Introduction to the Design and Analysis of Experiments 

Professor Daniel Houser

Note Set 5  - Latin squares and factorial designs.

A. Introduction to the Latin square.

Ex. 1.  The leaves of a particular plant come in groups of five.  Suppose that one is interested in performing experiments on these leaves, and that it would be useful to have sets of five leaves that are rather homogeneous.  Specifically, suppose that one was willing to take the leaves of from five plants and rearrange them into five groups of five leaves.  What procedure would tend to maximize the homogeneity of the groups?

Experimental evidence (Vickrey, 1949) has shown that a good way to do this is to follow arrange the leaves as follows:

	

	Plant 1
	Plant 2
	Plant 3
	Plant 4
	Plant 5

	Leaf Position 1
	I
	II
	III
	IV
	V

	Leaf Position 2
	II
	III
	IV
	V
	I

	Leaf Position 3
	III
	IV
	V
	I
	II

	Leaf Position 4
	IV
	V
	I
	II
	III

	Leaf Position 5
	V
	I
	II
	III
	IV


Here, each roman numeral corresponds to a constructed group of leaves.  Note that each group has one leaf from each of the original plants and one leaf from each position.

This arrangement is called a “Latin square.”  The key feature of a Latin square is that each value, in this case each Roman numeral, occurs once in each row and once in each column.  This feature is useful to experimenters since it allows one to block two sources of systematic variation simultaneously.

Ex. 2.  Suppose it is desired to determine the effect of four different marketing strategies, A, B, C and D on the sales of a certain brand of beer.  How can one design an experiment that includes four stores over four time periods and that controls for potential store and period effects?

A natural way to simultaneously block store and period effects is through a Latin square, such as the following.

	Week
	Store 1
	Store 2
	Store 3
	Store 4

	1
	B
	C
	D
	A

	2
	A
	B
	C
	D

	3
	D
	A
	B
	C

	4
	C
	D
	A
	B


Note that there are many 4 X 4 Latin squares.  The particular Latin square that one uses in the experiment should be determined through randomization.

    It is easy to misuse the Latin square, as the following example points out.


Ex. 3.  Four people suffering from dyslexia were given exposed to four different procedures, A, B, C and D, to help their reading comprehension and spelling.  It was desired to learn whether the procedures were equally effective.  What would be a reasonable way to design this experiment?


The experiment actually run tried to control for individual and time effects by arranging the treatments according to a (randomized) Latin square.

	
	Period 1
	Period 2
	Period 3
	Period 4

	Subject 1
	B
	D
	C
	A

	Subject 2
	C
	A
	B
	D

	Subject 3
	A
	C
	D
	B

	Subject 4
	D
	B
	A
	C


Note that this is valid only if the period 3 effect, for example, is unrelated to the treatments that were received in periods 1 and 2.  Since this seems unlikely in this experiment, one might have little confidence in the results from the standard analysis of this design.  This problem is one of “repeated measures,” and will be discussed again below.

There are extensions of the Latin square that allow one to block three or more effects simultaneously.

Ex. 4.  Returning to example 2, suppose that there is a subjective component associated with the value of each marketing strategy.  Specifically, suppose that there must be an observer at each store that subjectively determines the “interest” and “attention” that each marketing strategy generates in this certain brand of beer.  Since there are likely to exist systematic individual specific differences in the observers subjective assessments, it would be useful to “block” this source of variation.  How can that be done.

One way is to try to ensure that:

(i) Each observer is matched once with each marketing strategy.

(ii) Each observer is matched once with each store, and once with each period.

Note that condition (ii) is satisfied if the observers, considered by themselves, form a Latin square.  Hence, we want to overlay a Latin square for the observers on the Latin square for the marketing strategies in such a way that (i) is satisfied.

	Week
	Store 1
	Store 2
	Store 3
	Store 4

	1
	Bc
	Da
	Cb
	Ad

	2
	Cd
	Ab
	Ba
	Dc

	3
	Aa
	Cc
	Dd
	Bb

	4
	Db
	Bd
	Ac
	Ca


Here, the lower case letter represents the observer and the upper case the treatment.  This is called a Graeco-Latin square, since it is common to use letters from the Greek alphabet to represent the second set of symbols, in this case lower case letters.  It is interesting to note that while a Latin square can always be formed, not all Graeco-Latin squares exist.  For example, there is no 6 X 6 Graeco-Latin square.

B. ANOVA for a Latin square.

Ex:  Suppose that the observed efficiencies of the FCC auctions are suspected to depend on (1) the mechanism used, A, B, C or D; (2) the experience of the players, falling into either category 1, 2, 3 or 4; and the interface available to the subjects, which varies by location of the auction and is either a, b, c or d.  We desire to test the null hypothesis that there is no difference in mean efficiencies across the four mechanisms.

The model of this situation is:
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(Model 1)

Suppose we obtain the following data.

	
	Experience 1
	Exp. 2
	Exp. 3
	Exp. 4

	Interface 1
	A – 21
	B - 26
	D – 20 
	C – 25

	Int. 2
	D – 23
	C - 26
	A – 20
	B – 27

	Int. 3
	B- 15
	D- 13
	C- 16
	A- 16

	Int. 4
	C-17
	A-15
	B-20
	D-20


Here, A-21 in cell (1,1) means that auction A had an efficiency of 21 when it was run with subjects with level 1 experience and under interface 1..

As always, the point of the ANOVA is to break down the total sum of squares into components due to the interface, experience, the treatment and the residual.

The general ANOVA associated with the model we are considering is as follows.

	source of variation
	sum of squares
	degrees of freedom

	rows
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In our example, plugging into the above formulas, we find:

	source of variation
	sum of squares
	degrees of freedom
	mean square
	expected value of mean square
	ratio of mean squares

	interface
	216
	3
	72
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	F(3,6)=27

	experience
	24
	3
	8
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	F(3,6)=3.0

	auction
	40
	3
	13.33
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	F(3,6)=5.0



	residuals
	16
	6
	2.67
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	total
	296
	15
	
	
	


Note there is clear evidence that not all interfaces and auctions have the same effect on efficiencies, although efficiencies don’t seem to be effected by experience (at least in this artificial data set.)

C. Latin Rectangles

A Latin rectangle is formed by stacking m Latin squares.  By convention, a Latin rectangle is such that each treatment appears once in each row and m times within each column.  

Ex. We may want to include eight stores instead of four in our marketing experiment considered in example 2.

	
	Week 1
	Week 2
	Week 3
	Week 4

	Store 1
	B
	C
	D
	A

	Store 2
	A
	B
	C
	D

	Store 3
	D
	A
	B
	C

	Store 4
	C
	D
	A
	B

	Store 5
	D
	B
	C
	A

	Store 6
	C
	A
	B
	D

	Store 7
	A
	D
	B
	C

	Store 8
	B
	D
	A
	C


Model 1 continues to be appropriate in this situation, except that the i subscript now runs from 1 to mk, the number of rows.

ANOVA for Latin Rectangles.

	source of variation
	sum of squares
	degrees of freedom

	rows
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· Application of Latin rectangles to repeated measures designs (more on repeated measures in lecture 6.)

Ex:  Suppose that 
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 subjects are used to compare two treatments, A and B, over two time periods.  It is desired that m subjects should receive the treatments in the order {A,B} and the remaining in the order {B,A}.  Letting subjects be the rows and periods columns, this clearly has the form of a Latin rectangle.

There are two cases two possibilities that we should consider.

(i) Model 1 is appropriate.  That is, the observation in period 2 is not affected by the treatment that was applied in period 1.  In this case, a standard ANOVA analysis is appropriate.

(ii) The observation in the second period depends, in part, on the treatment that was applied in the first period.  In this case Model 1 is not appropriate.  An extension of model 1 that might be appropriate is:
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Model 2

This difficulty associated with drawing inferences from this model depends on how the subject effects are handled.  An appropriate but inefficient way to draw inferences about the treatment contrast is to treat the subject effects as random variables (random effects) and then base inferences on only the first period observations.  If desired we can learn about the lag effects by using data from the second period, conditional on the results from the first period.  Treating the subject effects as fixed effects is more efficient but makes inference more complicated.

D. Basic ideas about factorial experiments.

Definitions.

· A factor is an input of an experiment, and the number of forms the factor can take are called the levels of the factor.

· A given experiment may include many factors.  A treatment is a particular combination of one level from each factor.

· If all, or nearly all, of the possible different combinations of treatment levels are of to be studied then the experiment is called a factorial experiment.

Ex:  Many experimenters have investigated ways to increase the conception rate of bulls.  Suppose three substances, A, B and C are being considered as potentially useful food additives.  If there is interest in the way these factors interact, then there are a total of 8 treatments to consider, and the experiment has a 2 X 2 X 2 factorial design.  If one is not interested in interactions between the additives then we would not consider it a factorial experiment.  Rather, we would probably run three treatments and a control using a standard randomized design.

· A factorial experiment in which each combination of factor levels is used the same number of times is called a complete factorial experiment.  We will focus on complete factorial experiments since their analysis is much more straightforward than incomplete designs.

· The main advantages of factorial experiments, compared with the one factor at a time approach, are that

(i) There is increased precision in the estimation of factor effects.

(ii) Interactions between factors can be explored.

(iii) The validity of conclusions can be tested fairly easily by inserting more factors.  Doing this may greatly improve our understanding of the underlying process.

Ex.  Main effects and interactions in a two factor experiment.

Suppose there is an experiment that includes two factors, A and B, each at four levels.  Hence, this is a 4 X 4 factorial experiment.  For ease, suppose there is no uncontrolled variation and the following outcome is obtained.

	
	
	FACTOR 
	B
	
	
	Row Average

	
	Level
	1
	2
	3
	4
	

	FACTOR
	1
	9
	11
	14
	15
	12.25

	A
	2
	12
	14
	17
	18
	15.25

	
	3
	10
	12
	15
	16
	13.25

	
	4
	13
	15
	18
	19
	16.25

	Column

Average
	
	11
	13
	16
	17
	


Note that the following is true about this data:

(i) the difference between the observations corresponding to any two levels of A is the same for all levels of B, and similarly for B with respect to A.

(ii) the effects of the two factors is additive.  That is,
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It is easy to show that conditions (i) and (ii) are equivalent.  When either of these holds we say the factors do not interact.  If they do not hold, we say there is interaction between A and B.

This table provides an example of data that suggests there is interaction between A and B.

	
	
	FACTOR 
	B
	
	
	Row Average

	
	Level
	1
	2
	3
	4
	

	FACTOR
	1
	9
	11
	14
	15
	12.25

	A
	2
	12
	14
	17
	18
	15.25

	
	3
	11
	11
	14
	17
	13.25

	
	4
	12
	16
	19
	18
	16.25

	Column

Average
	
	11
	13
	16
	17
	


The main effect of factor A is a vector that describes the change in the row average as the level changes.  In particular, the main effect of A is, from the row averages on the table,



{15.25-12.25, 13.25-15.25, 16.25-13.25}={3, -3, 3}.

The main effect of factor B is calculated similarly from column averages.

The first table showed that there can be non-zero main effects together with zero interaction effects.  It is also possible to have zero main effects with non-zero interaction effects, as the following table points out.

	
	
	FACTOR 
	B
	
	
	Row Average

	
	Level
	1
	2
	3
	4
	

	FACTOR
	1
	14
	16
	14
	16
	15

	A
	2
	15
	13
	18
	14
	15

	
	3
	12
	15
	16
	17
	15

	
	4
	19
	16
	12
	13
	15

	Column

Average
	
	15
	15
	15
	15
	


· Estimation of main effects and interactions in 
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 designs.

Ex.  Suppose there are three factors, A, B and C with levels a0,a1,b0,b1,c0,c1.  This is a 2 X 2 X 2 = 
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 factorial experiment.  The eight treatment combinations are clearly:

a0b0c0, a1b0c0,…,a1b1c1.

The simple effects of A are, in this case

A(b0,c0)=a1b0c0-a0b0c0.

A(b1,c0)=a1b1c0-a0b1c0.
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A(b1,c1)=a1b1c1-a0b1c1.

Hence, these are the effects of moving from a0 to a1 at all the possible other values of the factors.

The main effect of A, in this case, is 
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Hence, A is the average change in response when a0 is changed to a1.

One can also define the effect of A when B is kept at level bJ and C is averaged over levels c0 and c1 as
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We define the interaction between two factors as:
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Hence, AB is the interaction between factors A and B averaged over the levels of factor C.  We could also define the interaction at a particular values of C.
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and similarly for AB(c1).

The three-factor interaction A X B X C, or ABC, is defined as:
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**  You should verify that the main effect and interaction represent a contrast among the treatment combinations.  Moreover, these contrasts are orthogonal.

Since an unbiased estimate of the contrast is found by applying the contrast to unbiased estimates of the treatment effects (means), it follows that to estimate the main effects and interactions we need only replace values in the above expressions with the appropriate estimates from the experimental data.

To estimate the main effect of A, for instance, we proceed in the following way.  

Let 
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 denote the treatment mean for the combination aIbJcK.  Then,
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Then, assuming a constant variance 
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 and independence, as we have throughout, and that there are r observations per treatment, we find that
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· Since each main effect and interaction represents a contrast, one can easily compute t-statistics to determine the statistical significance of each.

E. Interpretation of interaction in factorial experiments.

There are three main types of interaction.

(1) Interactions that can be removed by appropriate transformation of the variables.  If the interaction is of this type then it may simply indicate that the observations were recorded on an “inappropriate” scale.  Some people argue that the essential difference between removable and nonremovable interactions is that the latter indicate a certain complexity in behavior that is missing in the former.

(2) The interaction may be nonremovable but easily described.  For instance, “A and B do not seem to interact except when B is at level four.”  This may lead one to do further experiments to determine what leads to the special features of B’s fourth level.

(3) A nonremovable interaction may be difficult to describe.  In this case we are likely forced to abandon any hope of gaining intuition from the factorial structure, and simply view each treatment combination as separate.
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