
on a high speed network is substantial.

Solve the problem of remote access to your data and
your place of work. The goal is to have full access to
your electronic resources (data, programs, documents)
from wherever you are. Certainly you want to be able to
access these resources from home. You will also want
full access when you are on the road.

Getting on the Internet is essential. Email is cheap and
easy and saves tremendous time and effort compared to
the phone. Consider email lists for notifying groups of
people and for sending memos. Create automated web
archives of material sent by email so people can review
and catch up.

People
Involve your system administrators in your productiv-
ity efforts. It is very tempting for system administrators
to confine their operations to “the system” and leave
the application level work to the users. Explain that
the users are part of the system and it all exists to get
work done. Of course there are system tasks that must
be done for security reasons, maintenance reasons and
for reasons of system stability. But good system ad-
ministrators should be very concerned that the system
is useful to the users and willing and able to help with
productivity issues.

Reduce training costs by standardizing on software that
is easy to use and has the features your department
needs — especially features related to automation and
integration with other tools.

Learn more about the tools you already have. Most large
modern complex software systems have many features
that go unused. Skim through the reference manual for
a tool you use everyday and consider features that you
do not yet use. Some features may simplify your use of
the software.

Insist on a stable environment with a high-speed net-
work and standard software tools that interoperate. Con-
sider how these tools can best be used to reduce your
effort in performing your tasks.

Michael Conlon
Department of Statistics
Box 100212 HSC
University of Florida
Gainesville, FL 32610–0212
Email: mconlon@stab.ufl.edu
Home page:
http://www.clas.ufl.edu/˜mconlon



TOPICS IN SCIENTIFIC VISUALIZATION

Scanning a 4-D Domain
for Local Minima:
A Protein Folding
Application
by Daniel B. Carr

With Contributions From Peter J. Munson* and Geetha
Vasudevan* (* Analytical Biostatistics Section, LSB,
DCRT, National Institutes of Health)

1. Introduction
Methods from statistical graphics apply to a wide range
of applications. At Interface ’95 I conjectured to Pe-
ter Munson that while protein folding (the collapse of
a protein chain into a specific compact structure) oc-
curs in three dimensions, insights might be obtained by
considering constraints and using the methodology of
higher-dimensional graphics. Peter immediately had a
problem for me. He and Geetha Vasudevan had com-
puted theoretical energies of short protein chain seg-
ments, described by a 7 x 7 x 7 x 7 lattice of dihedral
angles. They knew the point of the minimum energy on
the lattice. Peter asked if I could provide a visualization
that would shed more insight into the energy surface. In
Section 2 Peter and Geetha provide more details about
the data. In Section 3 I indicate my design consider-
ations in developing a first display of this data. Peter
and Geetha discuss some implications of the display in
Section 4. Finally Section 5 indicates some extensions.
I have been thinking about extensions because Peter and
Geetha have tougher problems at hand.

2. The Computed Protein Folding Data
This data set represents a theoretical potential energy
as a function of the shape of a small segment of a pro-
tein molecule. The protein molecule is a long chain of
residues which collapse into a very specific shape. Pre-
dicting this shape is known as the protein folding prob-
lem. We have modeled only four links of the protein’s
polypeptide chain which form a “reverse turn”,basically
a U-turn in the naturally occurring protein backbone.
There are four main types of turns, designated I, I’, II,
and II’ (Schulz 1979). The shape of such turns can be
described by four torsion angles in the links of the chain.
In an attempt to describe the complex energy landscape
surrounding each of these turn types, we used a well-
established potential energy function (CHARMm - see
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Brooks, 1983). We expect naturally occurring proteins
to take conformations which are close to their energy-
minimal shape. Type II’ turns have canonical values
for the torsion angles as follows: phi1=60, psi1=-120,
phi2=-80 and psi2=0 degrees. We calculated all the
energies in a 4-dimensional, 60 degree window around
these canonical values, and hoped to find a well-defined
energy-well containing the unique energy-minimal con-
formation somewhere within. We also expected to see
some very high energy conformations corresponding to
“impossible” twists of the protein backbone.

The visualization of such energy landscapes is com-
monly done in two dimensions, phi and psi, (known as
the Ramachandran plot). Here the challenge is to visu-
alize the energy surface when there are 4 dimensions.

3. Graphical Design Considerations in Rep-
resenting the Energy Data
My problem (Dan) was which visualization approach
to select. The multivariate arsenal of statistical graph-
ics tools continues to grow. For example cone plots
(Dawkins 1995) are a recent addition. Given my histor-
ical bias toward ray glyphs in relative low dimensions,
I still had the problem of which method to apply first: a
5-D display ( e.g. stereo + ray angle + length as in Carr
et al., 1986), a one-factor conditioned plot sequence of
4-D displays (stereo + ray), or a two-factor conditioned
plot sequence of 3-D plots ( rays or stereo). My first
choice was the two-factor conditioned plot as illustrated
in Figure 1.

Figure 1 conditions on the 7 x 7 levels of Phi1 and
Psi1 to produce 49 small plots. In terms of recent his-
tory, the layout for Figure 1 (with margins added) dates
back to Tukey and Tukey (1983) who called it an X3,
X4 plot windowed by X1, X2. Cleveland (1993 and
earlier) uses the word coplot to label the collection of
conditioned plots. Tufte (1983) refers to the collection
as small multiples. Here I use the word coplot and re-
fer to individual conditioned plots as panels. Whatever
the label, coplots have proved effective in breaking vi-
sual problems down into visually manageable pieces. A
coplot seemed a good first choice.

Here the challenge is to visualize the en-
ergy surface when there are 4 dimen-
sions.

Figure 1 differs from the Tukey and Tukey plots be-
cause individual plots (or panels) represent three vari-
ables: Phi2, Psi2, and energy . Given that the two
angles are represented with x and y position (as shown
in the legend) the question is how to represent energy?
The numerous choices include ray angle, stereo depth,

framed rectangles (Cleveland 1985) , circle area, col-
ored contours, perspective views of fitted surfaces and
colored dots. For a monochrome static view I chose ray
angle to represent energy. Carr, Olsen and White (1992)
discuss some merits of this choice.

Coplots have proved effective in break-
ing visual problems down into visually
manageable pieces.

Both ray-glyphs (dot at the base) and arrows (arrow
head at the tip) can represent angle. Arrow heads have
line terminators and introduce additional visual angles.
I use rays because reducing the number of line termi-
nators simplifies the plot appearance, and eliminating
extra angles makes it easier to focus attention on the
information encoded as angles. Without explanation or
experience, ray-glyphs are ambiguous as to direction.
In my informal checks, some people have preferred ar-
rows because their direction is not ambiguous. Careful
cognitive testing may be required to shed more insight
into the relative merits of the two representations for
angle. Those who want to see the arrows’ variation can
obtain the plot by ftp as indicated below.

Careful cognitive testing may be re-
quired to shed more insight into the rela-
tive merits of the two representations for
angle.

The dependent variable is energy. The units, Kilocalo-
ries/mole, can be negative and are to be interpreted
relative to the minimum value. A simple Boltzmann
formula converts the difference from the minimum into
a probability that the system will appear with speci-
fied dihedral angles given by (phi1, psi1, phi2, psi2). I
subtracted the minimum value before producing Figure
1. This simplifies the scale labels in the legend. The
translated energy values cover a large range, [0–1097],
relative to the region of primary interest which is only a
few units from zero. To provide resolution in the region
of interest, Figure 1 masks values above 20 and uses a
nested scale. As the legend shows, white rays on a dark
gray background encode values in the interval [0–10]
and black rays on a light gray background encode val-
ues in the interval [10–20]. For Figure 1, I chose 20
as the upper limit to show a substantial portion of the
data. My first picture for Peter and Geetha narrowed
attention to values below 10. Using gray backgrounds
rather than black and white backgrounds reduces the
contrast and makes the figure easier to study. The two
dark-gray regions in the Figure 1 make it immediately
obvious that there are at least two local minima. This
was not expected as described in Section 4.
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Like coplots, nested scales allow readers to focus atten-
tion while limiting the mental burden through the use of
identical structures for the scales. Typically color distin-
guishes the different scales. The monochrome Figure 1
shows two scales. This could be extended using shades
of gray. Full color plots provide more options for distin-
guishing scales. The use of ordered colors (saturation
and lightness) helps in mentally gluing the pieces to-
gether. The use of distinctive hues brings preattentive
vision into play and promotes rapid evaluation within
individual scales. A single plot cannot optimize both
for overview and detail.

For a single plot, understanding the patterns across the
nested scale transitions involves extra work. In Figure
1 white rays pointing up have energies similar to black
rays pointing down. White rays pointing down have
energies much less than black rays point up. Keep-
ing track of this distinction is an extra mental burden.
Rather than leave all the work to the reader in the search
for local minima, it helps to algorithmically flag candi-
date values. Figure 1 shows the candidate local minima
as enlarged ray-glyphs. Surprisingly there are 28 such
local minima in the plot.

Like coplots, nested scales allow read-
ers to focus attention while limiting the
mental burden through the use of identi-
cal structures for the scales.

The local minimum values found depend on the defi-
nition of a local neighborhood. The square, cube, and
hypercube lattices are awkward because “neighboring”
points fall into two distinct classes, non-diagonals and
diagonals. Non-diagonal neighbors are much closer
than diagonals in the following sense. If one looks at
the near-neighbor regions (hypercubes) about the lattice
points, the hypercubes about non-diagonal points will
share “cube faces” with the hypercube about the center
point. The non-diagonal hypercubes barely touch the
hypercube about the center point. Given a choice, I pre-
fer to use the body-centered hypercube lattice in 4-D be-
cause the near neighbor regions (24-cells) for both non-
diagonals and diagonals share “octahedron faces” with
the 24-cell about the center point. A local minimum is
established by comparison against the 24 neighboring
points. For the current hypercube lattice, I choose to
use non-diagonal neighbors to define the local neigh-
borhood. Each point has 2 x 4 = 8 neighbors except for
points on the edge of the domain that have fewer neigh-
bors. A consequence of this definition is that diagonal
troughs of local minima can appear. The four points in
the (60,-90) panel are part of such a trough. The five
points in the (50, 60) x (-130, -120, -110) set of panels

form another diagonal trough. The two points in the top
right panel are diagonally connected.

The coplot layout is important because it attempts to
keep points in multivariate space close to each other
in the plot. The layout represents a compromise since
closeness in the plot is not equivalent to closeness in the
4-D space. The non-diagonal neighbors with a panel
are much closer together than non-diagonal neighbors
that have the same position in adjacent panels. At first
glance, one might think that the point just to the left of
the bottom right point in the (70, -100) panel is a local
minimum. However, the values get lower as one goes
up a panel and then left a panel. Reversing the roles
of (phi1 psi1) and (phi2 psi2) would facilitate the study
of energy as a function of phi1 or psi1 given the other
values.

The coplot layout is important because
it attempts to keep points in multivariate
space close to each other in the plot.

Scanning the plot for more local minima is easier with
interactive tools. Consider coloring the local regions
dark gray or light gray depending on the whether or
not the energy is above or below a particular cutoff
value. When this cutoff value is under slider control,
the user can increase the energy cutoff and immedi-
ately see when dark gray appears in visually disjoint
regions. Slight slider oscillation will blink the new re-
gions. For complicated surfaces many disjoint regions
may appear and spotting new ones gets progressively
harder. Switching to a new distinctive color can help.
Interactive visualization can convey information about
the energy well depth and shape.

Lattice plots like Figure 1 have some interpretational
dangers. The dependent variable may change radically
between lattice points. The plot does not reveal the
exact location of the apparent local minima. Further,
the plot provides no indication of a local minimum if
an energy well is completely contained in a region be-
tween lattice points. Unless the lattice point separation
is known to be smaller that the scale of all energy wells,
the possibility of missing local minima remains.

4. Implications of Figure 1
Figure 1 reveals several important facts about our prob-
lem. First, the global energy minimum does not lie
right at the center, but is just on the edge of the do-
main. In fact, it is on the boundary in three out of
four dimensions, suggesting that the real minimum lies
outside the window and more energy calculations are
needed with a shifted domain. These energy calcula-
tions may require several hours on a workstation, so we
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can’t expect to modify the domain interactively. We
also notice that there is a second energy well (phi1=90)
which is completely disconnected from the first well
(phi1=30). Such multiple minima are a common fea-
ture in molecular modeling. If the energy barriers sepa-
rating multiple minima are high enough, molecules can
be completely trapped in local minima even though a
nearby, lower-energy states exist. Likewise, numerical
energy-minimization algorithms can become trapped in
these local minima which makes use of simple gradient
descent or Newton-Gauss type minimizers unreliable.
We did not expect to see significant, multiple energy
minima in this very simplified system (full proteins
have hundreds of times the complexity of our mod-
eled fragment), and indeed, until we visualized our data
set, we had no idea that they existed here. One should
not forget that the mathematical model employed here
(CHARMm potential energy) may not be a good de-
scription of the actual forces influencing real molecules
in its natural, watery environment. More complex, and
time-consuming, but more realistic calculations would
include the effects of water on the intramolecular forces
and energies.

5. Extensions

Peter and Geetha indicate that there are many extensions
of the protein folding problem to consider. I have started
to think about them. For example they may compute at
higher resolution. If need be, I will answer with a three
feet wide plot of up to 9 feet in length. While static
views cannot provide progressive disclosure, good old
human pan and zoom is not bad. When I first spoke
to Peter I had naively anticipated that 5-D plots would
do the trick. For starters he tells me about domain
dimensions in steps of 2 from 2-D to 30-D. Figure 1
suggests that 4-D domains are quite manageable. At
first consideration I think that 6-D domains are within
the limits of divide and conquer comprehension. I sus-
pect that understanding a function on a 6-D domain in
any kind of overview sense will take a lot of mental en-
ergy even with the best of visualization methods. Right
now thinking about 8-D domains is too hard.

The statistical graphics community has much to offer in
developing higher-dimensional visualizations for pro-
tein folding applications and a host of other applications.
The opportunity seems so great that I felt compelled to
write about it even though I have only been working
on this problem for two days. If there are existing
methods in the protein folding field that I don’t know
about, there is still a good chance that our community
can produce something better. Figure 1 represents my
first effort. The variations cited in Section 2 and those

that occur to readers still need to be evaluated. I antic-
ipate that my notion of preferred graphics will evolve
as I try different variations and as Peter and Geetha
guide my efforts. I hope others take up the challenge.
Those that want to try their hand at visualizing the re-
sults of protein folding computation experiments can
contact Peter at munson@helix.nih.gov. Readers can
obtain my data sets and Splus script files by anonymous
ftp to galaxy.gmu.edu. The files will be under
/pub/submissions/protein.
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