
Graphical displays

Dan Carr

Volume 2, pp 933–960

in

Encyclopedia of Environmetrics
(ISBN 0471 899976)

Edited by

Abdel H. El-Shaarawi and Walter W. Piegorsch

 John Wiley & Sons, Ltd, Chichester, 2002



Graphical displays

The purpose of environmental visualization via
graphical displays is to facilitate scientific and
public understanding of environmental status, trends,
and processes. Such understanding is incremental
owing to:

ž the complexity of the environment;
ž the difficulty of parsimoniously conceptualizing

this complexity;
ž the logistic and political impediments to collect-

ing adequate, representative data;
ž and the limits of human perception and cognition

for understanding multivariate summaries.

This entry can only hint at the range of challenges
faced in attempts to characterize the environment and
communicate using graphical summaries. It can only
touch on the background knowledge that helps ex-
perienced readers to assess and interpret environmen-
tal graphics. However, the background is important
since environmental visualization goes far beyond
routine production and superficial interpretation of
environmental graphics.

After a brief introduction, the focus herein is
on graphical design principles and graphical tem-
plates for representing environmental summaries. The
quality of environmental graphics depends on many
factors: conceptualization, data collection, model-
ing, summarization, and, as emphasized here, sound
graphical design.

Our understanding of quantitative graphical design
continues to evolve. Since one design principle is
to use familiar templates, a tension arises between
using familiar templates and introducing new tem-
plates that offer richer, more focused or accurately
communicated content. This entry includes some new
templates and uses design principles to motivate their
inclusion. The sequence of static templates presented
is far from complete. Further, a printed publication
has difficulty in doing justice to interactive graphics
and no such attempt is made here. This entry attempts
to help the reader fill in omissions by providing ref-
erences into the literature.

Another omission is a discussion of integrating
environmental graphics into extended documents.
Interested readers can refer to Stone et al. [99] and
Wahlstr̈om et al. [109] as examples of excellence. The
reader may also want to adapt methods and graphics

illustrated in the award-winningAtlas of United
States Mortality [Pickle et al. 89] to environment
applications.

Environmental Complexity

The environment is complex. Spatial and temporal
processes at different scales influence environmental
status and trends. Large external influences include
solar radiation and lunar gravity inducing tides. Tiny
ocean plankton are crucial to the food chain (see
Community food webs). Mankind is busy rearrang-
ing the molecular composition of the earth’s land
surface, ocean, and atmosphere. Computer models
that simulate the earth processes should, at some
scale, account for changes potentially induced by
mankind’s actions, including those motivated by sim-
ulations. Our environment hosts the full range of
processes to visualize: self-balancing processes, pro-
cesses sensitive to the flap of a butterfly’s wings, and
processes influenced by political decisions.

Concepts and Indicators

The development of concepts to characterize environ-
mental status and trends is itself an ongoing process.
The seemingly simple status question, ‘how many
lakes are there in the nation?’, depends on the defini-
tion of a lake. What width, depth, duration and other
properties must a body of water have to be a lake?
Obtaining consensus can be difficult. The concept of
a lake is relatively simple compared with many other
environmental concepts. For example, the notion of
ecoregions [4–6, 86, 87] is generally accepted as use-
ful but much more difficult to characterize than lakes.
Which multivariate descriptors and thresholds should
be involved? The process of relating existing ecore-
gion definitions to other variables continues [29].

The variables available typically start out as field
measurements. Environmental scientists are inclined
to retain some measurements, such as pH, as they
stand. However, scientists often transform the field
measurements to produce more useful variables. The
percentage of time that a body of water has dissolved
oxygen values below a critical threshold may be
more instructive than the dissolved oxygen values by
themselves. A big challenge is to convert a collection
of field measurements into indicators, such as an
indicator of biological integrity. (A discussion of
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indicators appears in [63].) Indicators need to be
meaningful across different environmental habitats
and their composition often needs to vary from region
to region. Efforts continue toward the development
of concepts, indicators, and indices that summarize
multivariate relationships. Often the goal is to provide
a broad univariate characterization of environmental
health or safety for humans. Can a single index of
air quality capture the human health implications of
varying air toxins (such as lead,ozone, and volatile
organic compounds)? The well-known US consumer
price index was a compromise that took on a life of its
own as an index. Environmental scientists continue
to seek analogous simplifications whose utility as
communication devices outweighs the dangers of
their simplification.

Data, Estimates, Comparison and
Interpretation

The sources of environmental data include field
samples, survey samples (see Sampling, environ-
mental), satellite imagery (see Remote sensing),
administrative records and computer simulation. To
be useful such data must be transformed into esti-
mates that are scientifically meaningful. Each type
of data comes with its own set of issues to address
in the process of producing estimates that are wor-
thy of evaluation. Common issues include calibrating
instruments, scaling variables, estimating variables as
surrogates for the desired variables of interest, adjust-
ing for covariates, assessing representative coverage
of the population of interest, and validating simulated
or indirect estimates.

Graphics can be no better than the estimates pre-
sented. The reader should be concerned whenever
quantitative graphics fail to show confidence bounds
for estimates. The lack of confidence bounds is often
a warning that estimates have not been assessed with
respect to accuracy (bias) and precision (variabil-
ity).

In many cases the available data are inadequate
to address the question of interest. In such cases
the presentation of tables and graphs derived from
unrepresentative or marginally related data promotes
the illusion of serious scientific monitoring and
assessment. Appropriate interpretation of graphics
depends upon understanding the meta-data, the data
about the underlying data and resulting estimates.

The meta-data provide important information about
data quality. The concern about accuracy is not
limited to statistical estimates but extends to spatial
databases [61].

The heart of graphics is comparison. Quality
graphics help the reader to make meaningful compar-
isons. Consider Figure 1, which showstimes series of
CO2 production per capita for energy used in OECD
(Organization for Economic Cooperation and Devel-
opment) nations. First note that confidence bounds
are not present. This complicates making compar-
isons. When comparing estimates without confidence
bounds, the reader should immediately wonder if the
estimates are worthy of comparison. In the absence
of confidence bounds, the reader is tempted to make
assumptions that may not be justified. A first plausible
assumption is that a nation’s estimates are com-
parable over time. (A comparison of 1995 and 1997
OECD compendium values shows that some nations
continue to refine their historical estimates.) A much
more questionable assumption in studying Figure 1 is
whether estimates from different nations are compar-
able. The methodology that nations employ to obtain
estimates can vary greatly, especially in situations
involving Third World nations. The reader should
interpret the ranking of nations (by 1995 values) in
Figure 1 cautiously, not only because some values are
very close. While the OECD works toward harmo-
nization of estimates from member nations, the goal
is often not in hand. The reader should be aware that
nations, like people, are motivated to put themselves
in a good light. In discussing maps, Wood [118] says
that every map serves an agenda. The same is true for
published tables and graphs. Scientific comparison is
difficult in the presence of differing degrees of ‘good
light’ estimates.

One class of methods for making estimates
look better involves transformations that change the
reader’s perspective. Showing values per capita in
Figure 1 is more favorable to the US than showing
the total CO2 production values. While the top panel
in Figure 1 is taller to accommodate a bigger range
of values, the US per capita values are roughly on the
same scale as other OECD nations. Since the US has
a high gross domestic product, an even more favor-
able view shows CO2 production relative to the gross
domestic product. This suggests that US energy pro-
duction is more efficient. The agenda influences the
choice of transformation.
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Comparability issues are not limited to differences
among nations, but arise whenever researchers em-
ploy different methods. Historically, the USEnviron-
mental Protection Agency’s (EPA) STORET data-
base accumulated statistics on hundreds of thousands
water quality samples each year. Even after the
EPA made efforts to provide the data in the same
units, comparability issues remained due to differ-
ent sample collection, chemical analysis, and record-
ing procedures. Those interested in US water qual-
ity are inclined to focus attention on the subset of
water quality data from the US Geological Survey
(USGS), because of the consistent methodology and
high standards. Integrating environmental informa-
tion from multiple sources that use different methods
is problematic (see Meta-analysis). Consequently
many data are never used beyond the original study
even when made readily available in public databases.

Changes over time produce comparability prob-
lems. Political entities and boundaries change. How
should the unification of West and East Germany be
handled in Figure 1? Measurement and calculation
methods tend to improve over time. Researchers are
not inclined to make statistical adjustments so that
analyses can span estimates based on older data and
methods. A common attitude is that the new esti-
mates are exciting and so much better than previous
estimates that they should serve as benchmarks for
the future assessment of trends. This postpones the
estimation of short-term trends.

High-quality, representative environmental data
are often difficult and expensive to collect. For
example, atmospheric scientists want a detailed snap-
shot of the whole earth’s atmosphere. The logistics
and expense of such a massive simultaneous col-
lection effort represent a major barrier. Statistical
researchers have developed a representative spatial
sampling methodology that could produce estimates
with uncertainty bounds for a host of variables [97,
98]. Olsen et al. [83] provide an overview of its use
in national monitoring. Studies [65, 88] have used
the methodology for various regions within the US,
but the methodology is not employed at a national
scale in the US, presumably due to the expense.
Also, it is naive to be unaware of corporate and
political interests opposed to the collection of envi-
ronmental data, while privacy considerations make it
difficult to access the collected data even as advances
in databases and web technology would seem to
improve access. The lack of available, high-quality,

representative data is a common problem in environ-
mental visualization.

Figure 2, a multiple panel bar plot of EPA’s toxic
release inventory estimates, raises numerous com-
parison and interpretation issues [18]. Note first the
absence of confidence bounds. The estimates derive
from federally mandated company self-reports. With-
out substantial efforts to obtain external validation
measurements, the reader is not in a position to access
the accuracy of the self-reported estimates. Assum-
ing comparability across states, the reader infers that
the state of Louisiana has a surface water problem,
but how much better or worse might it really be?
EPA publications make it clear that the survey does
not include all release sources nor all kinds of toxic
releases. This suggests that the real totals are higher.

Another interpretation problem with Figure 2 is
that the unit of measurement, total pounds, is an
index comprised of many different things. This index
is not well suited for purposes of communicating
risk and the personal implications of being part of
a toxin-distributing society. If the index decreases
2% from one year to the next, is that good? What
does a percentage decrease in pounds mean to the
US in terms of genetic mutations (seeMutagenesis,
environmental), morbidity and mortality in plant,
animal and human populations? The public may infer
that fewer pounds are better than more pounds, but
that can be wrong due to the changing mixture of
toxins involved. Even if the mixture keeps the same
proportions, continuing accumulations of toxins may
lead to increased risk. Interpretation of Figure 2 is
problematic, even though the multiple panel bar chart
with panel sizing to make comparable scales is an
excellent template.

Research in environmental visualization should
develop indices to help people to understand the risks
involved. An index of toxic pounds per person makes
the index more personal. While such an index may
draw attention to the implications of living in the
society, it does not translate the index into quanti-
tative implications. The task of understanding and
communicating risk is challenging. For very simplis-
tic scenarios it is possible to do some calculations.
In terms of one effect, mortality, scientists could use
LD50s for mice (the dose that is lethal to half the
exposed mice;seeBiological assay) to calculate how
many mice could be killed by direct exposure assum-
ing additive effects. This scenario ignores such things
as exposure pathways, transformations of the toxins
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along the pathways, differing within-species suscep-
tibilities, and toxic interactions. Species differences
in susceptibility complicate scaling results to other
species where the LD50s are not known.

Knowledge about actual effects of exposure to
multiple toxins is limited, in part due to the over-
whelming combinations to be studied. It is interesting
to note that the majority of USGS water samples con-
taining one pesticide actually contain more than one.
At the same time, the EPA safety standards address
pesticides individually, as if the presence of multiple
toxins does not change response thresholds (seeJoint
action models).

A mortality index does not incorporate outcomes
such as mutations, cancer incidence (see Carcino-
genesis, environmental), or the loss of genetic vari-
ety that goes with species extinction. Any index that
begins to communicate risk is likely to be controver-
sial. Much is known about mapping hazards [82] but
developing understandable, scientifically and politi-
cally acceptable indices remains a challenge.

The quality of graphics depends heavily upon the
quality of data summaries or estimates being repre-
sented. There are many ways of producing estimates
for summaries. Designed sampling studies provide
one source of estimates. Models operating on the data
that happen to be available provide a more common
source of estimates. If the available data are not ade-
quately representative of the underlying phenomena,
then model estimates, however sophisticated in terms
of handling spatial and temporal correlations, can
miss the mark. Often direct data are not available for
regions of interest, so analysts use models developed
in other locations or circumstances and covariates
for the regions of interest to produce estimates. The
available covariates may not be adequate for adapt-
ing models to different situations. Privacy issues and
the expense of collecting observational data have
motivated the development of many simulation mod-
els. Sometimes researchers validate simulation results
against observational data and sometimes they do not
or can not. With some understanding of estimate lim-
itations and interpretation problems in hand, the next
step is to describe graphics templates developed to
communication estimate descriptions and summaries.

Templates for Environmental Graphics

Environmental complexity motivates the use of mul-
tivariate graphics templates. Univariate and bivariate

graphics provide starting points, as building blocks
for more multivariate graphics.

Univariate Guidelines

Cleveland and McGill [39] discuss human perceptual
accuracy of extraction and indicate preferred meth-
ods for univariate encoding. Their research subjects
judged relative magnitudes of graphically encoded
variables. Their results ranked the graphical encod-
ing methods into three classes described here as best,
good, and poor.

The two best encoding methods represent vari-
ables using position along a common scale as shown
in Figure 3 and position along identical nonaligned
scales. That humans do well in judging the position of
a point relative to scale should come as no surprise.
Marr [77] notes the ‘quintessential fact of human
vision – that it tells us about shape and space and
spatial arrangement’. Locating the position of objects
is a fundamental visual task. Map makers have long
used position along a scale as the fundamental encod-
ing for spatial coordinates. MacEachren’s [74] review
of the perception literature attests to the power and
primacy of positional encoding.

Length, angle, and orientation are good encodings.
Figure 4 shows that transforming line segments into a
standard position converts the task of judging length
into a task of judging the position of one endpoint
against a scale. While this is not necessarily what
people do, the example suggests that judging line
length is more complicated than judging position.

Figure 5 shows angle encoding. Rotation of the
angles puts them in a position for comparison against
equivalent angular scales shown in gray. The transfor-
mation suggests that while angle comparisons work

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3 The best continuous univariate encoding –
position along a scale. Reproduced from theEncyclopedia
of Biostatistics, Vol. 4, pp. 2864–2886, by permission of
John Wiley & Sons, Ltd. 1998
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Figure 4 A good continuous univariate encoding – line
length. Reproduced from theEncyclopedia of Biostatistics,
Vol. 4, pp. 2864–2886, by permission of John Wiley &
Sons, Ltd. 1998
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Figure 5 A good continuous univariate encoding – angle.
Reproduced from theEncyclopedia of Biostatistics, Vol. 4,
pp. 2864–2886, by permission of John Wiley & Sons, Ltd.
 1998

reasonably well, they are more complicated than
direct comparison against angle scales.

Area, volume, point density, and color saturation
are poor encodings. The reader familiar with exper-
imental results involving Steven’s law will not be
surprised about poor results for the area and vol-
ume encodings. Steven’s law states that the perceived

magnitude of a stimulus follows a power law:

p�x� D axb �1�

where x is the magnitude of the true stimulus (i.e.
length, area, volume), and where the constantsa
and b depend on the type of stimulus. Based on
values cited in Baird and Noma [7], Table 1 provides
ranges of the characteristic exponentsb for length,
area, and volume. That is to say, people’s perception
of length tends to be directly proportional to object
length. However, we tend to judge area and volume
nonlinearly. Consider comparing areas, one of 4
square units and the other of 1 square unit. With an
exponent of 0.75, the ratio of perceived magnitudes
is not 4 to 1, but 2.8 to 1. We underjudge the large
areas relative to small areas. If everyone had the
same exponent, graphical encoding could adjust for
systematic human bias. However, the range of values
for b in Table 1 indicates substantial variability from
person to person. Providing a set of reference symbols
in a legend helps people calibrate to the intended
interpretation, but the best strategy is to use better
encodings whenever possible.

Weber’s law, a fundamental law in human per-
ception, also has important ramifications in terms of
accurate human decoding. A simple example gives
the basic notion of the law. The probability of detect-
ing that a 1.01 in. line is longer than a 1 in. line is
about the same as the probability of detecting that
a 1.01 ft line is longer than a 1 ft line. In absolute
terms 0.01 in. is much smaller than 0.01 ft. The use
of a finer resolution scale allows more accurate judg-
ments on an absolute scale. A common application
is to put tic marks on a ruler to help us make more
accurate assessments. The graphical equivalent [36]
is to use grid lines to provide a finer resolution scale
for more precise comparisons. In interactive graphics,
zooming in provides a finer scale. Computer–human
interface implementations often provide sliders that
allow the reader to change the reference scale to make
more accurate judgments (see, for example, [1], [50]
and [92]).

Table 1

Encoding Exponent range

Length (0.9, 1.1)
Area (0.6, 0.9)
Volume (0.5, 0.8)
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We render most graphics on a plane. We could
show values of a continuous variable as points on a
line, but there are good reasons for not doing so. For
categorical variables using bar chart and pie charts
to show percentages is common and dot plots could
be used. From a perceptual accuracy and labeling
convenience viewpoint, bar charts and dot plots are
preferable. Decoding bar charts and dot plots involves
judging position along a common scale while pie
chart decoding compares angles at different positions.
The bar chart vs. pie chart controversy is old. The
merit of pie charts is that the reader assumes that
percentages add to 100. Bar charts and dot plots
can handle this with a footnote if the context does
not make it obvious. The labeling alone for all of
these forms demands a planar or higher-dimensional
representation.

Bivariate Guidelines and Examples

Tufte [102] notes that it took over 5000 years for
mankind to generalize from the early use of clay
tablet maps to representing other kinds of point pairs
with a scatterplot. It is an excellent representation
since the two orthogonal axes allow two coordi-
nates to be encoded independently as position along
a common scale. While the popular press in the
US still considers the scatterplot too complicated for
the general public, in the sciences the scatterplot
is the standard for representing continuous bivariate
data. Common bivariate activities include assessing
univariate distributions, comparing univariate distri-
butions, and looking for functional relationships.

We humans do not assess data density accurately
even when points are plotted on a line or on a
plane. Overplotting just makes things worse. Con-
sequently, it is advantageous to compute data density
and show it as directly as possible. Figure 6 illus-
trates the construction of a kernel density estimate
(see Meteorological extremes) based on a sample
of five univariate values. The locations of the white
triangles relative to thex-axis indicate the magni-
tudes of observed values. The basic idea is that each
observed value is a surrogate for values in a neigh-
borhood. We then associate a relative likelihood with
a neighborhood about the value. Figure 6 shows the
five likelihoods (or kernels) as bell-shaped curves,
one in each of the upper panels. For each location
where we want to estimate the data density (thex

locations of white lines in Figure 6) we simply aver-
age the five likelihoods at that location, one for each
observed value. The white lines indicate the locations
of the density estimates. In the bottom panel each
white line is the average height of all the white lines
directly above it. (When panels show no white lines
directly above, they contribute zero to the average.)
The construction is straightforward.

Scott [93] provides the theory behind density
estimation along with many graphical examples for
univariate and higher-dimensional density estimates.
For a valid density estimate, the kernel needs to
integrate to 1. The hard part is in deciding how
wide to make the kernel. Scott describes methods for
making this decision.

In the environmental sciences, cumulative distri-
bution plots and quantile plots are commonly used
to describe the distributions of populations. The
two types of plots are essentially the same, being
transposes of each other. For quantile plots thex-
axis shows cumulative probabilities and they-axis
shows sorted observed values. Figure 7 is a quantile
plot. The construction plots cumulative probabilities
against the sorted values from a random sample.
While integrating an estimated density function up
to a value approximates a cumulative probability,
there are two more common approaches to calcu-
lating cumulative probabilities: the order-statistics
approach and the empirical approach. The order-
statistics approach here follows Cleveland [35] and
uses the expression�i � 0.5�/n for i D 1, . . . , n to
calculate the cumulative probabilities, wheren is
the sample size. While often used, the empirical
approach yields probabilities that imply future val-
ues will never be more extreme values than those
already observed. Here the guessed probability is
0.5/n that a smaller value could be observed and
0.5/n that a larger value could be observed. This is
usually a minor detail for large samples. (The con-
struction can be adapted if the observations are not
equally representative of the population of interest.
See Cook et al. [42] for a definition of a spatial
cumulative distribution function and an application
to a crowndefoliation index.) To finish the construc-
tion, Cleveland interpolates between the point pairs.
This produces a piecewise linear curve.

Interpretation is straightforward. For any probabil-
ity covered on thex-axis it is possible to determine
a quantile. To obtain the 0.5quantile (or estimated
median) go straight up from 0.5 on thex-axis to
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Figure 7 A quantile plot. The coordinates for they-axis
are typically the sorted observations. The coordinates for
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The quantile corresponding to the cumulative probability
of 0.5 is also known as the median. Quantiles for other
cumulative probabilities can be found graphically or by
linear interpolation

the curve and then straight across to they-axis and
read the value. Starting with 0.25 and 0.75 yields
corresponding quantiles also known as the 1st and
3rd quartiles, or 25th and 75th percentiles, respec-
tively. Similarly one can go from quantiles to cumu-
lative probabilities. Since scientists use such plots to
describe collections of data in a database as well as
environmental populations, the hardest interpretation
task is often to decide if inference about an environ-
mental population is appropriate.

Quantile or cumulative distribution plots are use-
ful for characterizing environmental populations. For
example, quantile plots can indicate the fraction of
lakes in a defined region that have eutrophication
values below a given threshold. Quantile plots are
helpful on maps and provide a frame of reference
for observing change over time. For maps, Carr and
Olsen [23] highlight selected cumulative probabil-
ity and quantile pairs using a parallel coordinate
approach to save space. They note the importance of



10 Graphical displays
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Figure 8 A variation on boxplots. The median: a long
horizontal line. First and third quartiles: ends of thicker
boxes. Adjacent values: ends of thinner boxes. Outliers:
open circles (none present). Test intervals for different
medians: white lines inside boxes. NDVI: normalized
difference vegetation index

considering which distribution to show. For example,
in mortality rate mapping,geographic information
system (GIS) defaults will typically base the legend
on the number of regions, and not other variables
associated with regions. Showing the fraction of peo-
ple living in regions with human mortality rates
below given values is much more to the point than
showing the fraction of regions with mortality rates
below given values. Thoughtful selection of the dis-
tribution can lead to more meaningful quantile plots.

The boxplot is a distribution caricature that has
achieved wide acceptance. Although it is used to
represent individual distributions, the common use
is to compare distributions. Figure 8 provides an
example of a set of boxplots. The features shown
include the median, quartiles, adjacent values, and
outliers. Cleveland [35] describes the determination
of adjacent values and outliers. Variations [57, 78]
may show extrema rather than adjacent values and
outliers. The design variation in Figure 8 uses a
white line [19] to provide comparison intervals for the
medians. If two comparison intervals do not overlap,
then the medians are significantly different.

Q–Q plots provide the preferred graphic to make
detailed continuous distribution comparisons [35].
For theoretical distributions, the cumulative distri-
bution function F�Ð� provides the correspondence
between the probability and quantile pairs viap D
F�q�. In simple cases the quantile functionQ�Ð� is
the inverse ofF�Ð� andQ�p� D q. Familiar pq pairs
from the standard normal distribution are (0.5, 0)
and (0.975, 1.96). Comparison of two distributions,

Batch 1

B
at

ch
 2

–2 –1 0 1 2
–2

–1
0

1
2

3

Two-sample Q−Q plot
Thin line = robust fit

Thick line = same distribution line

Figure 9 A two-sampleQ–Q plot. A good straight line fit
suggests similar distributional shapes. Given similar shapes,
the slope shows the ratio of scale parameters such as
standard deviations. Given a slope of one, the intercept
shows the difference of location parameters such as the two
means. Reproduced from theEncyclopedia of Biostatistics,
Vol. 4, pp. 2864–2886, by permission of John Wiley &
Sons, Ltd. 1998

denoted 1 and 2, proceeds by plotting quantile pairs
[Q1�p�, Q2�p�] over a range of probabilities, such as
from 0.05 to 0.95 in steps of 0.05. For two distribu-
tions of observed data, the calculations described for
the quantile plots (above) are appropriate. Figure 9
shows aQ–Q plot for two batches of data. Thex-
axis shows quantiles from Batch 1 and they-axis
shows quantiles from Batch 2. Sometimes statisti-
cians chooseQ1�p� to be from a theoretical family
of distributions, such as the normal family, to see if
parametric modeling is reasonable using the family
of distributions.

A strong merit of Q–Q plots is that in simple
cases they have a nice interpretation. If points fall on
a straight line, then the distributions have the same
shape (basically, the same moments higher than two).
This is the case in Figure 9 since the robust fit thin
line matches the quantiles quite well.

The slope and intercept of the approximating
straight line tell us about the discrepancies in the
second moment (scale parameter) and first moment
(location). The slope of the thin line tells us about
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the ratio of the scale estimates (for example, stan-
dard deviations). The thick line in the figure is the
reference line for identical distributions. The lines are
not quite parallel in Figure 9 so standard deviations
are not quite the same. Graphical fitting of the scale
ratio and location difference can start by guessing the
ratio and dividing this into they-axis quantiles until
the lines are parallel. When the lines are parallel,
the vertical distance between the two lines gives the
difference in location (or means) given the Batch 2
rescaling. In Figure 9 the lines are nearly parallel so
a reasonable guess is that the distributions differ in
location by about 0.5.

Q–Q plots avoid the visually deceptive proce-
dure of superimposing two cumulative distribution
functions or two survival curves. As Figure 10 sug-
gests, humans are really poor at judging the distance
between curves. Our visual processing assesses the
closest differences between curves rather than the
correct vertical distances [36]. Adding grid lines can
help, but it is often better to plot the difference explic-
itly or make comparisons usingQ–Q plots.

It is straightforward to associate quantiles from
three or more distributions based on the same cumu-
lative probability. Jones and Cook [68] have general-
izedQ–Q plots to higher dimensions and application
of this is worth considering.

Before-and-after comparisons are common in sci-
ence. The general idea is to control for the varia-
tion in experimental units by studying the change
in experimental unit values. This differs fromQ–Q
plots in that the study unit is the basis for pairing
rather than cumulative probabilities. Figure 11 shows
a paired comparison plot for two low-resolution satel-
lite images of the same region. The traditional refer-
ence line for equality is a 45° line through the origin.
Figure 11 also shows a mean and difference plot
as proposed by John Tukey and described in Cleve-
land [35]. Thex-axis shows the mean of the paired
values and they-axis shows the difference. This
transformation rotates the plot so the reference line
for identical values is a horizontal line at zero. Mak-
ing transformations to simplify the visual reference
is an important graphical design principle. Statisti-
cians often study the variability in distributions of
data. They find that the variability of differences often
increases as the mean increases. To assess the vari-
ability of differences, they sometimes plot the square
root of absolute difference vs. the mean and then fit
a smooth line. Cleveland calls this a spread–location
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Figure 10 Explicit difference of two curves. Humans tend
to see closest differences between curves, not differences
in the y direction. Reproduced from theEncyclopedia of
Biostatistics, Vol. 4, pp. 2864–2886, by permission of John
Wiley & Sons, Ltd. 1998

plot. This is one way to use the scatterplot in studying
functional relationships. The general topic is dis-
cussed below.

Before proceeding to functional relationships it
may be helpful to comment on the extension ofQ–Q
plots to multiple distributions. There are two basic
approaches. The first shows all paired comparisons
using a scatterplot matrix, and the second establishes
a common reference distribution and makes all com-
parisons against the common reference distribution.
An example of the latter appears in Figure 15 below.

Functional Relationships and Smoothing

When y is considered a function ofx, common
practice is to enhance scatterplots of (x, y) pairs by
adding a smooth curve. To avoid the considerable
human variability in sketching an eyeballed fit,
the standard procedure is to model data using a
computational procedure that others can replicate.
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overplotting. Interpretation issues include equal angle cells rather than equal area cells and mixed grid cell composition.
NDVI: mean normalized difference vegetation index

Figure 12 shows a scatterplot with a smooth line gen-
erated using LOESS (LOcal regrESSion) (see [35],
or the entry onnonparametric regression model
for more details). LOESS smooths the data using
weighted local regression. That is, the regression uses

data local tox0 to predict a value atx0. Points closest
to x0 receive the greatest weight. The use of many
local regressions produces a set of pairs (x, y) that
comprise the smooth curve. Each regression in the
smooth shown in Figure 12 used a linear model inx
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Figure 12 A smooth for scatterplots. An explicit smooth suggests the same functional relationship to different people.
Reproduced from theEncyclopedia of Biostatistics, Vol. 4, pp. 2864–2886, by permission of John Wiley & Sons, Ltd.
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and included the closest 60% of the observations to
the prediction pointx0. Those with the data [52] and
the algorithm can reproduce the smooth. The smooth
in Figure 12 draws further attention to the distinc-
tion between ocean and land states and additional
modeling is appropriate. A first step might be to
smooth the ocean and land states separately.

Smoothing is an extremely important visual
enhancement technique. It helps us to see the
structure through the noise. The decomposition of
data into smooth and residual parts is fundamental
in statistical modeling. Hastie and Tibshirani [64]
provide a good introduction to smoothing methods.
Their description includesgeneralized additive
models that cover more situations than LOESS.

Numerous smoothers are available. Historically,
many researchers used cubic splines as smoothers.
Cubic splines have a continuous second derivative
and that is sufficient to make curves appear smooth
to humans. The elegant mathematical formulation
behind splines increased their popularity in segments
of the statistical community (seeSplines in nonpara-
metric regression). However, there is no a priori
best smoother. New methods, such as thewavelet
smoothing in Bruce and Gao [15], keep appearing in
statistical software. Different smoothers have differ-
ent merits. Recently developed wavelets smoothers
are better than many smoothers (but not necessar-
ily all smoothers) at tracking discontinuities in the

functional form. The older local median smoothers
still do well at handling discontinuities.

Smoothers typically have some form of smoothing
parameter that needs to be estimated or specified by
the user. With computational power at hand,cross-
validation methods have become increasingly popu-
lar as a community standard. This reduces the judg-
ment burdens on the analyst, but of course does not
guarantee a match between an empirical curve and
a hypothesized true but unknown underlying curve.
Hastie and Tibshirani [64] discuss cross-validation for
moderate-sized applications. Golub and von Matt [60]
discuss generalized cross-validation for large-scale
problems.

Multivariate Visualization

Environmental visualization is inherently multivari-
ate. Environmental scientists are interested in the rela-
tionships between many attributes and the attributes
have space–time coordinates. The purpose of mul-
tivariate graphics is to show multivariate patterns
and to facilitate comparisons (seeMultivariate data
visualization). As in low dimensions, the patterns
concern population distributions or models with
at least one dependent variable. After converting
attributes and space–time coordinates to images for
evaluation, human comparisons typically fall into
three categories: comparison of external images with
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each other; comparisons of external images with
external visual references; and comparison of exter-
nal images with the analyst’s internal references.
These internal references include scientific knowl-
edge, statistical expectations, and process models.
The visualization investigation process often seeks to
convert internal references into external visual refer-
ences subject to further manipulation. With external
images and references available, the next step often
involves transformation to simpler forms in terms of
our perceptual–cognitive processing abilities.

Multivariate graphics must deal not only with the
noise that obscures patterns but also with the chal-
lenge of conveying the structure in large datasets
with relationships that are much higher than two-
dimensional (2-D). Advances in remote sensing pro-
vide difficult challenges for visualization. Imagine
trying to view 30 m resolution land cover of the
continental US [108]. A back of the envelope cal-
culation suggests this will take over 7000 work-
station images each with 1024ð 1280 pixels. This
only addresses intensities for one spectral band.
Researchers have used hyperspectralimage analy-
sis to partition pixels into the constituents of their
mixtures, so pixel description is bound to become
increasingly detailed. Modeling is becoming increas-
ingly important to reduce the information to structure
that is suitable for human visualization and under-
standing.

Databases providing geospatial frameworks for
modeling continue to evolve. Frameworks for anal-
ysis include the US National Hydrography Dataset
(NHD), a comprehensive set of digital spatial data
that contains information about surface water fea-
tures, digital elevation, groundwater flow and age (see
Groundwater monitoring), soils, climate, and land
cover. For example, the NHD at 1/10 000 resolution
is gradually being upgraded to 1/24 000 resolution.
The inclusion of smaller streams and their connec-
tions will impact the study of contaminant transport
and fate using such computer modeling programs
as SPARROW (SPAtially Referenced Regression On
Watershed attributes) [91]. Urban planners will be
able to take more streams into account. Frameworks
influence visualization in many ways.

The spatially detailed presentation of estimates
can be controversial. Obtaining good small area
estimates is often problematic, but because interest
increases as observations get closer to home, there is
pressure to produce local estimates. As an interesting

small area example, EPA staff modeled 1990 long-
term cumulative concentrations of 148 hazardous
air pollutants (HAPs) for the 60 803 US census
tracts in the 48 contiguous states [100]. Public
officials suggested that the EPA should not release the
estimates because the underlying 1990 data were old
and limited. The public could be unduly concerned
and decisions to move to apparently safer places
could be misguided. Ostensibly, the decision not to
distribute the estimates centered on estimate quality
and the difficulties in communicating this quality.

Graphical Design Principles

The above description begins to demonstrate the
enormity of the multivariate visualization challenge.
At the same time, Kosslyn [70] warns that ‘The spirit
is willing but the mind is weak.’ We should approach
the challenge prepared to do battle. As Cleveland [35]
says, ‘tools matter’. Our tools are design principles
and templates. Some of our tools include:

ž distributional caricatures such as boxplots to help
us deal with large datasets;

ž map caricatures that let us show small multiples;
ž modeling to reduce noise and complexity;
ž layering and separating to manage the informa-

tion flow;
ž partitioning and sorting to promote and simplify

comparisons;
ž linking to peek into higher dimensions.

The basic formats for comparison graphics include
juxtaposition, superposition, or the direct display
differences. The art of multivariate graphics is to
select the methods and enhancements that work best
in view of the phenomenon’s complexity view and in
view of human perceptual and cognitive limitations.

This entry cannot begin to cover all the repre-
sentation tools and principles. A few pointers to the
literature may help the reader explore several facets
of multivariate graphics. MacEachren [73] provides
a readily accessible primer on symbolization and
design. The classic covering a wide variety of visual
symbols and signs is Bertin [11]. Grinstein and Lev-
kowitz [62] cover perceptual issues in visualization.
Kosslyn [70] provides a gentle introduction to the
application of human perception and cognition in
graph design, along with excellent references into the
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literature. MacEachren [74] gives an extended treat-
ment on how maps work.

Foley et al. [53] provide an extensive overview of
computer graphics methods. The methods are most
immediately relevant to low-dimensional visualiza-
tion. Wegman and Carr [112] cover selected computer
graphics methods and address issues in perception
and connections to statistical graphics.

Gnanadesikan [59] covers many of the basics in
multivariate statistics, and numerous texts have fol-
lowed. The multivariate analysis literature deals with
important methods such asclustering, classification,
factor analysis, discriminant analysis, and dimen-
sion reduction that are not described here.

Early work in multivariate statistical graphics
provides a continuing source of ideas. Fienberg [51]
provides an early review. Barnett [8] contains a
stimulating collection of papers. The work of John
Tukey (see Cleveland [37]) had a profound influence
on statistical graphics and is a third resource worth
revisiting.

Cleveland’s recent books [35, 36] capture much of
his protracted efforts to guide scientists toward supe-
rior statistical graphics. Cleveland and McGill [38]
provide an early survey on dynamic multivariate
graphics that foreshadows the visualization revolution
in computer science. Tufte [102–104] puts principles
to work and draws attention to works of elegance and
beauty that appear on the printed page.

Much literature is available on the use of color.
A good starting point is Brewer [12] and Lev-
kowitz [71]. Humans are very sensitive to a dark-
to-light scale that is referred to in the literature by
terms such as value, lightness, or brightness. This
is an ordered scale and very important in visual
interpretation. Friedhoff and Benzon [55] describe
three visual processing channels, especially a high-
resolution dark-to-light channel. Humans get their
shape information and many depth cues (linear per-
spective, interposition, shadow, and detail perspec-
tive) through this dark-to-light channel. Tufte [103]
and others warn that when rainbow colors represent
an ordered variable, lightness jumps create unin-
tended edges and patterns that can be confusing.
Brewer [13] cites numerous papers opposed to the use
of the spectral ordering, but found that when using
spectral color to represent a few ordered classes the
approach did well in usability studies after reducing
the brightness of yellow to be more consistent with
the neighboring spectral colors.

In addition to brightness, the literature also
describes two other color dimensions, i.e. saturation
and hue, along with many other trivariate descriptions
of color. (There are many other related descriptions.)
A saturation scale goes from an achromatic color
such as medium gray, to a saturated color such
as vivid red. This scale is also ordered so it can
represent an ordered variable. However, saturation
supports fewer distinctions than a dark-to-light scale.
The hue dimension can be thought of as a circle
that includes points between the colors red, yellow,
green, cyan, blue and magenta. Hue is not an ordered
scale and is good for distinguishing six or fewer
categorical variables. Wilkinson [116] cites literature
indicating that humans perceive hue and brightness
as integral dimensions, so we should not use them
to encode two variables. Additional color choice
considerations apply to people with impaired color
vision. Brewer et al. [14] and Olson and Brewer [85]
provide guidance.

As more work is done in computing environments,
issues around the computer–human interface become
increasingly important. Card et al. [16] edited a book
of readings that gathers many important concepts.

The computing revolution has increased access to
and usage of visualization methodology by all disci-
plines. For example, people routinely get maps from
the internet to help in their travels. However, the
progress in quantitative graphics has been slow in
terms of common application. The simple, elegant
dots plots promoted by Cleveland in the mid-1980s
are hard to find in publications. This is due partly to
the limited options available in highly used spread-
sheet graphics. The presence of Wilkinson’s [116]
book The Grammar of Graphicsand the correspond-
ing JAVA implementation suggests that a graphics
revolution is about to take place. Environmental
scientists may soon find it easy to produce graphics
that follow some of the templates illustrated here and
in other documents generated by those with special
resources.

The evolving literature on human perception
and cognition provides the foundation for graphical
design principles. In terms of quantitative graphics,
the grand design goal may be stated as to reduce the
cognitive effort required to make appropriate com-
parisons and decisions. Since most people can work
with four items of information, this entry elaborates
this goal into four broad categories of quantitative
design principles:
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ž use encodings that have high perceptual accuracy
of extraction;

ž provide context for appropriate interpretation;
ž strive for simple appearance;
ž involve the reader.

The organizing categories contain some conflicting
guidelines. For example, a long list of caveats may
provide the context for appropriate interpretation
but conflict with simple appearance and reader
involvement. Balancing among the guidelines remains
something of an art form. The communication objec-
tives influence the balance.

Communication Objectives

Multivariate graphics can have many different com-
munication objectives. Four common objectives are
to provide an overview, to tell a story, to suggest
hypotheses, and to criticize a model. In providing
an overview, coverage is important. Hiding details is
often crucial to achieve clarity in the coverage shown.
Similarly, in telling a story the predetermined mes-
sage must shine through. Tufte [104] is an important
resource on the topic of visual explanations. Scien-
tists often fail to tell simple stories because they are
reluctant to suppress caveats and a host of details
that qualify the basic results. Interactive web graph-
ics [30] can alleviate the archival side of this problem
by showing the basic graphics and providing ready
access to meta-data, supplemental documents and
gigabyte-sized databases. It still takes careful design,
however, to lure readers to the details.

This entry leans toward graphics discovery objec-
tives that include suggesting hypotheses and criti-
cizing models. For discovery, it is often crucial to
see through the known and miscellaneous sources
of variation. In the context of mortality mapping,
Tukey [105] said, ‘the unadjusted plot should not
be made’. Today mortality maps begin to control for
known variation by being sex- and race-specific. The
maps control for age either by limiting the age range
or by statistical adjustments. Typically there are also
known risk factors that warrant further adjustments.
After such controls and adjustments, inverse vari-
ance weighted smoothing can be used in the attempt
to bring out the central structure in the remaining
noise.

In terms of discovery, balanced visual emphasis
of the variables helps the data to speak. Of course a

happenstance emphasis of some variables over others
occasionally leads to insight, but even then the careful
analyst will move toward the symmetrical position of
trying all permutations of the variables.

Functions of Two or More Variables

Multivariate visualization involves showing densi-
ties, functional relationships, and maps that have
more than two coordinates. The density of bivari-
ate points constitutes a third coordinate. The basic
idea is that bivariate kernel density estimation is
similar to that for univariate estimation: average
local likelihoods. The basic difference in the local
neighborhood is bivariate. The result is a surface
z D f�x, y�. Estimating functional relationships of
the form z D f�x, y� also follows the pattern estab-
lished with one less variable. The domain (x, y)
is not limited to spatial coordinates, and statistics
sometimes consider attributes divorced from spa-
tial indices. Stepping up one dimension higher leads
to the study of hypersurfaces. Scott [93] provides
graphics showing contours of hypersurfaces. Meth-
ods for modeling surfaces are similar whether or not
the domain consists of spatial coordinates. However,
there are some important issues to address, such as
spatial correlation. The interested reader can refer to
Cressie [43] or the entries onspatial covariance or
kriging.

Maps

Maps are an important part of environmental visual-
ization. Spatial indices provide a basis for computers
and people to organize and access information. Car-
tographers have developed map projections that are
useful for many different purposes [96]. For environ-
mental visualization there are usually good reasons to
use equal area projections. Olsen et al. [84] discuss
the application of equal area global grids to sam-
pling. The US National Center for Health Statistics
uses an Albers equal area projection and the US EPA
uses a Lambert equal area projection. NASA (the
US National Aeronautics and Space Administration)
bases its storage of satellite information and level-
three satellite products on latitude and longitude. This
has the merit of being familiar but equal angle grids
make the North Pole as wide as the equator. This
is not directly suitable for polar or global modeling.
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Rather, the information must be regridded with the
attendant information losses.

Representing attributes on maps is the subject of
numerous books; see, for example, Dent [46], Mon-
monier [81], MacEachren [74] and Slocum [95]. One
common representation is the choropleth map (see
Landscape pattern metrics). Regions on a map are
colored and the color indicates the region’s mem-
bership in a class. The classes may be based on a
categorical variable or on breaking a continuous vari-
able into class intervals. Discriminating and keeping
track of many different colors is not easy, so general
guidance is to limit the number of classes to six or
fewer.

Authors such as Dent [46] describe various lim-
itations of choropleth maps. The maps are not par-
ticularly informative when the variable represented is
highly correlated with a region’s area. Standard guid-
ance is to represent rates whose denominators adjust
for variables related to area. For example, show-
ing pesticide application per unit area or deaths per
100 000 people is reasonable.

Another common difficulty occurs when region
boundaries have little to do with the spatial struc-
ture of the variable. The spatial variation of the
variable within a region may be considerable. The
single estimate for a region may be a ratio with large
denominator and have a smallstandard error. The
calculated uncertainty for the region may provide few
clues about the spatial variability. The problem of
obtaining different values at different geographical
scales is known as the modifiable areal unit prob-
lem [54, 117] (seeSample support).

Another problem with choropleth maps is the dif-
ficulty in representing the facets of estimate qual-
ity. Typical choropleth maps discard confidence
bounds for the estimates and other indicators of esti-
mate quality. Some things can be done, however.
MacEachren et al. [76] use light and dark stripes to
mark regions whose estimates have low reliability.
MacEachren [73] discusses other representations for
uncertainty.

Cartograms provide a controversial approach for
representing spatially indexed estimates. Cartograms
distort the spatial relationships to provide equal rep-
resentation based on a variable such as human pop-
ulation. Dorling [48] provides numerous examples.
The approach is readily applicable to populations of
birds, mammals, lakes and so on. The distorted spatial
relationships make it difficult for people to associate

other information they have stored mentally based on
spatial landmarks. Dykes [49] juxtaposes traditional
maps with cartograms to ameliorate the problem.
Since many people get used to particular map views,
cartograms are not likely to see widespread use, but
some people find them helpful to see patterns.

Cartographic representations are available for
point features, linear features, and surfaces [73, 79].
Rather than represent local values, a common map-
ping approach estimates surfaces of the formz D
f�x, y�. The surface can be represented as contours
on a map. Given a surface value,z0, a contour
line consists of pairs (x, y) that satisfy the equation
z0 D f�x, y�. A typical contour plot shows approxi-
mate contour lines for several values ofz. Labeled
contour lines do not have much visual impact, how-
ever. Several methods can improve this. An easy
approach is to communicate contour values by con-
tour line thickness. Another option is to fill the
regions between contour lines with color. (The colors
should be ordered.) Interestingly, there are no confi-
dence bounds for contour lines. Consequently Carr
et al. [28] estimate values on a hexagon grid, define
class intervals based on the distribution of estimated
values, choose colors for the hexagons based on the
intervals, and call the result a hexagon mosaic map.
If the data and modeling provide justification, then
confidence bounds can be calculated for the estimated
values. Of course the same can be done for square
grids. However, hexagons have merits over squares
of the same area [17, 93].

Many surface representations are available such
as color-draped perspective wireframes and full ren-
dered color surfaces with highlights. See, for exam-
ple, Cleveland [35]. Wegman and Luo [113] note that
specular reflection highlights local density anoma-
lies. Tufte [104] shows that the pairing of contour
and surface plots can aid understanding. The surface
tends to provide a good overall impression (except
for what is hidden) while the contours help to locate
features, such as local extrema, on the plane. Wire-
frames and translucent surfaces can be superimposed
on a map. Sometimes researchers stack three distinct
views, a tipped map, contour plot, and surface, so
they appear to be aligned in three dimensions. Per-
spective views appeal to many people and have also
been used to show local values, such as the height
of three-dimensional bars in animated flyovers. How-
ever, perspective foreshortening complicates accurate
decoding of values and comparisons.
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Researchers have used various extensions. Tufte
[103] uses small multiples very effectively to show
changes over time. Researchers often use anima-
tion to show temporal change. This can reveal rapid
change, but it is hard to remember the old views
needed to make comparisons over longer intervals.
There is little reason to believe that people can
visualize the difference between surfaces any better
than they can the differences between curves. Con-
sequently, showing the explicit differences is useful
in both small multiples and in animation. Carr [20]
reports on an early release of satellite data where
images of sea surface levels were not properly reg-
istered. The previously undetected problem became
immediately evident when animating thedifference
between consecutive images.

More complicated extensions include the simul-
taneous display of two surfaces. This is possible
using translucence. Another approach is to have sur-
face height encode one variable and surface color the
other.

Of special interest is the fast nonparametric shift
histogram technique of Scott and Whittaker [94] for
estimating surfaces. This can incorporate sampling
weights and handle three or four variables in addition
to the spatial coordinates. For instance, it can show
a smoothed surface conditioned by other variables.

There are many ways of representing estimates
and spatial indices. This entry calls attention to three
additional static approaches: plotting glyphs, linking
plots and maps, and juxtaposed maps.

Glyphs

Glyphs provide one way to represent multivariate
observations. Estimated values control the glyph
parameters. We can think of bar charts, pie charts and
boxplots as glyphs that represent local distributions.
We can also use tiny scatterplots with smooths
as glyphs. Thus, glyphs can show local functional
relationships. A circle is a simple commonly used
glyph. We do not decode circle area very accurately.
(Using a legend with a few reference values helps
the reader to judge glyph values more accurately.)
Carr [21] notes that for multivariate glyphs it is
hard to assess the multivariate distance between
glyphs so that geometrical pattern-finding breaks
down. Carr et al. [29] suggest several variations for
using simple ray angle glyphs. For large datasets
and maps, Carr [17] and Carr et al. [26, 28] use

hexagonal binning to provide symbol congestion
control. The ray glyph provides a summary for each
hexagonal region and with only one symbol per
hexagon, overplotting is not a problem. When rays
represent estimated values with confidence intervals,
the authors represent the confidence intervals using
arcs. Small reference wheels at the base of the ray
provide an unobtrusive angular scale for comparison.
The angle can be judged accurately in the context of
comparison against a scale. Carr et al. [26] develop
an angular boxplot glyph. Carr [17] uses a bivariate
ray glyph to show two dependent variables. A ray
pointing to the right encodes one variable (for small
values the ray points down and for large values it
points up) and a ray pointing to the left encodes the
other. Chambers et al. [32] describe many other such
graphical representations including a closely related
metroglyph that represents both wind direction and
speed. See also [2].

Many glyphs have a long history. Some glyphs,
such as Chernoff faces [33, 34], have attracted consid-
erable attention. Takacs [101] provides information
about human face recognition that suggests some
glyph enhancements. Some, such as the trees of
Kleiner and Hartigan [69], have seen little use. Star
glyphs, a polar variant of a parallel coordinate plot,
occasionally appear. What survives in the long term
remains to be seen.

With numerous methods available for producing
stereoscopic graphics, stereo rays [22] provide yet
another way to show two variables in addition to
two spatial coordinates. Few researchers have seri-
ously tackled the visualization of six-dimensional
data. A notable exception is Bayly et al. [9]. They
successfully used colored stereo ellipsoids to evalu-
ate problems in improving an electrostatic potential
model. Their article includes color side-by-side stereo
figures. In a long sequence of efforts Bayly (personal
communication) failed to obtain insight using a wide
variety of encodings. Their eventual success suggests
trying a variant of their glyph that devotes two of the
coordinates to representing a position on a map. The
image of small translucent or wireframe dirigibles
comes to mind.

As indicated above, symbol congestion limits the
number of glyphs that can be placed on maps. Puck-
ett [91] partly addresses this issue by placing the pie
charts (glyphs) around the map and drawing lines
from each pie chart to the spatial location. This may
suffice for local booking but complicates local spatial
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comparisons of the distributions. Cuffney et al. [44]
provide an interesting glyph composed of six rect-
angles indicating the status of metal, nonpesticide
agricultural intensity (NPAI), fish, invertebrates and
algae at monitoring stations. The rectangles of red,
yellow, green and white represent the impairment
status of severe, moderate, unimpaired, and no data,
respectively. The height of six lines could have shown
the original continuous values and color could still
indicate the class membership. Carr and Olsen [24]
show 159 variables using line height. It is possible
to represent many variables as a glyph with a sound
encoding position along a scale. However, variable
labeling and symbol congestion challenges remain.

Linked Plots

Linking points across plots provides a way to con-
nect variables that are represented in different plots.
Linking provides a weaker binding of the multivariate
observations than glyphs. Linking methods include
linking by lines, colors, names, pointers, and spa-
tial linking by juxtaposition. The following discussion
emphasizes line linking and color linking.

Diaconis and Friedman [47] discuss M and N
plots that link points in different plots with lines. For
example, they represent four-dimensional data using
two two-dimensional scatterplots. There is nothing
that prevents one plot from being a map with spatial
coordinates. The first plot represents the two coordi-
nates and the second plot represents the remaining
two coordinates. A line between a bivariate point
in one plot and a bivariate point in the second
plot indicates that bivariate points really represent
one four-coordinate point. Their general description
includes linking across multiple plots of varying
dimensionality. For example a four-dimensional rep-
resentation might link a one-dimensional plot to a
two-dimensional plot to a one-dimensional plot.

Parallel coordinate plots are the only variation
of M and N plots that have caught on. The paral-
lel coordinate plot forp dimensions is a sequence
of p univariate plots. The representation connects
p coordinates withp � 1 line segments. An early
example appears in Bertin [11]. Inselberg [66] and
Wegman [110] introduce the mathematical and sta-
tistical aspects of parallel coordinate plots. They and
Inselberg and Dimsdale [67] describe the point–line
duality and other mathematical relationships that pro-
vide a basis for extended interpretation. For example,

Inselberg has used the representation to find the
closest distance between two lines in four dimensions.
Interpretation of some patterns requires significant
background. Other patterns are easy. For example,
Wegman notes that one can readily assess the cor-
relation between adjacent variables. Many crossing
segments between adjacent axes indicate a high nega-
tive correlation and many parallel segments indicate a
high positive correlation. Wegman and Luo [114] also
use parallel coordinates for high-dimensional clus-
tering. Even for two variables, parallel coordinates
are not very good at communicating a detailed func-
tional relationship. Parallel coordinates seem partic-
ularly well suited for showingtime series or multi-
spectral intensities. In both cases the data units are
the same.

Increasingly, exploratory analyses use interactive
color brushing [10] to highlight elements represented
both in statistical plots and maps. Common plots used
in this fashion are scatterplots and parallel coordinate
plots. Cook et al. [42] provide a good entry point into
the domain of dynamic graphics and GIS. This work
builds on the software Xgobi, which supports higher-
dimensional exploration using grand tour [3] and
projection pursuit [41]. The grand tour or projection
pursuit combined with scatterplot or parallel coor-
dinate plots can show evolving linear combinations
of variables [111]. The projection pursuit algorithms
progressively modify the linear combinations to bring
out different features in the plot. Furnas and Buja [58]
indicate that we can learn about structure dimension-
ality through projection and sectioning.

Figure 13 introduces a relatively new template
that Carr and Pierson [25] and Carr et al. [27]
called linked micromap (LM) plots. This extends the
idea of linking statistical plots and maps as pro-
moted by Monmonier [80]. The basic template is
composed of three parallel sequences: small gen-
eralized maps, region labels, and statistical panels.
This design implements the idea of small multiples
and parallelism recommended by Tufte. The design
partitions the units of study into small perceptual
groups and highlights different study units in differ-
ent panels to encourage selective focus. In Figure 13,
adapted from Carr et al. [28], the study units are
level 2 Omernik ecoregions. Finding all parts of dis-
joint ecoregions is easy due to the selective focus
and color link. The boxplots summarize the spatial
variation in the half million grid cells that parti-
tion the US. Each grid cell has estimates produced
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Figure 13 An LM plot with boxplots showing spatial variation. The ecoregions may not be familiar but the horizontal
color linking makes it easy to find them, even the ones that are disjoint

by Daly et al. [45] giving the 30-year average pre-
cipitation and average number of growing degree
days. The distribution of cell values within ecoregions
shows considerable variability. If the two variables
are closely related to the concept of ecoregion and
influence ecoregion definition, then the expectation
is that variability will rapidly decrease when consid-
ering level-three and higher ecoregions that provide a

much finer partition of the US. Note the linking of sta-
tistical estimates and spatial coordinates using cyclic
colors. There is a learning curve for understanding
the color when reading a sequence of micromaps.
The highlighted regions in the sequence of panels
can reveal more detailed patterns than typical classed
choropleth maps, especially in examples with many
panels.
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There are many variations on LM plots. Carr
et al. [27] show the use of dot plots with confidence
bounds in the background. Carr et al. [29] use line
heights to represent percentages for the 159 land
classes defined by Loveland et al. [72]. The boxplots
in Carr et al. [31] reveal the variation in mortality
rates for local health service areas that contrast with
the seemingly stable state estimates. Layouts showing
values for counties are now available for several
states. Statistical panels can show time series and
even bivariate boxplots (see Boxplot, bivariate).
The micromaps can show sites and river segments.
Interactive extensions can involve zooming into LM
plots to show progressively revealed detail.

Conditioned Plots

The simplest form of conditioned plots partition the
estimates (or data) into sets based on classes of
conditioning variables. The different sets appear in
different juxtaposed panels. The visualization task
is then to study how the distributions or function
relationships shown in the panels vary across the
conditioning panels. This approach is very similar
to the nested plots of Tukey and Tukey [107]. An
early exposition on conditioned plots (or coplots)
appears in Cleveland et al. [40]. Conditioned plots
are typically two-dimensional plots, but they can be
three-dimensional wireframe plots or other higher-
dimensional plots. People readily understand one- and
two-way conditioning and the corresponding layout
of panels. Thus, conditioned plots prove a reasonable
way to study relationships involving three to five
dimensions.

Conditioned views do not have to partition the
data strictly to produce different panels. Cleveland
et al. [40] introduced the notion of shingles that
allows the same observations to appear in more
than one panel. This is helpful when smoothing a
scatterplot because it increases the number of points
in the plots and addresses poor smoothing at the
panel edges.

Carr et al. [31] developed the coplot idea in the
context of maps and call the resulting template condi-
tioned choropleth (CC) maps. Figure 14 provides an
example. The data for Figure 14 include many differ-
ent estimates that describe each equal-area hexagon.
These estimates include the number of species found
for birds, mammals, insects and reptiles. Additional
estimates include the average elevation, the number

of different land classes and so on. For Figure 14
the variable chosen for study is the number of bird
species. The conditioning variables chosen are num-
ber of different land classes and the number of differ-
ent mammal species. None of the variables is categor-
ical. Consequently, the analyst chooses a transforma-
tion that uses class intervals to convert the variables
into ordered classes. The bar with five colors at the
top shows class boundaries and class colors that par-
tition the hexagons based on the number of birds. The
chosen boundaries put 20% of the hexagons in each
class. In terms of the number of land cover classes,
the four numbers at the bottom of the plot define
boundaries that partition the hexagons into three
roughly equal classes, each with about one-third
of the hexagons. Similarly, the numbers on the
left partition the hexagons based on the number of
mammal species. The panel is a 3ð 3 layout based
on the classes of the conditioning variable. In a single
panel only those hexagons appear that satisfy the row
and column conditioning constraints. Each hexagon
only appears once in the full plot.

The visual task in Figure 14 is to compare the
distributions. The little box in each panel shows the
mean for the panel. The box background color classi-
fies the mean. The diagonal color pattern indicates the
condition–variable interaction. Figure 15 shows more
detailed comparisons usingQ–Q plots. These plots
compare the distribution of values in each panel with
the composite across all panels. This is superior for
comparing distributions. However, Figure 14 keeps
the spatial context and allows the analyst to generate
hypotheses about the spatial patterns observed.

Carr et al. [31] show a layout for an interactive
version where the analyst controls the class bound-
aries with partitioning sliders. This kind of inter-
activity encourages the reader’s involvement, which
was one of the four guiding principles. Sophisticated
researchers may prefer to move directly to modeling
and the study of structure andresiduals. Exploration
using a few variables and a few classes and sliders
is limiting. There are recursive partitioning models
that have built trees from over two million potential
explanatory variables. However, tools like CC maps
are easy to understand and can draw people towards
more sophisticated modeling.

Laying out multiway panels in rows and columns
across many pages is often a good start. However,
there are many facets to graphical design and gen-
eral purpose algorithms have not yet captured all the
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Figure 14 A conditional chloropleth (CC) map. The units are equal area hexagons covering the Mid-Atlantic Region.
The plot omits fractional hexagons with less than one-half of the area inside the region. Values in the tabs are the average
number of bird species present based on the hexagons in each panel. Conditioning on associated or causal variables reduces
variation. Analysts may then see other spatial patterns

current graphical design expertise. For example, Carr
and Olsen [24] have found the spanning tree traversal
described by Friedman and Rafsky [56] very useful
for multivariate sorting. Methods for simplifying
visual appearance remain applicable. These include
the key strategies of perceptual grouping of informa-
tion, sorting, presenting the information in layers, the
removal of redundant information and the purposeful
use of white space [24, 70]. The graphics make it
easy to apply thoughtful sorting, but the analyst still
has to do the thinking.

The difficulty of seeing patterns across many lev-
els of conditioning factors and pages needs to be
recognized. Humans are not good at integrating low-
dimensional relationships into higher-dimensional or
overview patterns. When the information appears
across pages, the limits of our short-term memories
compound the difficulty. When across-panel insights
occur, they are likely to be based on panels juxtaposed
closely in space or time. Careful attention to the
choice of layout is often the key to obtaining mul-
tivariate insights.
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Figure 15 Two-way conditionedQ–Q plots. Q–Q plots reveal distributional differences of subsets, not just changes in
the mean. Comparison with pooled data automatically implies some similarity. However, a single distribution provides a
convenient framework for comparison

Closing Remarks

The tools for environment visualization continue to
advance. The 1997 special issue ofComputers and
Geosciences, on exploratory cartographic visualiza-
tion, edited by MacEachren and Kraak [75], con-
tains articles on a variety of topics such as the

representation of uncertainty, encoding for character-
izing landscapes, and dynamic methods. This entry
does not individually list all the instructive articles in
that collection and certainly does not begin to capture
all the literature that is available. Undoubtedly the
presentation here is slanted toward the literature the
author knows best. The tools will continue to evolve
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along with both our understanding of the environment
and ourselves. The tools help us to think about the
available data.

Sometimes we need to think about the data that
we are not seeing. Sometimes there are barriers to
scientific inquiry that those who see beyond the data
should address.

Increasingly the size, detail, and complexity of
environmental datasets will overwhelm our visu-
alization capacity. In thinking about the future,
Tukey [106] coined the term cognostics (diagnostics
interpreted by a computer rather than a human). The
idea was to compute features of merit and have a
computer rank plots by their potential interest to
humans. This is frightening; for example algorithms
can miss little details like the hole in theozone layer.
However, humans miss a lot because our looking is
not automated and not optimized for understanding.

Some may think environmental visualization is
easy. It is not. Rather, it is a huge intellectual
challenge that spans developing concepts, collecting
data thoughtfully, modeling, grappling with complex-
ity, and dealing with our own limits.
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