Design and Analysis of Experiments – Daniel Houser

Lecture 4  - Randomization and random designs and multiple comparisons.

Handouts:  

Further reading: Box; Hunter and Hunter chs. 6-8

A. Discussion of the tea tasting lady (Fisher, 1935).

The lady of a prestigious British family claimed that she could taste the difference between a cup of tea with milk in which the milk was added after the tea and one where the milk was added before the tea.  How could one design an experiment to assess her claim?

(1) State the problem.  What is the hypothesis of interest?

(2) Determine a treatment design.  What treatments should we consider?

(3) Determine an error control design.  What are the sources of error?

(4) Determine a sampling and observation design.  How will data be obtained?

(5) Connect the design to a statistical method.  What statistical tests does your design allow and how do the tests tie to the original problem.

One approach:

(1) 
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 The lady is not able to discriminate between cups of tea and milk made tea first and tea after; 
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 Otherwise.

(2) The lady should be presented cups of tea with milk made in both ways and asked to label each as tea first or tea second.  These are qualitative  treatments.  We are not interested in the effects of different proportions of tea and milk, but rather if, for a fixed proportion, the order in which the drink is made can be detected.

(3) Sources of error:  

(a) Even if the Lady is able to discriminate as she says, she may make a mistake from time to time.  This suggests that we should present her with “several” cups of tea with milk, say eight.

(b) Different materials may interact with the flavor of the drink in different ways.  We should use the same type of cup for each drink in each treatment.  Note that this means we are really testing the hypothesis that the lady can’t discriminate between the types of tea when the tea is placed in these cups.

(c) If the drinks are made in a systematic order problems may develop.  For instance, if all four tea first are made, and then all four tea after, the tea first set will be systematically cooler than the tea after set.  If the lady discovers this she can use this information to help her make decisions.  It would be appropriate to randomize the order in which the cups of tea with milk are made.  In particular, one could flip a coin eight times, one for each cup.  Each head is made tea first, and each tail is made tea second. This is called a “completely randomized design (CRD).”

(d) Similarly, if the order of the cups given to her is systematic then this could cause problems.  It would be appropriate to randomize the order in which the cups of tea with milk are presented to the Lady.  

(e) As noted above, we should attempt not to vary the proportion of tea and milk in each cup.  For instance, if there is systematically more milk in the drink when milk is added first then this information could be used by the Lady to improve her decisions.  

(4) The labels she attaches to the cups of tea with milk are observed, and tests are based on the way these labels are assigned.

(5) There are 
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 unique ways to label the eight cups of tea.  Under the null that she is not able to discriminate, the probability that she labels all of the cups correctly is 1/256, the probability that she labels exactly seven correctly is 8/256, and the probability that she labels exactly six correctly is 28/256.  Hence, we would reject the null at the 15% significance level if she labels at least six correctly, and at the 5% significance level if she labels at least seven correctly, and at the 0.5% confidence level is she labels all eight correctly.  Notice that this test is valid precisely because randomization was used in all of the right places, and that any source of systematic error that was controlled for above could, if not controlled, render our inference invalid. 

B.  Randomization

(1)  There are essentially three ways that treatments can be assigned to subjects (this might be within blocks in a randomized block design, for example).

(i) Adopting a particular systematic arrangement that, in someone’s opinion, is unlikely to match any pattern of systematic variation.

(ii) Assigning treatments in a way that, in someone’s opinion, seems kind of arbitrary and without any obvious pattern.

(iii) Randomization.

   It can be dangerous to adopt (i) or (ii).


Ex:  Danger of (i).  Suppose that one wants to assess the effect of two different styles of instructions, A and B, on comprehension.  An experiment is designed where 10 individuals put into five groups of two, perhaps based on some sort of observable characteristics about the subjects, and then one subject in each pair is randomly assigned to the A instructions, and the other to the B instructions.  (In this case, each pair of subjects forms a block, and the treatments are assigned randomly within each block – this is a randomized block design.)  The experimenter reads the appropriate paragraph of instructions to each subject, one subject at a time, and then administers a comprehension test.  It is decided that the order in which the instructions will be read to subjects is:  {A,B}, {A,B}, {A,B,} {A,B}, and {A,B}.  That is, within each pair first instruction A is read to the person assigned to “A” and then instruction B is read to the other member of the pair.  This will present a problem if the experimenter tends to read the second set of instructions systematically faster than the first.  If so, then there may be more confusion in “B” for this reason alone, and inferences about the value of the instructions may have little merit.  It would be better, in this case, to randomize the order in which the instructions are read to subjects.


Any systematic rule is subjective:  the experimenter must assert an opinion that the systematic procedure chosen does not coincide with any source of systematic variation.  Randomization, in contrast, is an objective procedure.


Ex:  Danger of (ii).  


The Lanarkshire Milk Experiment (Student, 1931).  An experiment was designed to test the effects of raw milk and pasteurized milk on schoolchildren:  5,000 students received raw milk; 5,000 received pasteurized milk and 10,000 no milk.  The variable of interest was height and weight gain over five months.  The results of the experiment suggested that the students who drank milk exceeded the control group at the end of the experiment by an amount the equivalent of about three months “average growth” in height and four months in weight.  Why this dramatic difference?  In part, because of the way the treatments were assigned.  They followed a two step procedure.  First, treatments were randomly assigned.  Then, the randomization was “improved” by determining whether there were an undue number of malnourished children in any group, and adjusting accordingly.  Presumably, this resulted in a large number of malnourished children being pushed into the “milk” groups, and accordingly biased the estimates of the milk effect.  

This experiment failed to provide convincing results because treatments were not assigned to subjects in an impersonal way.  A better experiment might be constructed using a relatively small number of twins, since in that case it would be feasible to collect extremely detailed information on each subject.

(2) Intuition for why randomization works.

The statistical model to keep in the back of your mind is:
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The individual effects are assumed to be distributed randomly across the subjects and to have a mean of zero.  The treatment effect, of course, is assumed to be the same for all subjects.  As long as the treatments are assigned to subjects randomly, then the associated individual effects are random draws from the individual effect distribution, hence
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This means that, through randomization, one can obtain unbiased and consistent estimates of the treatment effects.  One should also keep in mind that randomization often justifies powerful statistical procedures including the permutation and randomization tests.  

C. Completely Randomized Designs.

A completely randomized design is one in which k treatments are assigned to a total of N subjects randomly.  There is no blocking (as occurs with randomized block designs or Latin squares), nor is there any effort to learn about interactions between treatments (as there is with factorial designs).  

The following example illustrates the typical analysis of a CRD.  This involves constructing the analysis of variance (ANOVA).  The reason the ANOVA is attractive is that from it one can conduct a simple F-test for treatment effects that, it turns out, closely approximates the powerful nonparametric randomization (or permutation) test.

Ex:  Suppose four types of FCC auctions are under consideration: A, B, C and D.  It is desired to know if there is any difference in average efficiency between the auctions.  An experiment is conducted in which each of 24 groups of subjects is randomly assigned to one of the auctions.  The auction occurs, efficiency is calculated, and the results are tabulated.  The following results are obtained.

	
	Mechanism A
	Mechanism B
	Mechanism C 
	Mechanism D

	
	62
	63
	68
	56

	
	60
	67
	66
	62

	
	63
	71
	71
	60

	
	59
	64
	67
	61

	
	
	65
	68
	63

	
	
	66
	68
	64

	
	
	
	
	63

	
	
	
	
	59

	
	-----------------
	------------------
	------------------
	-----------------

	treatment average
	61
	66
	68
	61

	grand average
	64
	
	
	


We assume that the four samples have the same variance 
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  If this assumption is clearly false then one should scale the data so that the variances are more similar.  This will not affect the hypothesis test.  We construct the ANOVA by proceeding as follows.

Step 1.  Calculate the within estimate of the error variance.  The idea is to compute an estimate of the variance within each sample, and then pool the estimates to form an estimate of the underlying common variance.  Let 
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 denote the sum of squares of deviations from the mean of the A treatment, 61.  Then,
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The number of degrees of freedom associated with the sum of squares is equal to the number of observations minus one, in this case three.  Hence, an estimate of the sample variance determined from the first treatment is
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Similarly, one can show 
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The pooled estimate of the variance, the within estimate, is therefore:
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  Step 2.  Calculate the between estimate of the variance.  Intuitively, if there is no difference in treatment means, then it is possible to compute an estimate of the variance by comparing outcomes between samples as well as within samples.  The reason is that all of the data is drawn from the same population in under the assumption that the treatment means are identical.

	
	A
	B
	C
	D
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	61
	66
	68
	61
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	-3
	2
	4
	-3

	num obs: 
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	4
	6
	6
	8


The between estimate is then found as follows.
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Note that the degrees of freedom for the between estimator is equal to the number of treatments minus one, in this case three.

If there are differences in means between treatments, then the between estimator is biased upwards.  The within estimator, however, is unaffected in this case.


We use the within and between estimates to construct a simple ANOVA table.

	source of variation
	sum of squares
	degrees of freedom
	mean square

	between
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	3
	76

	within
	112
	20
	5.6

	total about grand average
	340
	23
	14.8


Note that the “total about grand average” sum of squares and degrees of freedom are the sum of the between and within values.  This follows from the identity:
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which says  
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Step 3.  Hypothesis testing

Under the null hypothesis that there is no difference in treatment means, the ratio of the between and within mean square statistics follows an F(3,20) distribution (see lectures two and three.)  Hence, the null hypothesis is rejected if the ratio exceeds an appropriate critical point from the F(3,20) distribution.  In this case, 76.0/5.6=13.6 which leads one to reject the null under at any reasonable level of significance (its associated p-value is about 0.00005.)

Strictly speaking, the F-test requires that the data be normally distributed with the same variance for validity.  The powerful nonparametric randomization (or permutation or Fisher exact) test would be preferred, and could be calculated (since we have a CRD) by finding the F-statistic associated with every possible allocation of data to the treatment groups such that the statistic can be calculated (see lecture three.)  An amazing fact, however, is that in most cases the normal theory F-test provides a very good approximation to the randomization test, even when the underlying data does not follow a normal distribution! 
D.  Summary of ANOVA for the CRD under the assumption of equality of variances.

model:  
[image: image19.wmf]2

,0,~(0,).

titittit

yiid

htetes

=++=

å

 


[image: image20.wmf]1,..., treatments,  observations per tre

atment.

t

tkn

=

  N total observations.

	Source of

Variation
	sum of squares
	degrees of

freedom
	mean square
	expected value

of mean square

	Between
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	Within
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The null hypothesis of interest is 
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 which is to be tested against the alternative 
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 otherwise.  Under the null hypothesis the ratio of the between to within mean square follows an F(k-1,N-k) distribution.  This test is exact if the 
[image: image30.wmf]it

e

 are jointly normal with common variance, and is otherwise viewed as an approximation to the randomization test.
E. Diagnostics:  checking the assumptions.

There are some easy things one should do as a first check on assumptions like normality and independence.

(a) Determine the distribution of the residuals within each treatment.  If the normality assumption is true, then the residuals will be approximately normally distributed.  Generally, only gross departures from normality are cause for concern.  One may be particularly interested in the sources of outliers.

(b) Check the correlation between the treatment and the residuals.  All of the results rely on the assumption that the level of the treatment and the value of the residuals are unrelated. 

(c) Plot the residuals across time.  Any drift in the pattern of residuals might suggest a systematic change in the experiments conditions across time, related, say, to the changing skill of the experimenter.  

F. Randomized block designs.

Randomized block designs are used when the experimenter is concerned that the observations on experimental units will be influenced by two factors.

(i) treatment effects of interest

(ii) “block” effects, whose contribution to the observations one wants to eliminate.

   Ex:  Suppose that the observed efficiencies of the different FCC auction institutions are suspected to depend both the type of auction, A, B, C and D, and on the experience of the subjects with auctions.  In particular, it is assumed that



[image: image31.wmf]t

where

 effect from having experience level  (b

lock effect).

effect from treatment .

grand mean.

mean zero error.

ititit

i

it

y

i

t

hbte

b

t

h

e

=+++

=

=

=

=


One can separate experience effects from treatment effects by “blocking” subjects by their level of experience, and running each of the four treatments within each block.  As always, it is important that within blocks treatments are assigned to subjects randomly.

We might obtain the following data.

	Block (Experience level)
	A
	B
	C
	D
	Block Average

	1
	89
	88
	97
	94
	92

	2
	84
	77
	92
	79
	83

	3
	81
	87
	87
	85
	85

	4
	87
	92
	89
	84
	88

	5
	79
	81
	80
	88
	82

	Treatment average
	84
	85
	89
	86
	86=grand average



Here, four subjects within each of five different experience levels were chosen to participate in the experiment.  Within each block, treatments were assigned to subjects randomly.

· Note that this is a “complete” block design, in that the number of subjects, n=4, within each block is the same.

· In a way that is analogous to the CRD, the sum of squared deviations about the grand mean can be decomposed into a between block effect, between treatment effect and a “residual” effect, as follows.

	Source of variation
	sum of squares
	degrees of freedom

	Between blocks
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	Between treatments
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	Residuals
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	(n-1)(k-1)

	
	
	

	Total
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 Using these formulas with the present example gives the following.

	Source of variation
	sum of squares
	degrees of freedom
	mean square (MS)
	E[MS]
	ratio of MS (between to residual)

	Between blocks
	264
	4
	66.0
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	3.51

	Between treatments
	70
	3
	23.3
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	1.24

	Residuals
	226
	12
	18.8
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	Total
	560
	19
	
	
	


The ratio of MS associated with the blocks is a test for whether the block effects are identical and zero, and the ratio associated with the treatments tests whether the treatment effects are identical and zero.  Under the null hypothesis of no block effects the statistic is distributed F(4,12), and under the null of no treatment effects the statistic is distributed F(3,12).

· Note the increase in efficiency associated with blocking.  Of the total sum of squares, more than half are associated with block differences.  A CRD, while valid, would have led to a much larger estimated error variance (a larger MS for the residuals) and it would have been more difficult to distinguish any differences in treatment effects.  

G. Multiple Comparison Methods ( see Rafter, Abell and Braselton, 2002, for more).

A type I error occurs when a true null hypothesis is rejected by a statistical test. If the significance level of the test is 0.05, then this means that the probability (in a repeated sampling sense) of rejecting a true null is 5%. Suppose one wants to compare a baseline against 10 alternative treatments with 10 standard t-tests for differences in means (the null is that there is no difference), and that each of the comparison is done at a 5% significance level. What is the probability that at least one of these null hypotheses will be rejected, even if there are no treatment effects?

Each of the 10 has a 95% chance of accepting a true null.  The probability that all true null hypotheses are accepted is 0.9510 =0.60.  Hence, there is a 40% chance that at least one of the null hypotheses will be rejected, even though it is true.  That is, there is a 40% chance of a type I error.

Multiple Comparison Methods (MCMs) are statistical procedures designed to take into account and control the inflation of the overall probability of Type I error.  The MCMs discussed below assume, unless otherwise noted, that the samples are randomly and independently selected, (ii) the populations are normally distributed, and (iii) the populations all have the same variance.

Confidence Intervals: Suppose one wants to construct a confidence interval for the true difference between two means.  A 1-α  confidence interval for the true difference is such that, using a two-sided significance test, all values of the difference within the confidence interval do not lead to a rejection of the null hypothesis at significance level α, while all values outside the interval do reject the null.

Example:  Let {xn}n=1,N be an iid random sample from a Normal distribution with known variance but unknown mean μ.  Let 
[image: image39.wmf]x

 denote the sample mean, and σ2 the known variance of the sample mean. Then z(μ) = (
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-μ)/σ ~ N(0,1).  What values of μ are plausible given the realized sample mean, and the known variance?  At a 5% significance level, any value of μ that generates a value of z(μ) 
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so that the 95% confidence interval fro the unknown mean is 
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A. Turkey’s Paired Comparison Procedure. This is used when one wants to compare all treatment means against each other pairwise.  It can be shown that this is the “best” approach, in a formal statistical sense, when the investigator wants to make all possible comparisons and the variances of the underlying distributions are all the same.

Suppose there are K total treatments.  Then there are K(K-1)/2 total possible comparisons between means that can be made.  For example, if K is 10, then there are 45 possible comparisons. The Tukey (1949) procedure confidence limits for the true difference in means, taking into account that all comparison will be, is given by:
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where q is the upper significance level of the studentized range for K means, and v is the number of degrees of freedom in the estimate s2.  If zero falls outside of the confidence interval for any comparison, then one concludes that there is evidence of a difference in means for that pair of treatments.  The total probability of a type I error is α. 

B. Dunnett’s procedure for multiple comparisons with a standard

 This is used when one wants to compare each treatment against a known control.  The formula is the same as above, but the critical values are given by a different table.  In general, for a fixed set of treatments, the critical values are smaller with the Dunnett procedure than the Tukey procedure, because there are fewer compoarisons to be made in the Dunnett case.

2
1

_998853730.unknown

_998855350.unknown

_998904442.unknown

_998905189.unknown

_1122410129.unknown

_1122460073.unknown

_1122460282.unknown

_1122492483.unknown

_1122459837.unknown

_998905306.unknown

_1122409226.unknown

_998905264.unknown

_998904656.unknown

_998904673.unknown

_998904529.unknown

_998855623.unknown

_998855751.unknown

_998903019.unknown

_998855665.unknown

_998855493.unknown

_998855532.unknown

_998855462.unknown

_998855050.unknown

_998855215.unknown

_998855298.unknown

_998855129.unknown

_998853941.unknown

_998854831.unknown

_998853816.unknown

_998851140.unknown

_998851807.unknown

_998851970.unknown

_998852129.unknown

_998851850.unknown

_998851348.unknown

_998851780.unknown

_998851322.unknown

_998847059.unknown

_998850871.unknown

_998851084.unknown

_998847135.unknown

_998824796.unknown

_998826803.unknown

_998824708.unknown

