Office of the Vice President for Research at the University
of Arizona. Houser gratefully acknowledges research support from the International Foundation
for Research in Experimental Economics. We thank the editor and four anonymous referees for
many helpful suggestions. In particular, we wish to thank the editor for suggesting a model of type
assignments similar to the one we present in Table VIII. Seminar participants at Northwestern,
Yale, Boston University, New York University, DePaul University, George Mason University,
the University of Arizona, Arizona State University, and the 2002 International Meeting of the
Economic Science Association also provided many useful comments. Of course, all remaining
errors are our own.

2There is an extensive theory literature that examines the effects of various “heuristic” decision
rules on equilibrium outcomes (see, e.g., Cyert and Degroot (1974), Radner (1975), Akerlof and
Yellen (1985), Haltiwanger and Waldman (1985), Ellison and Fudenberg (1993), Krusell and
Smith (1995), and Lettau and Uhlig (1999)).
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“either/or” approach, asking whether subjects make optimal decisions or not,
or asking what fraction of subjects behave optimally.3

More recently, a new literature has emerged in which investigators adopt a
more exploratory approach. The goal is to discover what types of decision rules
people actually use, rather than simply asking whether or not they adopt the
optimal rule. Thus, behavioral heterogeneity becomes a key issue. The exper-
imental literature has long recognized that different people may use different
strategies, or decision rules, when playing games or dealing with other com-
plex decision problems. Nevertheless, statistical procedures to determine the
number and nature of strategies operative in a population have only recently
emerged. The important paper by El-Gamal and Grether (1995) was an early
contribution to this literature.

Our work represents both a substantive and a methodological contribution
to this emerging literature on “typing” experimental subjects. Methodologi-
cally, we provide a new Bayesian procedure for drawing inferences about both
the nature and number of decision rules that are present in a population of
subjects, where each subject is confronted with a dynamic decision problem.
Our main identifying assumption is that the analyst must specify a priori the
set of state variables that may enter agents’ decision rules. But, conditional on
the set of admissible state variables, our procedure is quite flexible in terms of
letting the data determine both the number and form of the rules (i.e., they are
modeled as flexible polynomial functions).

In contrast to our procedure, the El-Gamal and Grether (1995) approach re-
quires the investigator to specify a priori both the maximal number of decision
rules that may be present in the population, and the exact form of each rule
(including parameter values). They present a statistical procedure that chooses
a “best” subset of rules from the superset of all candidate rules.4 In the exper-
iment they analyze, the set of plausible rules is fairly obvious. But in many
contexts the requirement that the investigator be able to intuit the exact form
of all potential rules a priori is obviously quite strong. Our assumption that the
analyst can pre-specify the set of candidate state variables is somewhat weaker,
because the exact form of the rules is left flexible.5

A number of other authors have also proposed methods for analysis of be-
havioral heterogeneity. These include McKelvey and Palfrey (1992), Stahl and

3For example, there is an extensive experimental literature on stopping behavior in search
models (e.g., Braunstein and Schotter (1982), Cox and Oaxaca (1992), Harrison and Morgan
(1990), and Hey (1987)). A typical finding is that only a proper subset of subjects behaves opti-
mally, but little effort is made to characterize suboptimal behavior.

4See Schachat and Walker (2004) and Houser and Winter (2004) for recent applications of this
approach.

5Of course, the added flexibility of our procedure comes at a cost: the loss of efficiency that
comes from having to estimate the rule parameters rather than fixing them a priori. Thus, in many
contexts it may be particularly efficacious to use our procedure and the El-Gamal and Grether
procedure in concert. For instance, a preliminary application of our approach could determine
the number and form of the candidate rules, and subsequent application of the El-Gamal and
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Wilson (1995), El-Gamal and Palfrey (1995), and Camerer and Ho (1999). Like
El-Gamal and Grether (1995), these approaches have in common that the set
of possible subject behaviors must be pre-specified by the researcher. Recently,
Duffy and Engle-Warnick (2001) and Engle-Warnick (2003), proposed a proce-
dure that models decision rules as sequences of nested if-then conditions. This
procedure is, in principle, more flexible. But it suffers from a curse of dimen-
sionality that, as a practical matter, places severe restrictions on the number of
decision rules that can be investigated. Engle-Warnick and Ruffle (2002) show
that, after suitably constraining the space of possible decision rules, a statistical
method patterned after El-Gamal and Grether (1995) can be adopted to draw
inferences in this environment.

Again, our approach is less restrictive regarding the possible nature of sub-
ject heterogeneity, since we only need to specify a priori the possible state
variables subjects might consider, and not the exact forms of possible decision
rules. However, our approach would become impractical in problems where
the set of state variables is sufficiently large that the curse of dimensionality in
polynomial approximation becomes a problem.

In addition to the literature on subject “typing,” another recent literature
also attempts to advance beyond the “either/or” quality of earlier experimen-
tal work by specifying and estimating econometric models that may provide a
better positive description of subjects’ behavior. Much of this work is based
on the McKelvey and Palfrey (1995) “quantal response equilibrium” model, in
which subjects’ best response functions or decision rules are subject to noise
that can be interpreted as optimization error. Once subjects’ choice behavior
is assumed to be subject to noise, a natural next step is to estimate subjects’ de-
cision rules econometrically, including in the specification parameters that can
capture various types of departure from “optimal” behavior (as defined by a
particular normative model of play).6 This work is similar in spirit to ours. But
our approach is different in its emphasis on subject heterogeneity (i.e., to our
knowledge the work based on McKelvey and Palfrey (1995) has assumed ho-
mogenous subjects) and in that we place less a priori structure on the potential
departures from “optimality.”

Our substantive contribution is to apply our type classification algorithm to
data on a sample of subjects who we confront with a particular dynamic sto-
chastic optimization problem. Subjects chose between two discrete alternatives
in each of 15 time periods. In each period, stochastic payoffs are generated for

Grether approach might then provide a more efficient assignment among these candidate rules.
Also, merging of the two approaches may be useful in contexts where certain rules are of partic-
ular interest (e.g., the optimal rule) and the investigator wants to test these against alternatives
that are not specified a priori.

6For instance, Goeree, Holt, and Palfrey (2000a) adopt this framework to analyze “overbid-
ding” in private value auctions relative to Nash predictions, while Goeree, Holt, and Palfrey
(2000b) analyze departures from Nash equilibrium behavior in matching pennies games.



784 D. HOUSER, M. KEANE, AND K. MCCABE

each alternative according to rules that are explained to the subjects prior to
the experiment. The problem is inherently dynamic, because current choices
affect the distributions of future payoffs, and the optimal choice between the
two options changes over time in a complex way as new information is revealed.
By design, the problem is difficult in the sense that the optimal decision rule
can only be obtained numerically via dynamic programming. But subjects were
allowed to practice the game before playing for money.

We ran the experiment on 139 subjects, and our classification procedure pro-
duces a clear assignment of the population into only three distinct types. Sta-
tistical tests overwhelmingly reject the hypothesis that there are more, or that
there are fewer. Furthermore, the subjects’ posterior type probabilities usually
assign a high probability to just one type, so our algorithm’s prediction about a
subject’s type is typically unambiguous.7

Despite the difficulty of the game, more than one-third of the subjects
adopted a decision rule that is very close to optimal. Payoff losses for subjects
following this “near rational” rule (relative to what they could have earned
by following the exactly optimal rule) averaged only about 2%. The other two
types followed more clearly suboptimal rules. By studying their fitted decision
rules, we are able to provide fairly simple characterizations of the play of each
type.

The outline of this paper is as follows: In Section 2 we describe the Bayesian
algorithm for classifying decision rules in general terms. In Section 3 we
present our experimental design. In Section 4 we show how decision rules in
this particular experiment can be modeled using the general approach outlined
in Section 2. Section 5 presents results and Section 6 concludes.

2. THE BAYESIAN CLASSIFICATION PROCEDURE

Our Bayesian approach to type classification enables us to draw inferences
about the number and nature of decision rules present in a population of sub-
jects, as well as the probability with which each subject uses each rule. Con-
ditional on an assumed set of relevant state variables, each decision rule is
modeled as a flexible parametric function. The number of decision rules op-
erative in the population is determined using Bayesian decision theory (see
Geweke (1997) for a recent exposition), which requires calculation of the mar-
ginal likelihood. For ease of exposition we will restrict attention to the class
of discrete choice Markov decision processes (in discrete time), although in
principle our approach has more general application.8 Rust (1994) provides
an excellent survey on structural approaches to inference for Markov decision
processes.

7This should not be confused with a statement that our type assignments are usually correct.
In Section 5.4 we present an extensive evaluation of the accuracy of our type assignments.

8For instance, Houser (2003) applies this approach to a model with mixed discrete/continuous
choice variables.
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We start by considering the optimal decision rule in a dynamic stochastic dis-
crete choice problem. Applying Bellman’s (1957) principle, the value to sub-
ject n of choosing alternative j from the discrete set {1� � � � � J} in round t of a
T period game can be written

Vnjt(Int)=wnjt +EV (In�t+1|Int� j) (t = 1� � � � � T )�(1)

where In�t+1 = H(Int� j). Here wnjt is the current period payoff, meaning the
monetary reward won by the subject in round t of the game, given choice j.
Int is the state of the subject in round t (i.e., the subject’s information set).
This might include, for example, the subject’s choice and payoff history.
EV (In�t+1|Int� j) is the “future component” of the value function, which cap-
tures the expected value of the subject’s state next round given his/her current
state and choice, and H(·) is the (possibly stochastic) Markovian law of motion
for the state variables.9

If subjects form expectations rationally, and know H(·), then E in (1) is the
mathematical expectation operator, and the EV (In�t+1|Int� j) at all state points
can be obtained (possibly numerically) via dynamic programming. The optimal
decision rule is:

Choose alternative j iff Vnjt(Int) > Vnkt(Int) for all k �= j�

We assume payoffs are drawn from an absolutely continuous (with respect
to Lebesgue measure) distribution to rule out ties.

We wish to generalize this framework by allowing for the possibility that
subjects do not use the optimal decision rule, and for the possibility that there
is heterogeneity in the decision rules that exist in a population of subjects.

Thus, rather than assume E is the mathematical expectation operator, we
model the future component of each alternative’s value as a flexible parametric
function (i.e., polynomial) in the elements of the subject’s information set Int
and choice j. This follows the suggestion of Geweke and Keane (1999a, 2001).
We also allow for the parameters of this function to differ across subjects of
different type, denoted by k. And finally, we allow for the possibility of opti-
mization error. Then, we can write the future component for type k as

EV (In�t+1|Int� j)= F(Int� j|πk)+ςnjt (k = 1� � � � �K)�(2)

Here F(·) denotes the future component polynomial, and πk denotes a finite
vector of type specific parameters. The random variable ςnjt accounts for idio-
syncratic errors made when attempting to implement decision rule k.

9Notice we do not include a discount factor. In most experimental settings all payoffs are
received at the same time (at the end of the game), so there is no discounting, or the time between
rounds is trivial, so discounting is irrelevant.
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We allow the distribution of the idiosyncratic errors to vary by type, so that
optimization error may be more important for some types than others. Let
σk denote the standard deviation of the optimization error for type k. The as-
sumption that optimization error may be present when implementing decision
rules underlies much of the recent work in experimental economics that at-
tempts to develop positive models of subject behavior (see, e.g., Goeree and
Holt (1999)).

From (1) and (2), the value that subject n, who is type k, assigns to choice j
in round t, is

Vnjt(Int |k)=wnjt + F(Int� j|πk)+ ςnjt �(3)

Denoting the deterministic part of the valuation function by V̄njt(Int |k) ≡
wnjt + F(Int� j|πk), we have that the probability that option j is chosen is in-
creasing in V̄njt . Letting optimization error take the form of noise appended
to the V̄njt function is attractive, because it implies that the probability of a
“mistake” in implementing the decision rule is small in situations where one
alternative is clearly dominant in terms of its V̄njt . This seems intuitive.10

Specification (3) is quite flexible and can nest or approximately nest (i.e., via
the Weierstrass approximation theorem) many special cases of interest. For ex-
ample, if F is sufficiently flexible, and the πk are chosen so that F(Int� j|πk) ≈
EV (In�t+1|Int� j), and we set σk ≈ 0, we can obtain a good approximation to the
“optimal” value function. In fact, many authors have found that value functions
in problems of interest to economists can be approximated very accurately us-
ing low order polynomials (see, e.g., Keane and Wolpin (1994), Krusell and
Smith (1995), and Geweke and Keane (1999a, 2001)). This is a key motivation
for our approach.

Some other leading cases are also worth noting: equation (3) nests myopic
behavior if the πk are set equal to zero and σk = 0. And it generates purely
random behavior, in which each option is chosen with equal probability, if the
πk are set equal to zero and σk is sent to infinity.

Specification (3) does not require that subjects understand what state vari-
ables are relevant in forecasting the value of future states. We have not made
this explicit to conserve on notation, but we could easily allow for the possibil-
ity that the subjects consider superfluous information when making decisions,
and denote the expanded information set by I+

nt . Also, (3) may appear to im-
pose additive separability, but this can be relaxed by including current and past

10One must allow for optimization error in a model where K is less than the number of subjects,
and payoffs are fully observed. Otherwise, the likelihood will equal zero for any subject whose
behavior is not exactly explained by one of the K rules, leading to a degenerate model. El-Gamal
and Grether (1995) dealt with this problem by introducing a fixed probability that a subject makes
the “wrong” choice, given his/her decision rule. This has the implication that “wrong” choices are
equally likely when “true” values of alternatives are close or far apart.
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payoffs and choices, and interactions between them and other state variables,
as elements of Int or I+

nt . And nonstationarity can be accommodated if the index
for round t is an element of Int .

Now consider the problem of statistical inference in this framework. Let
dnt ∈ {1� � � � � J} denote the choice made by subject n in round t. Assume the
investigator observes the set of choices and payoffs for each of the N subjects,
{{{dnt� {wnjt}j=1�����J}t=1�����T }n=1�����N}. The goal is to draw inferences about: (i) the
order of the F polynomial and the set of state variables that enter the polyno-
mial, (ii) the number of decision rule types K that are present in the population
of subjects, (iii) the vector of parameters πk�σk for each type k = 1� � � � �K,
(iv) the population proportions of each type, which we denote by θk, and (v)
the posterior probability pn(k) that each subject is each type, conditional on
his/her observed history of decisions and payoffs.

Consider first the simpler problem of drawing inferences about the parame-
ters {πk�σk�θk} for k = 1� � � � �K, given a particular choice for K, the order
of F , and the set of state variables that determine F , as well as a distributional
assumption on the optimization errors ςnjt . Even this represents a fairly diffi-
cult inferential problem because we have a discrete choice model in which the
type of each subject is a latent variable. However, recently developed simula-
tion methods have made such models quite tractable (see, e.g., Geweke and
Keane (2001) for a discussion). In Section 4.3 we describe a Gibbs sampling
algorithm for Bayesian inference in this model.

Now consider the problem of drawing inferences about the number of
types K and the order of the F polynomial, which we denote P . Given that we
can implement a model with given (K�P), the standard approach of Bayesian
decision theory is to implement a range of models with different K and P ,
and use the marginal likelihood to choose among them. Intuitively, a marginal
likelihood is a likelihood-based measure of model fit that penalizes models
for proliferation of parameters. In any discrete choice problem, calculation of
the marginal likelihood represents a very high-dimensional integration prob-
lem, and this problem is compounded by the presence of latent types. Again,
recently developed simulation methods make this problem tractable. We de-
scribe our algorithm for calculating marginal likelihoods in Appendix A.11

It is straightforward to use marginal likelihood comparisons to choose the
number of types K and the order P of the F polynomial. Simply increase
K and/or P until the marginal likelihood begins to deteriorate, and stop there.
But the use of the marginal likelihood to determine the set of state variables
that agents consider when making decisions is not so mechanical. We can, of
course, construct marginal likelihoods for models with and without certain ex-
traneous state variables that agents might consider. But, ultimately, we can

11In contrast to our approach of using the marginal likelihood to choose among competing
models, El-Gamal and Grether (1995) put a proper prior on the number of types, and then choose
the number of types to maximize the posterior density of the model. Their prior explicitly favors
models with fewer types.
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never know if we have failed to try some extraneous state variable that agents
do in fact use. Of course, it is impossible to learn anything without some iden-
tifying assumptions. We would argue that any attempt to learn about decision
rules will require some a priori narrowing of the set of potential state variables
that subjects might consider.

Our approach also requires the investigator to make a distributional as-
sumption on the optimization errors ςnjt . However, in principle it would be
straightforward to generalize normality by considering mixture-of-normals
probit models, as in Geweke and Keane (1999b, 2001). Then, marginal like-
lihood comparisons could be used to choose the order of the mixture. This
approach can parsimoniously capture a wide range of departures from nor-
mality.

In the next section we describe the specific experiment that we analyze, and
in Section 4 we detail how the general framework described here can be ap-
plied to that specific problem.

3. EXPERIMENTAL DESIGN

We wished to design a dynamic decision problem with the following features:
(i) It should be difficult to solve. The main point of our analysis is to exam-

ine how people behave when facing a decision problem that is too difficult for
anyone to solve exactly.

(ii) We nevertheless wanted a problem whose structure was easy to explain
to the subjects.

(iii) We felt it was desirable to have a problem whose structure was in
fundamental ways similar to dynamic decision problems that people actually
confront in real world situations, particularly situations that economists are
actually interested in.

(iv) We wanted to design a problem where there was some noticeable ad-
vantage to playing near-optimally, so that suboptimal behavior would be easy
to detect statistically.

(v) We needed a game that could be played quickly, so that subjects would
be willing to participate, so that we could collect a reasonably large amount of
data, and so that subjects would be able to practice. This also prevents subjects
from getting bored.

We settled on a stochastic sequential discrete choice problem with features
similar to a human capital investment or occupational choice problem. Each
subject makes 15 sequential decisions. The problem is dynamic because early
decisions influence the distributions of payoffs for later decisions. Period pay-
offs are stochastic, and the optimal decision rule, which can only be constructed
numerically, is a function of the payoff draws. We set up the problem so that
alternative “1” can be thought of as similar to “school” or “white collar” work,
in that this option tends to have low initial payoffs that increase later if the
subject builds up sufficient experience in “1.” Option “2” has a higher mean
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payoff, but does not have any such “investment” component. It is important to
stress however, that no such interpretation was provided to the subjects, who
were simply told the mathematical form of the payoff function in each alterna-
tive.

A transcript of the written instructions given to subjects is provided in Ap-
pendix B. A precise description of the game is as follows: At the start of each
of the 15 rounds, the subjects receive a draw for the payoffs in alternatives
“1” and “2.” The stochastic payoff to “2” is 4000 points plus the realization
of a uniform random variable on the interval [−5000�5000], subject to the re-
striction that the payoff be nonnegative. The payoff draws for round t are seen
before the decision at t is made, but the payoff draws for period t + 1 are real-
ized only after the decision at t.

The payoff to alternative “1” was 3000 points plus the realization of a uni-
form random variable on the interval [−5000, 5000], plus a “bonus” and a
“cost” whose values depended on the history of the subject’s choices. The
bonus was 7500 points, and was added if the subject had chosen alternative “1”
at least six, and no more than nine, previous times (not necessarily in succes-
sion). A “switching” cost of 5000 points was subtracted from the alternative “1”
payoff if the subject had chosen “2” on the previous round. The subject’s total
payoff for the decision problem was the sum of the rewards they earned over
the 15 rounds.

This game has, at least to some degree, all five desiderata listed above.
First, it is a sophisticated dynamic investment problem that is nevertheless
straightforward to describe. It is quite difficult to solve for the expected wealth
maximizing strategy, which requires solving a dynamic programming problem
numerically. The design also generates a nonnegligible incentive for forward-
looking behavior. The optimal solution earns about 25% more, on average,
than the myopic strategy that simply chooses the highest payoff each period.
Finally, the game only takes about 45 seconds to a minute to play, allowing
ample opportunity for practice.

This game was coded in Visual Basic and subjects made decisions indepen-
dently at a private computer terminal. Each subject’s screen provided informa-
tion on the current payoffs to both alternatives, the current round, the history
of the subject’s prior choices and payoffs, the subject’s current aggregate earn-
ings, and a summary of the decision problem’s payoff structure.

We report on results obtained from 139 subjects who participated in this
experiment, which was conducted at the Economic Science Laboratory (ESL)
at the University of Arizona. Subjects were recruited from the general student
population using ESL’s standard procedures. In an effort to ensure subjects
were familiar with the task when they played for money, subjects were recruited
for two laboratory sessions. On arrival for the first session they were provided
with the written instructions in Appendix B and seated privately at a computer
terminal. They were allowed to practice as many times as they liked, but did
not play for money.
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The second lab session was held two days after the first. Upon arrival, sub-
jects were again provided with the written instructions and told that they could
again practice for as long as they liked. When they were ready, subjects solved
the decision problem one time for money. During money play, we imposed
a 15 second forced delay between moves, in order to discourage thoughtless
play. In hindsight, since the typical subject voluntarily devoted a large amount
of time to practice (i.e., the median number of practice rounds was 66), this
concern seems to have been largely unwarranted. Subjects earned $8�23 on
average. Subjects also received two five-dollar show-up fees, and spent about
75 minutes on average in the lab (in total).

4. EMPIRICAL SPECIFICATION

In this section we first describe how we apply the general procedure outlined
in Section 2 to model the decision rules used by the subjects in our experiment.
We describe the likelihood function, priors, and posterior distribution of the
model parameters on which our inferences are based, and describe the Gibbs
sampling algorithm that we use to sample from the posterior.

4.1. The Functional Forms for the Decision Rules

In our experiment, the current payoffs wnjt are simply the known immediate
rewards that subject n draws for alternatives j ∈ {1�2} in round t. The rewards
are drawn from a distribution that depends on the subject’s state. The rele-
vant state variables for forecasting values of future states are the number of
times a person has chosen each alternative, which we denote by Xn1t and Xn2t

for alternatives “1” and “2,” respectively, the time remaining until the last pe-
riod (since it is a finite horizon problem), and an indicator for whether the
current choice is “1” or “2.” The current choice matters for future payoffs be-
cause of the cost of a transition from “2” to “1.” The prior “experience” in
“1” and “2,” as well as the time left in the game, matter because of the fact
that the mean payoff in “1” jumps substantially when one reaches 6 periods of
experience in “1.” This “bonus phase” only lasts until the person chooses “1”
four additional times, and optimal play implies trying to get through this bonus
phase before the end of the game.

Current payoffs are also elements of the information set Int , but they are not
useful for forecasting future payoffs, since the stochastic components of pay-
offs are iid over time in our experiment. Thus, the “rational expectations” (RE)
future component EV (In�t+1|Int� j) does not vary over state points (Int� j) that
only differ in terms of the realizations of the wnjt . A polynomial approximation
to RE future component would not depend on current and/or lagged wnjt . Nev-
ertheless, it is interesting to examine whether “superfluous” state variables like
these help to explain subject behavior. We tried including current/lagged pay-
offs and interactions of current with lagged choices in the future component
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polynomial to investigate whether some subjects might use this information
erroneously. But this did not lead to significant improvements in model fit.
Thus, we will only report on specifications in which the future component is a
polynomial in state variables that are relevant for forecasting future payoffs.

To anticipate our results, our Bayesian model selection procedure selects a
third order polynomial in the state variables as the preferred specification for
the future component. Then, since the law of motion for the state variables is
H(X1�X2� j) = (X1 + 1(j = 1)�X2 + 1(j = 2)� j), the future component F for
subjects of type k takes the form (suppressing the subscript k on the πk):

F(H(Xn1t �Xn2t � j)|π)
= π0 +π1

(
Xn1t + I(j = 1)

) +π2

(
Xn2t + I(j = 2)

)
+π3

(
Xn1t + I(j = 1)

)2 +π4

(
Xn2t + I(j = 2)

)2

+π5

(
Xn1t + I(j = 1)

)(
Xn2t + I(j = 2)

)
+π6

(
Xn1t + I(j = 1)

)3 +π7

(
Xn2t + I(j = 2)

)3

+π8

(
Xn1t + I(j = 1)

)2(
Xn2t + I(j = 2)

)
+π9

(
Xn1t + I(j = 1)

)(
Xn2t + I(j = 2)

)2

+π10I(j = 1)+π11I(j = 1)
(
Xn1t + I(j = 1)

)
+π12I(j = 1)

(
Xn2t + I(j = 2)

)
+π13I(j = 1)

(
Xn1t + I(j = 1)

)2 +π14I(j = 1)
(
Xn2t + I(j = 2)

)2

+π15I(j = 1)
(
Xn1t + I(j = 1)

)(
Xn2t + I(j = 2)

)
+π16I(j = 2)+π17I(j = 2)

(
Xn1t + I(j = 1)

)
+π18I(j = 2)

(
Xn2t + I(j = 2)

)
+π19I(j = 2)

(
Xn1t + I(j = 1)

)2 +π20I(j = 2)
(
Xn2t + I(j = 2)

)2

+π21I(j = 2)
(
Xn1t + I(j = 1)

)(
Xn2t + I(j = 2)

)
�

Note that round t is linearly dependent on Xn1t and Xn2t , so we omit it from the
polynomial. Since choices depend only on the relative values of “1” and “2,”
the future component is not identified in levels. Thus, our analysis is based on
the differenced future component:

f (Xn1t �Xn2t|π∗)

≡ F
(
H(Xn1t �Xn2t �1)

) − F
(
H(Xn1t �Xn2t �2)

)
= π∗

0 +π∗
1 (2Xn1t + 1)+π∗

2 (−2Xn2t − 1)+π∗
3 (3X

2
n1t + 3Xn1t + 1)
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+π∗
4(−3X2

n2t − 3Xn2t − 1)+π∗
5(−X2

n1t + 2Xn1tXn2t +Xn2t )�

where the π∗
i are linear functions of the πi. The polynomials used here are a

subset of those that appear in the differenced future component, but this set
spans the same space.

The decision rule for subject n of type k in round t can be written:

Choose “1” iff Znt(Int |k) ≡ Vn1t(Int |k)− Vn2t(Int |k)
= wn1t −wn2t + f (Xn1t �Xn2t|π∗

k)+ηnt > 0�

It is therefore intuitive to think of f (Xn1t �Xn2t|π∗
k) as a reservation payoff

differential. This is the amount by which wn2t must exceed wn1t in order for the
subject to choose “2” over “1” (subject to the added noise induced by the mean
zero optimization error ηnt ≡ ςn1t − ςn2t).

In our game, the optimal value of the reservation payoff differential varies
in a complex way with the state variables Xn1t and Xn2t , making it difficult to
play the game optimally. Our algorithm will allow us to infer the reservation
payoff differential function used by each type k. We can then compare these
to the optimal f in order to characterize the manner in which play of each type
of subject deviates from optimality.

4.2. The Likelihood Function, Priors, and Joint Posterior Distribution
of Parameters

Recall that dnt denotes the round t choice of subject n. Let τn ∈ {1� � � � �K}
indicate subject n’s type. If subject n uses decision rule k (i.e., τn = k) and has
information Int , then dnt satisfies

dnt =
{

“1” if Znt(Int|k) > 0,
“2” otherwise.

The investigator observes a sequence of current payoff realizations wnjt for
j = 1, 2, t = 1� � � � � T and choices dnt for t = 1� � � � � T for each subject n.
Choices depend on the value function differences Znt , and the inferential prob-
lem is complicated by the fact that these, as well as the subject types τn, are
unobserved. We assume ηnt ∼ iidN(0�σ 2

k) for type k. Thus, our model is for-
mally a mixture of probit models, in which an additive part of the latent index,
w1nt − w2nt , is observed. This sets the scale for the πk and σk parameters, so
both are identified.

The probability that subject n of type k chooses alternative “1” in round t is

P(dnt = 1|k) = P
(
Vn1t(Int |k) > Vn2t(Int |k)

)
= P

(
wn1t −wn2t + f (Xn1t �Xn2t|π∗

k)+ηnt > 0
)
�
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We define P(dnt |k)= I(dnt = 1|k) ·P(dnt = 1|k)+I(dnt = 2|k) · [1−P(dnt =
1|k)]. Then, if all subjects’ types were known, the likelihood function for the
observed data would be simply

L
[{{dnt}t=1�T

}
n=1�N

|(π∗
k�σ

−2
k )k∈K

] =
∏
n

∏
k

∏
t

P(dnt |k)1(τn=k)�

However, since we do not know subjects’ types, we must form a likelihood func-
tion based on unconditional choice probabilities P(dnt) = ∑

k θkP(dnt |k),
where θk is the probability that a person chosen at random from the popu-
lation follows decision rule k. This gives

L
[{{dnt}t=1�T

}
n=1�N

|(π∗
k�σ

−2
k � θk)k∈K

] =
∏
n

{∑
k

(
θk

∏
t

P(dnt|k)
)}

�

Maximum likelihood (ML) estimation is problematic for two reasons. First,
ML estimation of mixture models is notoriously difficult due to problems with
local maxima of the likelihood function. Second, testing for the number of
types is quite difficult in a classical framework.

Thus, we use a Bayesian Markov chain Monte Carlo (MCMC) algorithm to
generate inferences about the model parameters {θk�π

∗
k�σ

−2
k }k=1�K . The par-

ticular MCMC algorithm we employ is the Gibbs sampler. This provides draws
from the joint posterior distribution of the model parameters conditional on
the data. Since these draws are obtained without the need to maximize the like-
lihood function, the Gibbs sampler is much less sensitive to problems created
by ill behaved likelihood surfaces (e.g., local maxima) than is ML (see Geweke,
Houser, and Keane (2001) for a Monte Carlo experiment that illustrates this
point).

Inference via the Gibbs sampler starts with the specification of the complete
data likelihood function, which is the hypothetical likelihood one could form
if the latent indices Znt and the latent types τn were observed. In our model,
given a particular K and P , this is

L
({Znt}n=1�����N�t=1�����T � {τn}n=1�N |{θk�π

∗
k�σ

−2
k }k=1�K

)
(4)

∝
∏

k=1�K

∏
n:τn=k

[
θk

∏
t=1�T

1
σk

exp
{
−(Znt − (wn1t −wn2t +Y ′

ntπ
∗
k))

2

2σ 2
k

}

× I(Znt� dnt)

]
�

where Y ′
nt denotes the vector of state variables conformable with π∗

k , given P .
The indicator function I(Znt� dnt) = 1 if Znt > 0 and dnt = 1, or if Znt < 0 and
dnt = 2, but is zero otherwise.
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The model is closed by specification of prior distributions for the model’s
parameters. We assume proper priors of a standard conjugate form for all pa-
rameters. These are as follows:

πk ∼N(0�Σ)� where Σ is a 6 × 6 diagonal matrix with entries(5)

Σ(1�1)= 20�0002� Σ(2�2)= Σ(3�3)= 1�0002�

Σ(4�4)= Σ(5�5)= 1002� and Σ(6�6)= 100�000�

σ−2
k ∼ χ2(1)� σ 2

1 >σ 2
2 > · · · >σ 2

K�

{θk}k∈K ∼ Di({2�0}K)�
where Di is the Dirichlet distribution, or multivariate Beta.

By Bayes theorem, the joint posterior of the model parameters, the latent
indices Znt , and the latent indicators τn, is simply proportional to the complete
data likelihood times the prior densities p(π∗

k)�p(σ
−2
k ), and p(θk). Since we

have proper priors and a bounded likelihood function, the joint posterior ex-
ists. This is a necessary condition for convergence in distribution of the Gibbs
sampler draw sequence to the appropriate joint posterior.

A number of aspects of the prior specification are worth commenting upon.
First, note that setting the prior mean for the π∗

k vector at zero means that
our prior is centered on myopia. When π∗

k = 0 subjects only consider current
payoffs. The issues involved in choosing Σ illustrate why it is not possible to
have “uninformative” priors. If the priors on the π∗

k were very flat (i.e., if the
elements of Σ were very large), it would imply little prior mass in the vicinity
of π∗

k = 0. Thus, although the prior would be centered on myopia, it would say
there is little prior mass on the myopic decision rule. Thus, the choice of Σ
must be considered rather carefully.

Regarding the choice of Σ(1�1), note that π∗
k0 is the f (Xn1t �Xn2t|πk) func-

tion intercept, and is therefore the reservation payoff differential in round 1.
Under the optimal decision rule, this is 3733 points (i.e., 37 cents). We specify
a prior mean of 0 and a prior standard deviation of 20,000 for π∗

k0. Thus, our
prior is rather diffuse, but still leaves nonnegligible mass in the vicinity of the
interesting special cases of myopic and optimal play.

Second, we have a strong prior that higher-order polynomial coefficients
should be relatively smaller in magnitude, simply due to scale (i.e., they multi-
ply variables that tend to be larger in magnitude). A prior with equal diagonal
elements for Σ would place most prior mass on models where the higher-order
terms in the state variables dominate decisions, which is not plausible. For this
reason, we put successively tighter priors on the higher-order terms (e.g., prior
standard deviations of 1000 on the linear X terms, 100 on the X2 terms, etc.).

In our empirical results below, we find that the posterior mean for each
of the π∗

k parameters is within one prior standard deviation of our prior mean.
We also find that in every instance the posterior standard deviation is about



DYNAMIC DECISION PROBLEM 795

8–200 times smaller than our prior standard deviation. Together, these results
suggest that the data are very informative about all the π∗

k parameters, and
that in no instance was the prior “too tight” to “let the data speak.” We also re-
port below on the sensitivity of our inferences to both reducing and increasing
the prior standard deviations on all the π∗

k parameters by 50%, and find little
effect.

Third, consider the prior on the optimization error variance, σ 2
k. The order-

ing restriction on the type specific variances is simply an identifying restriction
that prevents interchanging the components of the mixture. There are several
such restrictions that can work for this purpose (see Geweke and Keane (2001)
for a discussion).

The prior mean and standard deviation for σ 2
k are undefined under the

1/χ2(1) prior. But we can consider quantiles of the σ 2
k distribution. Our prior

puts 95% of the mass on models where the optimization error standard devia-
tion is less than roughly 16 experimental points. This is quite small relative to
the magnitudes of payoffs. We did this to favor models where the state variables
largely explain behavior, as opposed to letting behavior be largely random. But
the prior density has a very fat right tail, so models with large optimization er-
rors are still given nonnegligible prior mass. The prior is also quite weak. As
we will see in Section 4.3, it has an impact on inference equivalent to adding a
single observation with a squared error term equal to one.

We also report below on the sensitivity of our inferences to scaling up the
σ 2

k prior to 20,000/χ2(1), which increases the 95th percentile point to roughly
2250 experimental points. This corresponds to roughly the highest level of op-
timization error we found in any of the type specific decision rules. We find
little effect of this change in prior on our inferences.

Fourth, the Dirichlet prior is centered on equal type proportions (i.e., 1/K
each) but it is sufficiently diffuse that models with very unequal proportions will
have substantial prior mass. For example, with three types, the prior standard
deviation on the type proportions is 18 percent.

4.3. The Gibbs Sampling Algorithm

We now describe the Gibbs sampling algorithm that we use to approximate
the marginal posteriors of the model’s parameters.12 The product of the com-
plete data likelihood (4) and the set of prior densities implied by the prior
structure in (5) define the joint posterior used to construct the Gibbs sampler.
The sampler includes the following five steps:

(i) Draw latent utility values Znt .
(ii) Draw decision rule coefficients π∗

k for all k = 1�K.
(iii) Draw variance of optimization error σ 2

k, k = 1�K.

12Our FORTRAN 77 code, which makes extensive use of IMSL subroutines, is available on
request.
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(iv) Draw population type probabilities θk, k = 1�K.
(v) Draw individual types τn, n= 1�N .

These draws are implemented as follows:
(i) Znt Step: Conditional on everything else being known, (4) implies that

Znt is a truncated N[(wn1t −wn2t + Y ′
ntπ

∗
k)�σ

2
k], with truncation from below at

zero if dnt = 1, and from above at zero otherwise. We draw from this distribu-
tion using an inverse CDF procedure.

(ii) π∗
k Step: Conditional on everything else being known, the π∗

k vectors
can be drawn using rejection methods. Based on (4), the source distribution
is N[(Y ′

kYk)
−1Y ′

kWk�σ
2
k(Y

′
kYk)

−1]. Here, Yk denotes the stacked array of Ynt

vectors for the type k subjects, and Wk is created by stacking the quantities
Znt − wn1t +wn2t conformably. Take a candidate draw for π∗

k from this source
distribution. Evaluate the kernel of the normal prior density forπ∗

k at this draw,
and call this u. Note that u ∈ (0�1). Obtain a draw U from a uniform [0�1]
distribution. If U < u the draw for π∗

k is accepted. Otherwise it is rejected.
(iii) σ 2

k Step: Conditional on everything else being known, equations
(4) and (5) imply that:

1 + ∑
t=1�T
n = 1�N

(Znt − (wn1t −wn2t +Y ′
ntπ

∗
k))

2I(τn = k)

σ 2
k

∼ χ2(NkT + 1)�

where Nk is the number of subjects who are type k. We draw from this distri-
bution using standard software, and reject any draw that does not satisfy the
ordering σ 2

1 > · · · >σ 2
K.

(iv) θk Step: The prior for θk is Di({2}K), so the conditional posterior is
Di({2+Nk}k=1�K). We draw from this Dirichlet distribution using standard pro-
cedures.

(v) τn Step: Let Lk(n) denote the likelihood contribution for subject n
given that he/she uses decision rule k and with everything else known. Then,
the distribution of τn is

Pr(τn = k′)= Lk′(n)∑
k=1�K Lk(n)

�

It is easy to draw from this distribution using standard software.
Finally, we consider the choice of the number of types K and the polyno-

mial order P . We consider models with several different values of K and P ,
and then use Bayesian decision theory to choose among the models. This re-
quires construction of the marginal likelihood for each model. The procedure
for constructing marginal likelihoods is described in Appendix A.
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5. EMPIRICAL RESULTS

5.1. A Basic Description of the Data

We begin by simply comparing the average behavior of our 139 subjects to
“optimal” behavior in the experiment. To do this, we construct choice histo-
ries for 139 hypothetical agents who face the exact same realizations for the
random components of payoffs as did the human subjects.13 But our hypothet-
ical agents play the exactly optimal decision rule, which we call the “rational
expectations” (RE) decision rule.14 We will refer to these as “RE subjects.”

Figure 1 compares the fraction of actual and RE subjects who choose alter-
native “1” in each round of the game. In round 1, the median payoff for “2”
is 1000 points higher than for “1.” Yet, quite interestingly, over 75% of actual
subjects chose “1.” This implies that most subjects understand the investment
component of option “1,” and realize that they should choose “1” unless “2” of-
fers a substantial payoff premium. The fraction of RE subjects who choose “1”
in round 1 is 79%, which is very close to the fraction of experimental subjects
who chose “1.”

Figure 1 also reveals an interesting nonstationarity in choice behavior in
this game. The fraction choosing “1” if subjects play optimally should drop
after round 1, fall to a trough in round 3, rise (nonmonotonically) to a peak in
round 11, and then drop off rather sharply at the end.15 The aggregate choice
frequencies of subjects in the experiment match this complex pattern implied
by the optimal rule quite closely over the first six rounds. But from rounds 7–9,
actual subjects chose alternative “1” slightly more frequently than their RE
counterparts. And from round 11 onward, the choice frequencies diverge sub-
stantially. The actual subjects chose option “1” much less frequently than the
RE subjects during the later rounds of the game.

On average, RE subjects choose “1” 10.7 times during the game, compared
to only 10.0 times for actual subjects. While 94% of RE subjects complete the
“bonus phase,” only 64% of actual subjects do so. The actual subjects earn
10.0% less than the RE subjects on average.

13Period payoffs depend on both the random draws and the past history of choices. So, of
course, even though actual subjects and their RE counterparts face the same random draws,
their alternative specific payoffs in a particular round may differ because they have different
choice histories.

14To be precise, we construct the decision rule that would be used by rational, expected wealth
maximizing agents. We ignore the possibility of risk aversion when constructing the optimal de-
cision rule, because the payoffs at stake in the game are rather small. Note, however, that our
inferential procedure does not impose risk neutrality on the estimated decision rules of the ex-
perimental subjects. Departures from risk neutrality would be captured by the π ’s.

15The intuition for this pattern is as follows: early in the game, when there is plenty of time
left to accumulate the six choices of “1” needed to reach the bonus phase, the “urgency” for
choosing “1” is not great. But as the game progresses, the urgency to choose option “1” tends to
increase, and the reservation payoff differential between “1” and “2” should grow, holding the
number of times one has chosen “1” constant.
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FIGURE 1.—Fraction of alternative “1” choices by round for actual subjects, and their rational
expectations and simulated counterparts. ( actual; hypothetical RE; simulation.)

But averages reveal little about the play of individual subjects, because there
is substantial variation in play around the averages. For instance, while on av-
erage our subjects chose “1” less often than the RE subjects, 38 subjects chose
“1” more often, and 44 chose “1” exactly as often. This is consistent with the
notion of decision rule heterogeneity.

5.2. Model Selection and Evaluation of Fit

Next, we use the Bayesian type classification procedure described in Sec-
tion 4 to learn about the nature and number of decision rules operative in the
population. We implemented the Gibbs sampling algorithm on models where
the number of decision rule types K ranged from 1 through 4, and in which the
order P of the future component polynomial F ranged from 3 through 5. Thus,
the order of the differenced future component ranged from quadratic through
quartic. Table I contains marginal likelihood comparisons among the 12 candi-
date models. The model with 3 types and a quadratic for the differenced future
component is clearly preferred.

In the bottom panel of Table I we check the sensitivity of our model selection
to the choice of prior. We report marginal likelihood values under alternative
priors in which: (i) the posterior standard deviations of the future component
polynomial parameters π∗

k are reduced or increased by 50%, and (ii) the scale
of the optimization errors is increased by a factor of 141 = (20�000)1/2. The
three-type model with a quadratic differenced future component is strongly
preferred regardless of the prior specification.

For the preferred model, our inferences are based on the final 5,000 cycles of
an 8,000 cycle Gibbs sampler run. Inspection of the draw sequence, as well as
the split-sequence diagnostic suggested by Gelman (1996), convinced us that
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TABLE I

MODEL SELECTION BASED ON MARGINAL LIKELIHOOD VALUESa

Order of Future Component

Number of Types P = 3 P = 4 P = 5

Marginal Likelihoods under Baseline Prior

1 −1712 −1721 −1736
2 −1451 −1364 −1442
3 −1224 −1277 −1369
4 −1312 −1342 −1449

Prior Sensitivity

A. Prior Std. Dev. of π∗ Reduced 50%
1 −1708 −1704 −1728
2 −1445 −1373 −1420
3 −1213 −1271 −1347
4 −1275 −1316 −1370

B. Prior Std. Dev. of π∗ Increased 50%
1 −1731 −1707 −1741
2 −1459 −1366 −1502
3 −1231 −1282 −1439
4 −1297 −1286 −1437

C. Prior on σ2 Scaled up
1 −1706 −1716 −1731
2 −1442 −1363 −1432
3 −1209 −1263 −1355
4 −1285 −1319 −1429

aThe preferred model under each prior is highlighted in bold.

the Markov chain had converged by the 3,000th cycle. The draws from the last
5,000 cycles are used to estimate the posterior means and standard deviations
of the model parameters. These are reported in Table II.

Table II reports on the parameters of each of the three decision rules, as well
as the population type proportions. The table also reports our prior mean and
standard deviation for each parameter. The posterior standard deviations are
quite small relative to the prior standard deviations, indicating that the data are
very informative about the parameters. And the posterior means are all within
a fraction of a prior standard deviation of the prior means. This suggests that
the prior did not strongly influence the posterior for any parameter.

Of course, as is usually the case, the polynomial coefficients in the decision
rules are difficult to interpret. Thus, we will leave the coefficients largely un-
commented, and instead turn to simulations of behavior under each of the
three rules in order to understand their behavioral implications. But the inter-
cept is an exception, since it has a clear interpretation as the reservation payoff
differential in round 1 (when all state variables equal zero), and it is 3733 un-
der the “optimal” rule. In Table II, the posterior mean for π∗

k0 is rather close
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TABLE II

PRIOR AND POSTERIOR MEANS AND STANDARD DEVIATIONS OF FUTURE
COMPONENT PARAMETERSa

Type 1: N = 51 Type 2: N = 55 Type 3: N = 33

Prior Distribution “Near-Rational” “Fatalist” “Confused”

Mean SD Mean SD Mean SD Mean SD

π∗
0 : Intercept .0 2 × 104 4259.21 108�60 3478.47 209�06 3711.68 476�31

π∗
1 : X1 .0 103 −4.42 22�51 411.33 38�00 −429.17 82�87

π∗
2 : X2 .0 103 92.57 42�90 276.70 49�67 −447.22 120�54

π∗
3 : X1ˆ2 .0 102 −29.29 1�49 −32.47 2�85 −16.97 5�82

π∗
4 : X2ˆ2 .0 102 −73.35 5�39 −3.57 2�38 −2.89 6�98

π∗
5 : X1*X2 .0 105/2 −86.00 2�47 −1.17 4�92 −103.36 11�61

ση: Optimization Not Not 208.91 58�43 863.81 29�50 2270.96 78�73
Error Defined Defined

θk: Population Type .33 .18 .36 �06 .40 �06 .25 �05
Probability

a“X1” denotes experience in alternative “1” and “X2” denotes experience in alternative “2.” The round is not included as a state
variable in the polynomial since it is perfectly collinear with X1 and X2. Lagged choice is not included because it drops out of the
differenced future component (and is subsumed in the constant).

to 3733 for all three types. Thus, it appears that all three types play nearly op-
timally in round 1. They all understand that there is an “investment” value to
choosing “1” in the first round.

In order to characterize the behavior of each type, and to better assess the fit
of the three-type model to the data, we assigned each subject to a type based
on his/her highest posterior type probability. Recall that step 5 in the Gibbs
sampling algorithm in Section 4.3 is to draw a subject’s latent type. The frac-
tion of draws in which a subject is assigned to a particular type is a simulation
consistent estimator of the posterior probability that the subject is that type.

The vast majority of subjects can be assigned to one type very clearly, be-
cause the highest posterior type probability is at least 90% for 86.3% of the
subjects. This means that a subject’s choices in our experiment are usually
highly informative about his/her type. In hindsight, this is not surprising. For
example, if a subject consistently received good payoff draws for option “1,” it
would be easy for him/her to make optimal choices, and his/her history would
not be very revealing. But, since draws are iid and each subject must make
15 decisions, such a scenario is highly unlikely. Most subjects have to make at
least a few “tough” choices during the course of the game, so there is usually
plenty of opportunity to reveal one’s type.

Figure 2 assesses the fit of the three estimated decision rules to the actual
play of the subjects who we classify as following each rule. To do this, we sim-
ulated the hypothetical decisions that each subject would have made under
his/her assigned decision rule, given the realizations of the payoff draws that
he/she actually experienced in each round. Figure 2 reports the fraction of ac-
tual and hypothetical subjects of each type who choose “1” in each round. The
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FIGURE 2.—Fraction of actual and simulated alternative “1” choices by round for each type.
( actual; simulation.)

main features of each type’s play are well matched by the simulated choices.
For example, type 1 subjects are extremely likely to choose option “1” in
rounds 9–11 (over a 95% chance), while type 2 subjects only choose “1” about
80% of the time in those rounds. Our fitted decision rules capture this differ-
ence in behavior rather well. The type 3 subjects choose option “1” much less
often during rounds 9–11 (i.e., about 70% in round 9 and only about 50% in
rounds 10–11). The model captures this basic pattern, although it somewhat
understates the degree of the difference (i.e., it predicts that type 3’s would
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choose “1” about 60% of the time in rounds 10–11). In general, the fit for
type 3 is not quite as good as that for types 1 and 2.

The gray line in Figure 1 shows the fit of the three-type model to the ag-
gregate choice frequencies. It shows the fraction of hypothetical subjects who
choose alternative “1” in each round. The fit is reasonably good in all rounds,
with the broad features of actual decisions, such as the peak that occurs in the
ninth round, well matched by the model. The model captures the departure of
actual play from RE play that occurs beginning in round 11 quite well.

5.3. Characterization of the Decision Rules

In this section, we attempt to characterize the nature of the decision rule
used by each of the three types. Table III compares the play of the subjects
we assign to each type along a number of dimensions. There is a clear rank-
ing of the types in terms of how well they play the game. The subjects who we
classify as type 1 do best. On average, they earn 87983 experimental points,
or about $8.80. We simulate that hypothetical RE subjects, facing the exact
same random draws, would earn about nine dollars on average. Thus, on aver-
age, type 1 subjects only lose about 21 cents, or 2.3%, of what they could have
earned by playing exactly optimally. In contrast, type 2 subjects lose 11.7%, and
type 3 subjects lose 18.6%.

Next, to get a better sense of the behavior implied by each decision rule, we
simulated the play of hypothetical subjects under each rule. In the first simula-
tion all subjects use the first decision rule, in the second simulation all subjects
use the second decision rule, and so on. In each simulation we construct 139

TABLE III

DESCRIPTIVE STATISTICS FOR THE PLAY OF EACH TYPEa

Type 1: Type 2: Type 3:
“Near-Rational” “Fatalist” “Confused”

Number (percent) of Subjects 51 (37%) 55 (40%) 33 (24%)
Mean Earnings (points) 87983 80811 75966
Mean Earnings under RE (points) 90047 91546 93316
Percent Loss Relative to RE 2.3% 11.7% 18.6%
SD of Earnings 9620 13727 14189
Number Who Earn at Least as Much as 22 3 2

RE Subjects
Number Who Earn Exactly as Much as 11 0 0

RE Subjects
Mean Number of Times Alternative “1” 11 9.2 9.6

Is Chosen
Number Who Complete All Bonus 48 (94.1%) 38 (69.1%) 12 (36.3%)

Rounds

a“Mean earnings under RE” reports the mean earnings for hypothetical subjects who follow the optimal (expected wealth maximiz-
ing) decision rule, given that they face the same draws for the stochastic component of payoffs as did the actual subjects.
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hypothetical choice histories, setting the realizations of the random variables
to the values that the subjects in the experiment actually experienced. In this
way, each decision rule is confronted with a common set of draw sequences, so
differences in choice behavior are due only to the differences in the rules. For
comparison purposes, we also conducted a fourth simulation in which the hy-
pothetical subjects use the RE rule, and a fifth in which the subjects are myopic
(i.e., they choose the highest payoff alternative in each period).

Figure 3 describes the results of this simulation exercise. It reports the frac-
tion of hypothetical subjects of each type who choose “1” in each round. Note
that rule 1 tracks the optimal RE rule quite closely. These two rules imply
nearly identical behavior through the first eight rounds. In rounds 9–11 rule 1
generates a slightly higher probability of choosing “1” than does the RE rule,
and in rounds 13–15 it generates a slightly lower probability, but these differ-
ences are fairly minor.

Rule 2 also tracks the RE rule quite closely through the first several rounds.
But beginning at round 11 it starts to generate a lower frequency of option “1.”
This divergence becomes greater as the game progresses, and becomes quite
dramatic in rounds 12–15. Over the last four rounds rule 2 generates a
20 to 35% lower frequency of option “1” than does the RE rule. It is interest-
ing that both rules 1 and 2 capture the complex nonstationary pattern in choice
behavior that is implied by the optimal rule, whereby the choice frequency for
option “1” drops to a trough in round 3, and gradually rises to a peak later in
the game. Rule 1 gets the timing of the peak exactly right (round 11), while
rule 2 misses the peak slightly.

Rule 3 diverges in much more obvious ways from the RE rule. Interestingly,
it does track the RE rule quite closely for the first three rounds. It generates
a similar high frequency for option “1” in round 1, and the sharp drop off to
a trough in round 3. However, under rule 3, the fraction choosing “1” does
not recover later in the game. By the sixth round rule 3 finds only half of the

FIGURE 3.—Fraction of alternative “1” choices under simulations of various decision rules.
( Near-Rational; Fatalist; Confused; RE; Myopic.)
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subjects in alternative “1,” while the other rules lead about 75% of the subjects
to make this choice.

A critical point is that myopic play differs substantially from all three rules.
Under the myopic rule, only 40% of subjects would choose option “1” in the
first round, since it has a lower median payoff. But, as we’ve noted, all three
types choose option “1” at close to the optimal frequency of 79% in the first
round. Thus, all three types recognize that there is an investment component
to the choice of option “1.”

The myopic rule generates a drop in choice frequency for option “1” over
the first three rounds, just like the RE rule.16 But, unlike the RE rule, it does
not generate the subsequent rise in the fraction choosing “1.” It is interesting
that the type 3 rule also fails to generate this increase in the frequency of “1”
after round 3. Thus, it seems that type 3 subjects play close to optimally at the
start of the game, but behave more myopically as the game progresses.17

A good way to gain greater insight into the behavioral implications of the
different decision rules is to compare the features of the estimated future com-
ponents graphically. An important aspect of our procedure is that, by providing
estimates of the future component for each type, it allows the investigator to
perform such a graphical comparison.

Figure 4A graphs the reservation payoff differentials for each type at se-
lected state points. Values are plotted for round 1 (when there is only one pos-
sible state point) and for round 5 (when there are four possible state points,
Xn1t = 0�1�2�3, or 4). In each case the vertical axis denotes the value of the
reservation payoff differential. Larger values indicate that option “1” has a
larger continuation value relative to option “2,” so a greater current payoff dif-
ferential is needed to induce choice of “2.” The horizontal axis indicates Xn1t ,
which is the only state variable relevant for calculating the reservation payoff
differential. The figure also graphs the reservation payoff differential under
the RE rule for comparison purposes.

Consider first the type 1 subjects, who are described in the top panel of Fig-
ure 4A. The reservation payoff differential for type 1’s is about right in round 1.
In round 5, their reservation payoff differential is declining in the stock of “ex-
perience” in option “1.” This pattern also holds under the RE rule. Also note
that, holding the number of prior choices of “1” fixed at zero, the optimal (RE)

16This drop is driven by the current payoff structure. Since there is a transition cost for moving
into “1” from “2,” but not vice versa, the median payoff for option “1” drops in round 2 (since
some people chose “2” in round 1).

17The astute reader may notice an apparent contradiction between the behavior of the type 3
subjects in Figure 3, compared to their behavior as described in Figure 2 and Table III. Figure 3
implies that type 3’s choose “1” much less often than other types. But Table III indicates that
type 3’s chose “1” more often than type 2’s. Figure 2 indicates that type 3’s chose “1” particularly
often in rounds 5–7. The explanation is that actual type 3 subjects were “lucky” in that they got
statistically significantly better than average draws for “1” in rounds 5–7. This induced them to
choose “1” very frequently in those rounds. We discuss this further in Section 5.4.
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FIGURE 4A.—Comparison of fitted and rational expectations future component at early state
vectors for each type. ( T = 1, RE; T = 1, heuristic; T = 5, RE; T = 5, heuristic.)

reservation payoff differential grows from 3733 to about 6000 as we move from
round 1 to round 5. Intuitively, this occurs because, as rounds go by, time is
growing short to accumulate the six choices of “1” needed to reach the bonus
phase. So the urgency to choose option “1” is growing. The type 1 subjects ap-
pear to understand this very well. They get the reservation payoff differential
almost exactly right at state points X1 = 1� � � � �4 in round 5. They appear to be
a bit off at X1 = 0, but this estimate is noisy due to limited data at that point
(i.e., type 1’s rarely get to round 5 without choosing option “1” at least once).

Figure 4B provides similar information for rounds 9 and 13. Again consider
the type 1 subjects, who are described in the top panel. The close agreement be-
tween their fitted decision rule and the RE rule is again quite remarkable, with
one important exception. If a subject is in round 9 and has chosen option “1”
either six, seven, or eight prior times, then that subject is in the bonus phase
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FIGURE 4B.—Comparison of fitted and rational expectations future component at early state
vectors for each type. ( T = 9, RE; T = 9, Heuristic; T = 13, RE; T = 13,
Heuristic.)

of the game, in which the option “1” base payoff is raised 7500 points. Recall
that the bonus phase lasts until the subject has chosen option “1” four more
times—not necessarily consecutively. Thus, there is an option value to choos-
ing option “2,” because it prolongs the bonus phase. As a result, the reservation
payoff differential goes negative at this point according to the optimal (RE)
rule. That is, one should actually demand a premium to choose option “1.” As
we see in Figure 4B, the type 1 subjects do not understand this. They continue
to set a small but positive reservation differential during the bonus phase.

One might worry that the failure of the fitted decision rule to align well with
the RE rule in period nine at states X1 = 6�7�8 could stem from a failure of
our polynomial approximation in this range. But inspection of the individual
level data suggests that this is not the case. In fact, once the bonus phase is un-
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der way, no subject in our entire data set ever chooses option “2,” even when
it is optimal to do so. Thus, the failure to understand the option value of “2”
during the bonus phase is clearly a feature of the data, and our polynomial
approximation to the future component accurately reflects it. (This finding il-
lustrates the power of our approach. We would not have thought to look for
this pattern in the data unless Figure 4B had pointed us toward it.)

Based on the evidence presented so far, we decided to label the type 1 sub-
jects as “Near-Rational.” They use a decision rule that is nearly identical to
that of hypothetical RE subjects, except during the bonus phase, when they
fail to grasp the option value of “2.” But this failure only costs them about a
2.3% loss in earnings, on average, relative to what they could have earned by
playing exactly optimally. Understanding the investment value of “1,” and how
this varies over states, is much more important for overall success in this game,
and the type 1 subjects grasp this feature of the game very well.

Now consider the type 2 subjects, whose behavior is described in the mid-
dle panels of Figures 4A and 4B. Figure 4A indicates that these subjects value
alternative “1” in about the same way as RE subjects in the first round of the
game. However, by round 5 it is apparent that their reservation payoff differ-
entials differ from the RE values in both level and shape. While the RE fu-
ture component assigns less value to option “1” as experience in “1” increases,
type 2 subjects do exactly the opposite.

Based on this inversion in the shape of their future component, we decided
to label the type 2 subjects “Fatalists.” The reason is as follows: If type 2 sub-
jects do not choose option “1” many times in the early part of the game (say,
because they happen to get a set of good payoff draws for option “2”), they
reduce their reservation payoff differential for choosing “2” rather than in-
creasing it. Thus, just when they should be increasing the urgency with which
they attempt to choose “1,” they instead reduce it. This means, in effect, that
if they do not happen to choose “1” a few times early in the game, they start to
“give up” on reaching the bonus phase.

In contrast, suppose a type 2 happens to choose “1” a few times early in
the game (say, because he/she happens to get some good payoff draws for op-
tion “1”). The optimal rule says to reduce the reservation payoff differential,
because, loosely speaking, you can now “relax” because you will almost surely
get to the bonus phase before the end of the game even if you choose “2” the
next few rounds. But a type 2 acts differently. He/she shows a greater urgency
to choose “1” in this case. This means, in effect, that once the bonus phase
appears to be easily “within reach,” type 2 subjects strive harder to reach it.

This behavioral pattern seems to be well described by “fatalism,” meaning
that type 2 subjects assign too much significance to the luck of the draw in de-
termining the outcome of the game. They fail to appreciate that by properly
modifying the reservation payoff differential as the state evolves, one can al-
most guarantee that one will reach and complete the bonus phase before the
end of the game (i.e., 94% of hypothetical RE subjects complete the bonus
phase).



808 D. HOUSER, M. KEANE, AND K. MCCABE

Finally, we turn to the type 3 subjects, whose behavior is described in the
bottom panels of Figures 4A and 4B. As we have already noted, type 3 and RE
subjects have about the same reservation payoff differential in the first round.
What is interesting is the difference that emerges in round 5. The type 3’s let
their reservation payoff differential for choosing “2” decline much too rapidly
as they accumulate experience in “1.” Then, in round 9, their reservation pay-
off differential is much too small in all states in which X1 < 6 (i.e., before the
bonus round has started). It appears that type 3’s quickly become overconfi-
dent about reaching the bonus phase if they happen to choose “1” a few times
early in the game. And then they seem to largely forget about the investment
value of option “1” by round 9. In light of this pattern, we decided to label the
type 3 subjects “Confused.” Also consistent with this characterization is that
σk is much larger for type 3’s than for the other types (see Table II).

5.4. Addressing Some Common Concerns

We have heard four common concerns expressed regarding latent type clas-
sification algorithms in general, and our type assignments in particular. The
first is a concern, arising out of work by Heckman and Singer (1984), that in
mixture models the type specific parameters tend to be poorly estimated, and
the number of types tends to be underestimated. To help dispel this concern,
we present two small Monte Carlo experiments, which suggest that our algo-
rithm does do a good job of accurately uncovering the latent types that exist in
a population.

In the first experiment, we generated a hypothetical sample of 139 subjects,
using the estimated decision rules and type proportions from Table II. In the
second experiment, we constructed an artificial sample of N = 200 in which
five decision rules are operative, and type proportions are 20% each. The five
rules include the three rules from Table II, along with two new rules. We added
a myopic type, for whom the future component is zero, and a “future oriented”
type. The latter have double the intercept of the “Near-Rational” future com-
ponent, and the remaining π∗

k values set to zero. We ran the Gibbs sampler on
each sample, using the same baseline prior as given in (5), and using P = 3.
The results are reported in Table IV.

In Table IV, the marginal likelihood correctly chooses the three-type model
on the three-type data set, and the five-type model on the five-type data set,
so there is no tendency to underestimate the number of types. The estimated
decision rules for each type closely resemble the actual decision rules used
to generate the data, but we do not report the large number of type specific
polynomial parameters to conserve on space. Furthermore, the models assign
subjects to types with a reasonably high degree of accuracy. In the three-type
model, the Near-Rational subjects are assigned to the Near-Rational, Fatalist,
and Confused decision rules with posterior probabilities of .703, .293, and .004
on average. The comparable numbers for Fatalist subjects are .244, .690, and
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TABLE IV

MARGINAL LIKELIHOODS OF VARIOUS MODELS USING
SIMULATED DATA

Number of Distributions 3-Mixture 5-Mixture

in Mixture Simulation Simulation

1 −1388 −2651
2 −826 −2000
3 −604 −1359
4 −802 −1113
5 NA −1039
6 NA −1052

.066, and those for the Confused subjects are .046, .209, and .747. What drives
the difference between our results and those of Heckman and Singer is that our
experiment is structured to be much more informative about a subject’s type
(i.e., we observe 15 choices for each subject while they consider only search
durations).

A second common concern is that the draw sequence that a subject receives
may somehow make him/her appear to be a particular type. For example, a per-
son who was lucky enough to get all good draws for option “1” would never
face a “tough” decision where the RE rule says “1” is optimal even though “2”
has a considerably higher payoff. It would then be “easy” for this person to
make optimal decisions. But this argument shows a misunderstanding of both
our classification algorithm and the game. First of all, our algorithm would
not clearly classify such a person as “Near-Rational.” Given such a history, the
likelihood of this person’s draw sequence would be high under any type. Thus,
our algorithm would conclude that the data are uninformative, and the per-
son’s type classification would be ambiguous. Second, given the length of the
game, such a scenario is highly unlikely. Since the game is fifteen rounds, and
payoff draws are iid, almost every subject faces at least a few “tough decisions”
where the RE rule implies the two alternatives have close to the same value,
even though one may have a much better current payoff than the other.

We can also examine directly whether the type of draws that subjects re-
ceived tended to differ by type. In Table V we report the mean draws for op-
tions “1” and “2” among subjects who were classified as each of the three types.
If, for example, the “Near-Rational” types tended to get relatively good draws
for option “1” and poor draws for option “2,” making it “easy” for them to
choose “1” frequently and hence reach the bonus phase, this would show up
when we look at the mean draws. In fact, the only significant departure from
mean zero draws was among subjects classified as “Confused.” These subjects
actually got relatively good draws for option “1” and poor draws for “2,” al-
though the latter is not significant. We interpret this as simply a chance out-
come. It is hard to develop a story in which getting good draws for option “1”
would make the game harder and somehow induce poor play.
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TABLE V

MEAN VALUE OF DRAW BY ALTERNATIVE AND TYPEa

Type Alternative 1 Alternative 2 Difference (1–2)

Rational 108 33 75
(.29) (.75) (.59)

Rule-of-Thumb 31 99 −69
(.76) (.34) (.64)

Confused 269 −58 327
(.05) (.64) (.08)

ap-values for two-sided t-test that mean is zero are in parentheses.

One might also wonder if draws in early rounds are particularly important.
For example, perhaps a subject who gets good draws for “1” in the first few
rounds will start down the path of investing, while a subject who gets good
draws for “2” early will become myopic. To address this concern we ran logits
for whether a subject was one of the three types on the subject’s draws in the
first few periods. Early draws were not significant predictors of type.

The third common concern is that the behavioral types we have uncovered
do not really reflect differential ability of the subjects to perform the task, but
merely differential effort. A dogmatic defender of complete rationality might
well argue that all subjects were, in principle, capable of solving our decision
problem, and that those who performed poorly in the game were simply not
trying. This might occur because the expected rewards to good performance
were too small to elicit substantial effort. We believe that the data on prac-
tice rounds can be used to address this question. In Table VI we present data
on the number of times subjects of each type practiced. The mean number of
practice rounds is 66 (the median is 58). This fact is in itself significant, be-
cause it suggests that the typical subject devotes a substantial amount of time
to practice. Given that it takes roughly 45 to 60 seconds to play the game, the
typical subject is devoting roughly 45 to 60 minutes to practice.

Even more interesting is the ordering of practice rounds by type. “Near-
Rational” subjects practiced 58 times on average, while “Fatalists” practice 69

TABLE VI

PRACTICE ROUNDS BY DAY AND TYPEa

Day 1 Practice Rounds Day 2 Practice Rounds Total Practice Rounds

Type N Mean Median Min Max Mean Median Min Max Mean Median Min Max

Rational 49 43 29 0 166 15 14 2 44 58 48 6 180
Rule-of-Thumb 50 52 42 0 195 17 12 2 95 69 59 4 201
Confused 25 54 46 1 131 21 18 2 50 75 69 3 154
All 124 49 38 0 195 17 14 2 95 66 58 3 201

aThe file containing Day 1 practice data for 15 of our 139 subjects was inadvertently deleted. This table reports data for the
remaining 124 subjects.
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times and “Confused” subjects practice 75 times. The medians were 48, 59,
and 69, respectively. Thus, the subjects who perform worst in the experiment
actually devoted the most effort to practice. It therefore appears difficult to
rationalize their poor performance by lack of effort.

The fourth common concern is that the behavioral types we uncover are
not stable characteristics of subjects. Would subjects be consistently assigned
to the same type if they played the game multiple times? We cannot address
that question directly, but the practice round data can shed some light on the
issue. We do not expect that the subjects would use the same decision rules in
the practice rounds as in the money round, simply because rational behavior
would imply using the practice rounds to experiment. However, if the types
are stable characteristics of subjects, we would expect to see the types practice
differently.

In Figure 5 we report information on the how well the subjects performed
in the practice rounds. Specifically, for each type, we report mean earnings in
each practice round. Quite interestingly, the relative performance of the three
types in the very first practice round on day 1 is almost exactly the same as
in the money round. The same is true of their relative performance in the first
practice round on day 2. Thus, there is clear continuity of subject type behavior
between the practice rounds and the money round.

Note that all three types of subjects do noticeably better when they play
for money. Also note that the “Near-Rational” subjects, after doing clearly
better (on average) than the other types for the first several practice rounds on
day 1, are less clearly superior in subsequent rounds on that day. Both these
observations suggest that subjects are not trying to maximize points in each
practice round, conditional on their knowledge of the game up to that point.
Rather, since no money is at stake, they may be making moves designed in part
to enhance their knowledge.

We can gain further insight into the relation between practice and money
play by running our algorithm on some of the practice round data. We decided
to run the algorithm on data from the first two practice rounds on day 2. By
then, subjects should be familiar with the game. Also, it seems that perfor-
mance deteriorates during a subject’s last few practice rounds (perhaps due to
boredom). Thus, we anticipated that behavior in the first two practice rounds
on day 2 would most resemble money play. To examine stability of types, we
allowed a subject’s type to differ between the two practice rounds (i.e., we pre-
tended we had data on 2 · 139 = 278 subjects).

We again found clear evidence for three distinct decision rules.18 To charac-
terize these rules, we assigned each of the 278 “subjects” to a rule, and con-
structed the same statistics as we reported in Table III. The type 1 subjects

18The marginal likelihood values were −3056, −2816, and −2825 for models with two, three,
and four types, respectively.
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FIGURE 5.—Mean earnings during practice by round and type. (Day 1: Near-Rational;
Fatalist; Confused. Day 2: Near-Rational; Fatalist; Confused.)

Note: Means that include a small number of subjects are highly volatile over rounds. Hence, for each type we include only rounds
where over half of our subjects practice. In each panel, the number of subjects underlying each mean is greater than 25, 25, and 13 for
Near-Rational, Fatalist, and Confused subjects, respectively.

complete the bonus phase 95% of the time, compared to 94% for the Near-
Rational subjects in money play, and they have the smallest payoff loss rela-
tive to RE play of the three types.19 Thus, it again makes sense to describe
their decision rule as “Near-Rational.” The type 2 subjects have exactly the

19The type 1’s in the practice data choose option “1” a bit too readily relative to the RE rule,
and so have a mean 7% wealth loss relative to RE, as opposed to 2% for the Near-Rational
type in money play. Still, their decision rule resembles the Near-Rational rule, subject to some
additional fine-tuning of the reservation payoff differential.
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same mean payoff loss relative to RE play as the Fatalist subjects in money
play (11.7%), and they get through the bonus phase with roughly the same fre-
quency (60% vs. 69%). The type 3 subjects again do considerably worse than
the other two types (an 18.5% payoff loss vs. 18.6% for the Confused subjects
in money play), so it again makes sense to describe their decision rule as “Con-
fused.”

A clear difference between practice and money play is that the percent of
subjects assigned to the three rules—which, given their broad similarities to
the money play rules, we will continue to call Near-Rational, Fatalist, and
Confused—are 26%, 30%, and 44%, respectively, as opposed to 37%, 40%,
and 24% in money play. Thus, not surprisingly, subjects are considerably more
likely to play the Near-Rational rule when they play for money. This may be
partly due to additional learning subsequent to the first two practice rounds,
and partly due to enhanced effort.

To what extent do subject’s type assignments exhibit persistence over the two
practice rounds and the money round? There are 27 possible sequences of type
assignments over the three rounds. Figure 6 reports the number of subjects
assigned to each type sequence. It also reports the expected number under the
“Naïve” assumption that assignments are independent across rounds, given the
marginal type proportions in each round. The cell counts depart substantially
from what one would expect given random assignment. The χ2(20) test for the
hypothesis of independent assignments across rounds is 71.4, compared to the
1% critical value of 37.6.

A good deal of the variation in type across rounds that we do observe in Fig-
ure 6 is driven by improvement between practice and money play (due either
to learning or enhanced effort). Note that only three subjects are assigned to

FIGURE 6.—Expected and actual cell frequencies. ( expected number; actual number.)

Note: The labels on the horizontal axis indicate sequences of rules followed in the first and second practice round and the money round,
in that order. “R” denotes rule 1 (“Near-Rational”), “F” denotes rule 2 (“Fatalist”), and “C” denotes rule 3 (“Confused”). For example,
the cell labeled “CCR” gives the number of subjects assigned to the “Confused” rule in the two practice rounds and the “Near-Rational”
rule in the money round. The expected number of subjects in each cell under independence of type assignments across rounds is calculated
using the marginal type probabilities for each round. Specifically, if p(X� j) represents the fraction of subjects classified as type X in
round j, then the expected proportion of subjects in cell XYZ is the product p(X�1)p(Y�2)p(Z�3).
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the Confused rule in money play after having done better than that in both
practice rounds (these are the RRC, FRC, RFC, and FFC cells). But 21 sub-
jects are assigned to the Near-Rational rule in money play after never having
done that well in the two practice rounds (these are the FFR, CFR, FCR, and
CCR cells). Furthermore, among subjects whose performance varied between
the two practice rounds, there are 34 cases where money play was as good as
the subject’s best practice round (these are the RFR, FRR, RCR, CRR, FCF,
and CFF cells), and only 17 cases where money play was as bad as the subject’s
worst practice round (these are the RCC, CRC, FCC, CFC, RFF, and FRF
cells).

Table VII provides another way of looking at the data that helps to clarify the
extent of persistence in type assignments between practice play and the money
round. Clearly, practice round play is quite predictive of money play type as-
signments, but the agreement is far from perfect. An interesting question is the
extent to which the variability in type assignments across the three rounds is at-
tributable to type switching vs. errors in our probabilistic type assignments. To
address this, we estimate a simple model of an econometrician trying to infer
subject types.

A general model would have 20 free parameters: two type proportions in
practice play, two type proportions in money play, a 3 × 3 matrix of type tran-
sition probabilities containing four free parameters (once the type proportions
in practice and money play are given), and two 3 × 3 matrices of classifica-
tion rates in practice and money play, each of which has six free parame-
ters (since the classification probabilities in each row must sum to one). Thus
2 + 2 + 4 + 6 + 6 = 20.

We impose three restrictions to obtain a simpler model. First, we as-
sume that classification error is unbiased. This means the restriction P(k∗) =
P(R)P(k∗|R)+P(F)P(k∗|F)+P(C)P(k∗|C)= P(k) must hold for k= R, F, C,
where P(k∗) denotes the probability a subject is classified as type k, while P(k)
denotes the proportion of type k in the population. This reduces the number of
free parameters in the classification rate matrices from six down to four. It also

TABLE VII
PROBABILITY OF TYPE IN MONEY ROUND CONDITIONAL ON PRACTICE PLAY

Money Game

Practice N Near Rational Fatalist Confused

RR 14 42.9% 42.9% 14.3%
FR, RF 24 70.8% 29.2% .0%
FF 19 47.4% 47.4% 5.3%
RC, CR 22 31.8% 45.5% 22.7%
FC, CF 21 28.6% 47.6% 23.8%
CC 39 15.4% 33.3% 51.3%
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means that the four free type proportion parameters are equal to the observed
population type frequencies.

Second, we restrict the three diagonal elements in the classification matrix
in the money round to differ from those in practice play by a common additive
constant. This is motivated by the fact (apparent in Figure 5) that the degree of
type separation in money plays seems to be greater, so we expect that the over-
all rate of correct classification in money play may be higher. By constraining
the model in this way, we leave only two free parameters in the money round
classification rate matrix. Third, we assume that type improvement between
practice and money play is possible (due to either learning or increased ef-
fort), but that deterioration is not. This zeros out three elements in the type
transition matrix, leaving it with just one free parameter.

Thus, we are left with just 4 + 2 + 1 = 7 parameters to be estimated. We
estimate these by maximum likelihood using the 27 cell frequencies in Fig-
ure 6. The results are in Table VIII. The χ2(20) statistic for our “Simple”
model is 10.25, compared to the 10% critical level of 28.41. Thus, the model

TABLE VIII

A SIMPLE MODEL OF TYPE ASSIGNMENTSa

Classified Type

True Type R F C

Classification Probabilities—Practice Rounds
R .51 .39 .10
F .23 .53 .24
C .14 .09 .78

Classification Probabilities—Money Round
R .69 .28 .03
F .29 .71 .00
C .01 .04 .95

Money

Practice R F C

Transition Rates—Practice to Money
R 1.00 .00 .00
F .37 .63 .00
C .00 .45 .55

Model Chi-Square Log-likelihood

Model Fit Statistics
Simple 10.3 −421�7
Naïve 71.4 −448�4
Unconstrained .0 −416�1

aThe ”simple” model has 7 free parameters in the classification rate and transi-
tion rate matrices. The ”Naïve” model assumes that type assignments are independent
across rounds. The ”Unconstrained” model sets the probability of each cell in Figure 6
equal to its empirical frequency. The 10% critical value of the χ2(20) statistic is 28.41.
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reproduces the cell frequencies in Figure 6 very accurately. We were unable to
significantly improve the likelihood by relaxing any of our restrictions. On the
other hand, any further restrictions on the classification rate or type transition
matrices are rejected.

Turning to the estimates, we obtain probabilities of correct assignment for
types R, F, and C in practice play of 51%, 53%, and 78%, respectively, while
in the money round these figures are 69%, 71%, and 95%.20 The improvement
in the rate of correct assignment in money play is 18%.21 Unconditionally, the
probability of correct classification in the practice round is 64%, while that in
the money round is 76%. There is also strong evidence of improvement be-
tween practice and money play. For instance, the estimates imply that 37% of
the F subjects improve to R. These figures clarify the extent of type switch-
ing and classification error that is necessary to explain the variability in type
assignments across rounds that we observe in Figure 6.

6. CONCLUSION

We have described a new Bayesian procedure for classification of subjects
into decision rule types in choice experiments. We applied the procedure to
experimental data from a sequential discrete choice setting in which optimal
decision making would require subjects to solve a difficult dynamic program-
ming problem. The procedure produced a clear classification of the subjects
into three behaviorally distinct types.

More than a third of the experimental subjects followed a rule very close
to the optimal (expected wealth maximizing) rule. We labeled them “Near-
Rational,” since their play resulted, on average, in only about a 2% payoff loss
relative to optimal play. We were surprised that so many subjects learned to
play nearly optimally in a very difficult dynamic problem after about a half
hour of practice (on average), particularly since the monetary rewards were
fairly small.

The remaining subjects departed more clearly from optimal play. About 40%
followed a suboptimal rule that resulted in 12% payoff losses on average. We
labeled these subjects “Fatalists,” because their behavior implied too much re-
liance on the luck of the draw and a failure to appreciate the extent to which
payoffs in the game were a controlled stochastic process. About a quarter of
our subjects performed substantially less well, following a rule that earned

20A completely uninformative algorithm would assign subjects to each type with rates equal to
the population type proportions (i.e., 26%, 30%, and 44% for R, F, and C in practice play, and
37%, 40%, and 24% in money play).

21Our model constrains type to be invariant between the two practice rounds. Type changing
between the two practice rounds would therefore be reflected in a lower rate of correct type
assignment. For instance, the editor pointed out to us that (using a slightly different model) he
calculated rates of correct assignment of about 58% and 68% for the R and F types in practice if
he assumed a 40% chance of changing type between the two rounds.
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about 19% less than optimal play on average. We labeled them “Confused”
(see Andreoni (1995) or Houser and Kurzban (2002) on confusion in other
experimental settings).

Experimental work that finds departures from optimal behavior is often crit-
icized on the grounds that subjects had little incentive to behave optimally. We
do not find this a compelling criticism of our findings here, since the interest-
ing outcome was that so many people indeed behaved close to optimally, and
because the practice round data shows that most subjects put substantial effort
into the task. Furthermore, the types that performed worst in the game were
those who tended to practice most.

In future work, we plan to examine how various experimental design fea-
tures, such as (i) size of payoffs, (ii) complexity of the problem, (iii) amount
of practice time allowed for learning about the game, and (iv) amount of in-
formation given to the participants, affect the types of decision rules people
use. Our (very) long-term goal is to try to provide some characterization of the
types of situations in which people do and do not behave close to optimally, and
to ascertain if certain suboptimal behavioral patterns recur in many different
contexts.

Our work raised two particular questions that we will investigate in fu-
ture work. One is whether the “fatalistic” type behavior that we uncovered
is common in other dynamic stochastic choice problems. A second question is
whether the notion of an option value is generally much harder to understand
than that of an investment value. All the subjects in our experiment under-
stood, at least to some extent, the notion of an “investment value” of a choice.
That is, all subjects chose options that had low current payoffs, but that raised
future expected payoffs, far more often than would myopic subjects. But not
even the best performing subjects showed any understanding of the notion of
an “option value.” That is, no subject ever declined a high payoff alternative
in order to defer the option of choosing it to a future round. In future work,
we will examine whether the notion of an option value becomes more salient
if the rewards to understanding the concept are increased.

Our Bayesian procedure for decision rule classification could potentially be
applied in many settings besides the dynamic discrete choice problem we have
considered. For instance, it could be used to model decision rules in strategic
games, in which case the polynomial approximation to the continuation value
would typically include state variables characterizing the play of other subjects.
And it could be applied to field as well as experimental data. In each case, the
key identifying assumption is that the investigator must specify a priori the set
of state variables that he/she will entertain as potential arguments in subjects’
decision rules.

Our finding that behavioral heterogeneity is important in experimental data
is consistent with prior results. For instance, El-Gamal and Grether (1995), in
their experiment on Bayesian learning, found evidence that subjects fell into
three types: Bayesians, conservative Bayesians, and those who used the rep-
resentativeness heuristic (see also Houser and Kurzban (2003) and McCabe
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et al. (2001) for studies that link individual “types” to outcomes in strategic
games). Given the accumulating evidence that decision rule heterogeneity is
important in laboratory environments, we believe it is reasonable to suspect
that such heterogeneity is also important in field data. Developing empirical
strategies to model such heterogeneity is an important research agenda.
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APPENDIX A: NUMERICAL PROCEDURE FOR CALCULATING MARGINAL
LIKELIHOOD VALUES

We construct the marginal likelihood for each of our candidate models using the procedure
developed by Lewis and Raftery (1997). Their algorithm combines posterior simulation with the
Laplace–Metropolis estimator. Alternative numerical procedures for calculating the marginal
likelihood are discussed in Gelfand and Dey (1994), Geweke (1997), Geweke and Keane (2001),
and Chib (2001), among others.

The marginal likelihood value for a model, which we denote by g(·), is the integral of the
model’s likelihood function with respect to the model’s prior. For the model we present in Sec-
tion 4, the marginal likelihood is:

g
({{dnt}t=1�T

}
n=1�N |MKP

) =
∫

L
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)
�

where MKP indicates a model with K types of subjects, in which the order of the polynomial
F is P , and in which the prior is p(·|MKP). Dropping the notational dependence on the model,
and letting ξ denote the parameter vector and D the vector of observed decisions, this can be
written

g(D) =
∫

L [D|ξ]p(ξ)dξ�

The Laplace method generates the following approximation for the marginal likelihood:

g(D) ≈ (2π)λ/2|H∗|1/2p(ξ∗)L (D|ξ∗)�

where ξ∗ is the value of ξ at which h(ξ) ≡ log{p(ξ)L (D|ξ)} attains its maximum (i.e., the pos-
terior mode), H∗ is minus the inverse Hessian of h evaluated at ξ∗, and λ is the dimension of the
parameter space. Taking logarithms, this can be rewritten as

log{g(D)} ≈ λ

2
log{2π} + 1

2
log{|H∗|} + log{p(ξ∗)} + log{L (D|ξ∗)}�(A.1)

Lewis and Raftery (1997) call this the Laplace–Metropolis estimator. It is attractive because the
quantities ξ∗ and H∗ can both be easily derived from Gibbs sampler output. To determine ξ∗ we
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evaluate h(ξ) at each draw from the posterior, and choose that parameter vector for which h(ξ)
is the largest. The quantity H∗ is asymptotically equivalent to the posterior variance matrix, so
one may use the sample covariance matrix of the simulation output as an estimate of its value.

The marginal likelihood tends to favor more parsimonious models for the following reason: if
we increase K and/or P , then the prior is specified over more parameters. Thus, ceteris paribus,
the prior mass in the vicinity of any particular parameter vector (such as the posterior mode, ξ∗)
will fall. This tends to reduce the value of (A.1), inducing an implicit penalty on added parame-
ters.

APPENDIX B: AN EXACT TRANSCRIPT OF THE WRITTEN INSTRUCTIONS
PROVIDED TO SUBJECTS

Instructions

Thank you for coming today. This is a study of individual decision making, for which you will
earn cash. The amount of money you earn depends on your decisions, so it is important to read
and understand these instructions. All the money that you earn will be awarded to you in cash
and paid to you privately at the end of the experiment. The funding for this experiment has come
from a private research foundation.

The experiment lasts for 15 periods. Each period you will choose between two alternatives,
which will be called “1” and “2.” Each alternative has a payoff which is shown on the left-hand
side of the screen. If you choose “1” you earn the payoff associated with “1,” and if you choose
“2” you earn the payoff associated with “2”. The payoff for each alternative will be shown to you
before you make your choice. At the end of the experiment, you will be awarded an amount of cash
equal to the sum of your 15 chosen payoffs. Your choices are private: do not discuss them with
anyone else in the room.

The future payoffs offered for alternative “1” depend on the previous choices that you made.
The future payoffs offered for alternative “2” do not depend on any of your previous choices. No
payoff will ever be less than zero. The specific structure of payoffs is as follows:

Payoff per period for alternative “1”:

Base Pay: 3,000.
0 if you have chosen “1” 0, 1, 2, 3, 4, or 5 previous times.

Bonus: 7,500 if you have chosen “1” 6, 7, 8, or 9 previous times.
0 if you have chosen “1” 10, 11, 12, 13, or 14 previous times.

Costs: A cost of 5,000 will be incurred if you chose “2” the previous period,
otherwise none.

Lottery: Random draw that takes value between −5,000 and 5,000 with equal chance.
Total payoff: (Base Pay + Bonus − Costs +/− Lottery), or 0, whichever is bigger.

Payoff per period for alternative “2”:

Base Pay: 4,000.
Bonus: None.
Costs: None.
Lottery: Random draw that takes value between −5,000 and 5,000 with equal chance.
Total payoff: (Base Pay + Bonus − Costs +/− Lottery), or 0, whichever is bigger.

The payoff structure will be shown to you on the screen for easy reference. Your screen will
also include a green window called “Summary,” which will show you the total number of periods
in the experiment (15), the current period, your accumulated payoffs, the number of times you
have chosen “1,” the number of times you have chosen “2,” and the choice you made the previous
period.
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The right-hand side section of the screen details the history of the payoffs of each alternative,
and the choice you made, by period. Finally, you will see in the bottom left-hand side of the screen
a red window which describes the current period’s payoff choices.

You will be paid $5 for attending the first day, another $5 for attending the second day, plus any
earnings from the decisions you made on the second day. You will receive all of your payments at
the end of the second day.

The first day you can practice as much as you like. The second day, when you are ready, you
may play one time for money by pressing the “Play for Money” button in the bottom left-hand
side of the screen (you will only see this button on the second day). If you have a question raise
your hand and an experimenter will come to answer. We cannot tell you which decision is “best”
for you. Your decisions are entirely up to you.
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