Generalized Rotation, Grand and Random Tours

By

Daniel B. Carr
George Mason University
2-D Rotation Via Double Angle Formulas

\[r = \sqrt{x_1^2 + y_1^2} = ||V_1|| \]
\[r = \sqrt{x_2^2 + y_2^2} = ||V_2|| \]

\[x_1 = r \cos(\beta) \quad y_1 = r \sin(\beta) \]
\[x_2 = r \cos(\beta + \theta) \quad y_2 = r \sin(\beta + \theta) \]

\[\cos(\beta + \theta) = \cos(\beta) \cos(\theta) - \sin(\beta) \sin(\theta) \]
\[\sin(\beta + \theta) = \sin(\beta) \cos(\theta) + \cos(\beta) \sin(\theta) \]

\[x_2 = r \cos(\beta) \cos(\theta) - r \sin(\beta) \sin(\theta) \]
\[x_2 = x_1 \cos(\theta) - y_1 \sin(\theta) \]
\[x_2 = \cos(\theta) x_1 - \sin(\theta) y_1 \]

\[y_2 = r \sin(\beta) \cos(\theta) + r \cos(\beta) \sin(\theta) \]
\[y_2 = y_1 \cos(\theta) + x_1 \sin(\theta) \]
\[y_2 = \sin(\theta) x_1 + \cos(\theta) y_1 \]
Rotation in 2-D By Matrix Multiplication

- Rotating point \(V_1 = (x_1, y_1) \) theta degrees into point \(V_2 = (x_2, y_2) \)
- The 2 x 2 matrix on the right multiplies the column vector on the right
- The rotation matrix is a Givens matrix

\[
\begin{bmatrix}
 x_2 \\
 y_2 \\
\end{bmatrix} =
\begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta) \\
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 y_1 \\
\end{bmatrix}
\]
Rotation in 3-D
About the Z axis

- In 3-D we can rotate θ degrees about the Z axis keeping the z coordinate fixed
- Again we can use a Givens rotation matrix
- Below $*$ stands for matrix multiplication

\[
\begin{array}{ccc}
 x' & = & \begin{bmatrix}
 \cos(\theta) & \sin(\theta) & 0 \\
 -\sin(\theta) & \cos(\theta) & 0 \\
 0 & 0 & 1 \\
\end{bmatrix} * \begin{bmatrix}
 x \\
 y \\
 z \\
\end{bmatrix}
\end{array}
\]
Rotation in 3-D
About the Y-axis

- We can rotate about the Y-axis with a Givens rotation matrix.
- Consider the point (1, 0, 0) and rotate $\theta = 90$ degrees. Is the result (0, 0, 1)?

\[
\begin{array}{ccc}
 x' & = & \cos(\theta) \quad 0 \quad -\sin(\theta) \\
 y' & = & 0 \quad 1 \quad 0 \\
 z' & = & \sin(\theta) \quad 0 \quad \cos(\theta)
\end{array}
\]
Rotation in 3-D About the Y-axis

- We want +X to rotate into +Z
- Note the upper right position of $-\sin(\theta)$

<table>
<thead>
<tr>
<th>+Z</th>
<th></th>
<th></th>
<th>+X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\begin{bmatrix}
0 & 0 & -\sin(90) = -1 \\
0 & 1 & 0 \\
\sin(90) = 1 & 0 & \cos(90) = 0
\end{bmatrix}
\]
Rotation in 3-D
About the X-axis

- With a Givens rotation matrix we rotate +Y into +Z so \(-\sin(\theta)\) is on the lower left.
- Note that the point (0, 1, 0) when rotated \(\theta = 90\) degrees results in (0, 0, 1).

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & \cos(\theta) & \sin(\theta) \\
0 & -\sin(\theta) & \cos(\theta)
\end{bmatrix}
\]

\[
\begin{align*}
x' \\
y' \\
z'
\end{align*}
\]

\[
\begin{align*}
x \\
y \\
z
\end{align*}
\]
Observations

- The determinant of rotation matrices is always 1
 - Otherwise the transformation would expand/contract an image composed of points.
- Our rotations were implicitly relative to the origin (0,0,0)
 - To rotate about a point, translate the data so that point becomes the origin, rotate, and then translate back
 - With natural homogeneous coordinates all this can be done with three matrix multiplications.
 - (Translate_back * Rotate * Translate) * Data
 - Here each column in Data is a case. We often use the transpose
 - Matrix multiplication is associative so we can multiply the little matrices first to save on intermediate storage. Data can be big
- Aligning one vector from the origin with another from origin
 - This can always be done with two rotations about different fixed axes. (Multiplying two rotation matrices give us a single matrix for direction rotation)
Moving on to 4-D and Higher

- In this class we use right hand coordinates for 3-D
 - The right hand thumb points to the right for $+x$
 - The index finger points up for $+y$
 - The middle finger when bent the way the joint was designed points towards us, $+z$

- In 4-D and higher dimensions in the class
 - We don’t bother with such issues
 - We don’t worry about switching signs of sines
A 4-D Givens Rotation for a Fixed Y and Z Subspace

\[
\begin{pmatrix}
X' \\
Y' \\
Z' \\
W'
\end{pmatrix} =
\begin{bmatrix}
\cos(\theta) & 0 & 0 & \sin(\theta) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-sin(\theta) & 0 & 0 & \cos(\theta)
\end{bmatrix}
\begin{pmatrix}
X \\
Y \\
Z \\
W
\end{pmatrix}
\]
A 4-D Givens Rotation for a Fixed Y and W Subspace

\[
\begin{bmatrix}
X' & | & Y' & | & Z' & | & W'
\end{bmatrix}
= *
\begin{bmatrix}
\cos(\theta) & 0 & \sin(\theta) & 0 \\
0 & 1 & 0 & 0 \\
-sin(\theta) & 0 & \cos(\theta) & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
W
\end{bmatrix}
\]
Generalized Rotation in d-Dimensions

- Create Givens matrices for all pairs of variables in d-dimensions
- The rotation matrix product of all the individual Givens matrices
 - In 4D
 - 4 variables choose 2 pairs = 6 matrices
 - We need 6 rotation angles, one for each matrix
 - The product of the six matrices and align two 4-D vectors from form the origin.
 - In 5D
 - 5 choose 2 pairs = 10 matrices
 - We need 10 angles, one for each matrix
One composite rotation matrix for 4 Dimensions

\[M_{4d} = M_{xy} \ast M_{xz} \ast M_{xw} \ast M_{yz} \ast M_{yw} \ast M_{zw} \]

- Indexing by the fixed subspace

\[M_{yz} = \begin{vmatrix}
\cos(a4) & 0 & 0 & -\sin(a4) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sin(a4) & 0 & 0 & \cos(a4)
\end{vmatrix} \]

How can we generate a sequence of six angles to get close to all possible views?
The Grand Tour

- Developed by Asimov (1985) and Asimov and Buja (1985)
 - Define a time sequence of 2-D views whose basis vectors come arbitrarily close to any two-D plane through the origin
 - The collection of 2-D planes through the origin is a Grassmannian manifold
 - There are several methods
 - The torus method
 - This uses the special orthogonal group, denoted SO(d), of matrices with determinant 1 to transform d basis vectors and produce new coordinates.
 - A sequence of angles to form is a continuous space filling path through SO(d)
A Space Filling Path Through SO(d)

- Let $k = \binom{d}{2}$
- Let $t^*(a_1, a_2, \ldots, a_k)$ base 2π be angles used at time t
- Pick the angles as the square root of prime numbers
 - In theory the sequence will never repeat
 - In practice finite precision could lead to repeats
How Many Views Are there?

- Squint angle fractions from Tukey and Tukey (1981)
 - Fraction of a full (d-1) within 5 degrees of any specified direction
 - d=4: 1/526
 - d=5: 1/92196
 - d=7: 1/14560051
 - d=9: 1/2190180925
 - Of course fitting caps together is another issue.
 - Can you generate n equally space points on a d-dimensional sphere for an arbitrary n?
2-D Random Tour

- Let D be a n x d data set with n cases and d variables
 - This assumes that D has been suitably transformed so linear combinations make sense
 - We discuss spherizing and other transformations later
- Construct two d x 2 matrices A1 and A2
 - Each matrix has two orthonormal column vectors
 - Use Gram-Schmidt, Cholesky decomposition, or even regression to make two random vectors of length d orthogonal (dot product = 0) and normalize them (sum of squares = 1)
- Plot all point pairs (rows) of B where
 - \(B_{n \times 2} = D_{n \times d} * (\cos(\theta)A1 + \sin(\theta)A2)_{d \times 2} \)
 - Varying values of \(\theta \) from 0 to \(\pi/2 \)
 - Use double buffering to avoid flashes
- When a = 90 degrees
 - Replace A1 with A2
 - Create a new random orthonormal basis to replace A2
 - Set \(\theta = 0 \) and step through values of \(\theta \), plotting from B as before
A reminder on Gram-Schmidt Orthogonalization

- Let x_1 and x_2 be two column vectors
- Normalize x_1
 - $x_{1\text{new}} = x_1 / \sqrt{x_1^T x_1}$
- Get a, the regression coefficient
 - $a = x_2^T x_{1\text{new}}$
- Get residuals
 - $\text{res} = x_2 - a \times x_{1\text{new}}$
- Normalize the residuals
 - $X_{2\text{new}} = \text{res} / \sqrt{\text{res}^T \text{res}}$
Viewing Tours in More Dimensions

- The original tours used just 2 coordinates and viewed using 2-D scatterplots.
- Dr. Edward Wegman developed generalized tours:
 - The grand tour was just picking off the first two coordinates.
 - The random tour can have d orthonormal basis vectors in the matrices A1 and A2 and produce d new coordinates.
 - He finds interesting patterns quickly even though there are a huge number of squint angles.
- Many graphics can show more 2 coordinates:
 - A 3-D scatterplot can show triples.
 - A stereo ray glyph shows 4 coordinates (Carr and Nicholson 1988, Explor4):
 - The ray angle is always shown in the plane of the display and the angle range limited to 180 degrees.
 - Scatterplot matrices can show all pairs of the d coordinates.
 - Parallel coordinates sequence of pairs of the d coordinates.
- First implementation: ExplorN (SGI) by Carr, Luo and Wegman in 1992:
 - CrystalVision, a port to Windows by Luo and Wegman has most of this:
 - The ray implementation with range from 0 to 360 degrees is confusing.
 - No hyperplane slicing, etc.
Continuing Advances

- Whip spin control by Cook and Buja
 - (need to locate reference)
 - In 2-D plots whip spin (spinning about the origin) is not helpful in seeing patterns
- Projection pursuit methods
 - See XGobi and Ggobi
- Missing data methods
- Image/pixel tours: Wegman and Luo
Projection Pursuit

- Projection pursuit methods
 - Define a measure of interest computed for the plots to be view
 - Clottedness, holes, etc
 - Progressively modify the basis vectors to increase this measure
 - Your instructor prefers projection pursuit methods when available
 - Likes the holes algorithm for less overplotting
 - Still uses random tour to get starting points
 - Notes that random image/pixels tours can be very informative
 - Are project pursuit methods are available?
 - Will be discussed more later