/\/\A RS Basics

Multivariate Adaptive R69ressl'on
Splines (MARS) is reqression software
developed bg Ierrj Friedman in the
earlg 1990s. It uses continuous piece -
wise linear cplines to construct a regres -
sion model. in a se%uemf/'a/ manner.
Variable selection, knot selection, and
interaction inclusion are all done
adapﬁve(ﬂ. Because variable transformation
1S done aufomm‘/ca//y, via the creation

of sp/ines, gooa( models can be made

without tremendous skill and effort



/MARS Bas»; Functions

With just a single explanatory variable,
%, one can fit a cont piecewsse linear
spline regression model by preseleding
k nots, say at 30, 60, and 90, and
then using OLS to estimate the

Coefvciciem% ‘Far the basis funm‘/bns

he (x) = 1,

h, (x) = x,

h, (x) = (x -30).

h, (%) = (x - 60).,
- h, (x)= (x-90),,

B(,d' I'IC The 'fme re/af‘ionship be'/‘ween
E(YIX) and % is as Sl’town in the
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cketch below, the fitted linear spline
model cannot be expected to be very
good, because the preselected knots

are not favorable for providing a good
fit Havmg knots at 8 12, and 44

1
E(Y]lx)

L

Shou(d rQSuH in a much beH‘Er- 'FH‘.



Problems are encountered if one
attempts to use the data to determine
near optimal knot placement: While
one migm be able to do a decent job
using simple graphics in the case of
One exp!anafory variable, with two
explanatory variables nonlinear relation-
ships, interaction of the variables, and
unfavorable data distributions (eg.,
the (%, %, ) points not cloce fo being
in a grid pattern or uniformly disteibuted)
all hinder attempts to use conditioning
and graphicx o select good knots, and
beyond two variables the challenge can



increase severely. Add itionally, there
is the problem of ovemeH»‘nsj due to

using too many knots per variable (and
thus ’eadihj to foo many paramters to
estimate), when the gample SIze /s

re)af‘ivelg small

To avoid the difficulties associated
with trying to carefull y place knots,
one could optto represent each explana-
tory variable in the model by a natural
cubic spline Mvinﬂ 3 +o5 knots bared
on empirical distn percentiles. But

H\U can resuH N ‘/‘oo manﬂ Coe#icienﬂ
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To estimate, especia”y if one creates
interaction terms using the splines.
(Adding tensor product bacis functions for
each pair of explanatory variables, +o
account for +wo- way interactions,

gn.o/af/@? increases the number of

unknowns to be estimated.)

To combat the previously referred t+o
problems, although MARS considens
a Lot of basis functions, to allow for
great flexibility where needed, it
carefully selects variables, nonlinearities,

and interactions ars i+ first constructs a



possibly guite complex model which
should overfit the data, then pruves
away weaker ferms to create a
Sequence of models with a/ec/im’ng
complexity, and then finally uses
cross-validation or a tesd sample to
select the model from the seguence
which (hopefully) has the proper
degree of complexity. Overal], the
process allows for greaf flexibility in
fiHinj a sufficiently complex model
which should avoid overfitting and give

re/afive/g accurate Prﬁdfcffonj,



g
Le“l'h’ng X;; be the value of the jth
explanatory variable for the (% case,
’ef’fing M; be the number of distinct
values of the jth variable in the
training dafa, and letting x, .. be
the ith distinct ordered value of the
jth variable so that we have
Xwj ¢ Ky €7 ¢ X i
MARS conciders the fo"owinj LM,
basis functions associated with the
jth explanm‘org variable :
(%~ Xey) s Ci=12..,M),

(’Xc,')j “Xj)f (L"'I, Z,.., MJ)



The sketch below shows four such
ﬁ,ocﬂz?.m basis functions Fach

‘FUVIC'f'iOH drawn in red Iy Qa muir e -
W bds“’ F‘l’ﬂ COFI’&SPDﬂJiHj +O one O'F

‘H\e. basi; 76?15 drawn in grce.n.

A
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The set of LM; basis functions for X;
are not 'inearjg independent The spline
sketched below is a linear combination of
L (X = )e ) (5= X )s , & (%5 = %ems s ,
but it is also a linear combination of

Z; (Xj = )((3)5)4-, (7(,7))' - 7(,’ )+, & (XJ“X(-,,J)-L

1

&

X Renyj X;
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Cons‘ftugt[ng the Lnitial Modg

MARS starts with Jjust a constant in
the model. Then # searches for the
variable"knd combination which
results in the grem"en‘ amount of
improvement, as wmeasured bg the
reduction in the sum of the squared
errors, when the corresponding basis
function pair (a primary i and its
mirror fmage) is added and a new

model is £i4 using OLS

For example, with Just the basis £
BFO =1 in the model, upon Using
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OLS to fit the model, we have that

A —

G = | (i=1,...n), and the intial

Sum of sq,uareo( errors s sz,(g,»gf
(Here the Y: are the observed recponce
variable values in the raining set. ) Mow

suppose that after a cearch MARS
identifies (%i = Xuwa)+ and (Xews= Xz )

as the best basis fi pair To add. OLS
is used fo estimate the coefficients for

the mode{ constructed {eomn

BFO:L BFI = (Xz" Xm)z)i-, & BFZ: (quz'xz>

H’\e {:'f’red coe#iciem‘s are used to obf‘aih
'H')e 1CI'H€J valuex,

A

§ = b. + b, BFL(z)+ b,BF2(%),
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and the fiHed values are used to obtain

a new sum OF sgruarea/ errors, Z-':t (fj,'g,)z
Tl’\e bac/s ‘['h pair, (7(,," an.)+ anal (Xm)z'xz)-i-)
was c"\osen beCau.re no of'her Var/able”

knof wmbinm‘ian proc/uce_c a er\a“er sum

Of Sq,uarea( errors.

Once the ficst basis fn pair has been
added, fhingf get a bit more complicated
Basically, there are three possibilities fo-
what will happen next (One possibility
is that another basis fn pair, in volvmj the
same variable, but g different knot location,

as the first basis ¥ pair, will be added
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If so, then the resulting fitted resporse
surface will have +wo bends, parallel +o
one another, and the value of the fitted
response will depend on just a single
variable. ( Note: The two new basis
Fas will be called BF3 (the primary
hockey ctick ) and BFY (its mirror
image) Only theee of the four basis +4;
asiociated with the variable are needed j
and eventually one of the two mirror

imag e basis fas will be O/roppeo(‘ )

Another Pos:iloi/if'g is that 4 basis +o

par, imvo/VMg a c{#@mw varlab)e, IS



the same varialle
/ is used in the First 7o
bosis fantion ,m‘rr

chosen. This resuHs in an additive model
For exomple, there can be an effect on
the response due to X, — below a cectan
value., say 3.3, § increwer as X, jnc. w/
one slope, say 0.85 andabove that value
(33), § inc. as xw inc. W/ a differeat slope,

say 037) and the effect on (3 due to %,



a differeat varioble is ased ja
the second basis function pair,
which creafes on gdditive femm

does not also depend on the value of x,

.. there is no interaction effect There
can also be an effect on the respornse
due to x, which is similgr fo the effect
on § due fo X2 in That there qre +wo
diffecent slopes. The effect due +o %, is
additive — the natuce of the effect due
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to X, depends only on the value of x,
.. i+ does not additionally depend on the
value of %, Overdll, with such an addi-
tive effect, we have that

A

g = b, + g,(x,) + fg}(xJ.

T he third possibility is for the second
pair of basis s to enter the model
to form interaction terms, as opposed to
Creating qn additive effect. This can only
occur if the user overrides the default,

WL’)iC;\ is to not a//ow interactions and

instead create an additive model
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To explain how interaction terms are
created, let me work with a ¢pecific
example.  Suppose that the first basss
pair to enter the nodel jnvalves X,
with the knot being at 0, So we
have

BF1 (%)= (%) & BF2(%)=(-x.)s .
Further, suppose that +he fitted model
at thic stage is

1.5+ Y4 BF1(z) - 326F2(%)

=[5 + Y (%) ~32(-%x ).

Yy T
5 -+

v M - )
/" ' * Ao
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Now suppose that the next pair of
basis {hs added are

BFB() BFLGE) * (x,)e = (%2 ) ()

BFQ = BFLR) » 6% ) = (xa)e(~0.)s.
That is, BFL s mulbiplied by each
member of a basis fi pair, involving
X, with a knot (conveniently, +o make
this example less complicated ) at O to
Create a new pair of basis ‘Func_‘/iom. I+
should be noted that (x,). and (-x,)
do ot enter the model as basis function
(We have two interaction” terms ravel ving
x, wWithout anvinj any "'main effect “term

l'vxvof\/;'ng x,. )
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At this point a model is it using the

basis functions

BFO (2) = |,
BFL(Z) = (x.).,
BFL(%) = (x,).,
BF3(>< = (x,)+ (%)
BFWx) (x.). (- X)

[f the fitted model is

125 BFO + 5BF] - 3BF2 - BF2+ 2BFY4
= 25 + 5(x)r = 3 e = (e ) (3,4 # LxDu ()4,
then the estimated responce sucface isas
chown on the next page. Note that §
deperds on x, only if x, > O Also note
thet, unlike what CART produces, the
response surface fit by MARS is euerywhere Continuus
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g different variable is used in Hhe second bosis

function pair, which is inyolved i

an infermctfion
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One way to describe the model
building process is that at each stage
MARS selects a variable and a knot
to create a basis o pair of the form
(% = %an)e & (s~ %)+,
and each member of this basic fa
pair is multiplied by a basis £ already
in the model, say BFk, to form the
next two basis fis +o add to the model,
BFlo* (- xajde & BFk* (o = %)
To create another “additive layer” the
multiplying basis £ has 1o be BFO =1,

Oﬂ'nerwf;e_, a pair of interaction terms of

¢ome sort s added to T/’)e, moo(ef, [nall
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Cases, the basis fo pair and the MMH*,‘,olg;'ng
basis v are the ones which will produce

the grea+e,sf amount of improvemenf

MARS adds pairs of new basis fns to
the model in this way until a complex
model is created which overfits the data,
([#5 good to firct grow a model at
least twice the size of the model which
ic ultimately selected.) Then MARS

removes one basij £ at a time To create
a seq,uence of i’”creas:‘ng/j prunea/ maa/e/.f,
othe.r than 8Fe,

at each S?Lep removinj the ba_u'chh,vwkick

resuHs in the smallest increase In the
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sum of the sq,uared residuals when it
is removed. This pruning gcr;;(;fau
continues until all basis féuv have been
removed, and one ir left with a sequence
of imrean‘nglg smaller models, ranging
Lrom one which is too Complex and
overtits the data +o one which makes
use of none of the explanatory variables

and gives the came pred;'cf/'onJ v, for

all values of X,

The final model is choren from the

Se%uence. of models on the bacis of q

goranaliged Crosa-validation (GCV)
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measure. Leﬁmg fp de note the fithed
model, from the sequence of models under
consideration, Conctructed from p bacis
Fas, the GCV measure for this model is

REily- £/ (L- 8s):
where ¢ is the cot, or effective df
for each basis £n. (Note: The GCV
measure does not actually involve

Cross- vo(io/a/‘/on. )

WiH'\ Ora/inary rejrexfz'on, c= ]l —
! O’F js dssociated with each term in the
linear mod el But snce MARS does an

inf‘ensive Searcl’n ‘f‘o Seled‘ Varlab/@ ano(
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k nots durnr\ﬁ the model growing stage,
c needr +o be et fo o value ’ar‘gcr than
[ in order for the GCV peasure +o work
correctly, so that the model producing
the smallest GCV value is the one which
actually predicts bect. Based on some
empirical evidence, Friedmon initially
Sugqested that ¢ chould be befween 2
and 5. But more recent results suggest
thet when the number of variables and/or
the sample size is very large, ¢ should be

much larger than 5.
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Rather than take a wild ques as +o what
value ¢ should be, jt is better +o we a fet
sample or cros-validation +o select the
Ffinal model from the sequence of diflecent-
sized models which MARS created. With
a test sample ﬂﬂmy ace simple — we
can forget about GCV and just ure the
Fest sample to estimate the MSPE for
each mode| jn The ceguence, and we
then prek the one haw‘mj the smallect
estimated MSPE.

To we cross-validation, we can grow

10 sequen ces of models, leaving out a
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a different one tenth of the data each
time. We then consider p pumber of differeat
values of ¢, and we the GCV meaure +o
determine the “bert” model for each value
of ¢. With a 10-fold ¢-v, we have 10
models corresponding +v one value of ¢,
10 wodels corcesponding to another value
of ¢, and so on. The left out portions
of the cats can be wsed +v estimote the
MSPE for each meodel, and upon averaging
+he results, the value of ¢ which gies
the smollest (average) MSPE can be determined
Thir valye of <, olong wy The GCV meas., con be
wed o seledt the best model from the  seguence



29
of models origma//g created from 1007, of the

’h”a)hihj 0( ata.

linear entry of variables

MARS enters variables [inearly yato a
model by using basis £#n with a basis
£ for that variable )ﬂavinj a knot at
the minimum observed value for the
variable, and not also adding the
mirror image basis 1 which would
give a pos:/‘bi//z‘y for a ckanﬁe, of slope
ot the minimum value — but with
no data below the value, there

WOu,d ba Nno 90011 reqson 1o C"\anﬁe_
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the Slope,, Since. there would be no
good way to fit such & mirror image
basis fn. For prediction purposes, Fhe
variable would be in the model linesrly
over the range of values used +v fit

the model (and also beyond +he
maximum oberved value for +he variable),
but if one extrapolates below the minimum
observed value, the variable would not
influence the predsction at all, as
opposed to having the observed linear
trend assumed to continve. (Note: lf

& variable is in the model with a prirnary

basis £5 and its mijrror image basgis )Cfn,
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‘H’)é’n exfrapo/ah‘m would be donﬁ under

the assumption of a linear rend on both

cides of the knot )

hand/inﬂ of Cafegom‘cal predictors

Ln classical mode/inj, a cafejor/ca/ explana-
+0r3 variab'e is +5pica//3 expandeo/ intfo

a set of dummy variables +o represent
the differeat observed oufcomes of the
variable. (If +he variable is binary,
Just one dammy variable is needed. )

For example, if a variable, say department
has observed outtomes A, B C and O,

f‘hen Ohe Can Create var;’abie: X,, Xz,



31
and %x; such that

X, = { 1, if olepan‘menf for Lth case is d,
“ 0, otherwise,

X. = 2 1, if o(eparfmenf ')Cor Lt case is B,
(o otherwise,

L

X - } 1, if department for ith case is C,
‘3 0, otherwise

Then if the fitted model is
bo + bi Xig bz ) ¥ *b;, Xy +%’:‘°m,
we would have
botby,  if depmitmout is (],
contribution botb,,  if depantment 15 B,

due to =
depantment bo+bgl if depantment 1

L b, ) if d,szu‘/mwr is JJ
/V\ARS does Hn’nj.t a l)if dh[fef‘enflj. [+ would
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search for the best way to divide the
observed outcomes of odepantment into
two groups, So that if a single dummy
variable were created to reflect this
split, it would result in the greatest
decrease in the sum of the sguared
residuals when added to the model
This dummy variable would be
represented bg a basis £, which is an

indicator £Uncﬁ'on_ FOV‘ examplej we Cau{d L\ave

2\ = l, i‘F W}M}:Qtzrc)
BFO((’X) {O, if dﬂpwubn\m;':&orﬁt

A‘f‘ Some [az‘er Sfage in fl'»e MOdelgroW)’W37
MARS could create another basis £
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invo[v:‘ng department ; For example

GFi(3)- [l e €

If in the end the fitted model is
b, BFO + b, BFd + b BFk + S msiee,

we would have

b.tby b, if department is C,
Cogfril;uﬁan bos b y 4
ue ro = ot ] ) R

( : d, it depantment i
bs, i dopartment is B, ord)
In its I’)ahdl/ﬂg of Caft?ﬂoriml variables, MARS
breaks "the nulen am»o(«'xngfo—m:' but
Since it Care(ul/g Searches 1Cm~ 'I')’)e be:f mode,(,

and Carefo(”g seledx 'H')e f/’hal moole/ fo

achieve high prediction accuracy, it can
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frultj be said that fw;ica”y the penalty
will be paid by those who steadfastly
obey “"the rules” (MARS cam treat
a cafegorica! variable in the traditional
manner [t it does not do so, then it
is because it appears that by not doing
So, greater accuracy can be obtained.)
F:’na((g, it should be noted that when
a basis fn ic created jnvolving a cateqorical
explanatory variable, a complementary
hasis £ js alco created (sjmilar to the
way that a primary hockey stick f4 and it
mirror jmage f'n enter as & pair) But in

the end, unnecessary basis frs are d ropped.
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handling of missing values

For each exp/anavLory variable +hat has
its vaiue missing 1C0r oné Or more Cascs
in the data set, MARS will automatially
Create a missing value indicator variable,
and also a Va/ue prerenf mndicator
Var‘iaue. FOT exam,ole, Suppose that x
IS Q var/'a[o/e which has a mi_u/nﬂ value

1COr some Cagsey. L€H‘in9

- - 1, )"F X i m:‘srlng)
(x ) {O, if % is not missing,

&
(X y ) = { L, if X 15 not mis:ing,
' 0, if x is misting,

f‘he basi: 7C'm inc/uded n a A‘na’ moa/e/

Miglﬁf include
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BFS = (x-21),* (x>.),
BF6= (- =) *(x>.),
BF7 = (v-05), » (x=.),

BFg = (OS—"'U_)-f * ('X:.),

&

W‘Oere VS Q var:‘ab]e w’ﬂich i:.serw'nﬂ
as a surrogafe For X when X IS mfssmg,
Ang basis £ which adjusts the predicted
re sponsé 7[0r"X wi// have, to include (7<>.)
as a factor. Such factors are used even if
One re%uesh a mode, W”H'C,)’\ does not
a“ow interactions. (Note: (x=.) doen?
have o be used if (x>)is used, but [ supect
that if x is an important variable with more
than a small number of mfffinj va(uex, that

Some SUrroﬂmlt var/‘ab/e term; wi” be weo(.)
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Be\jond the Defaults

maximum number of basis functions o aflow
The default setting is [5, but typically
this limit should be sef much higher
(but if you go overboard, it may take a
‘onj time to get results). In +he end, You
want the initial model +o have at least
twice as many basis frs as the final model.
If you have already built a CART model,
then it is recommended that you allow

+WfC€ as mang ba:i; 1C'ns as fhere are ‘{‘erm;'nal

nodes in the op+:‘ma{ CART +ree..
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maximum degree of interactions

The default setting is Z, which prevents
interactions and produces an additive
model. While MAR% output is much
easier to interpret with this cetting,
prediction accuracy may suffer Using
a sefting of L tends to keep the
model interpretation S o mew hat reaonable,
but +o help prevent Y ou from missing
Someﬂ»‘nﬁ important, it is recommended
that MARS be allowed t+o grow a mode|
with the interaction level set +o +he depth
of & catistactory CART tree. (With a high

IQVCI a/lowed, yom mig}’)f wonf 7LD PQV\ali%Q aa/a/eo(var;obje:)
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penalty on added variables

The default is no penalty — a basis £ pair
involving a variable not already in the
model will be chosen even if it is only

a +ud better than a basis £ paic jnvolving
only variables which are already inthe
model. [f some of the explanatory
variables are )fu‘gff\/y correlated, then an
easier 1o interpret model may be obtained,
with little sacrifice of accuracy, if the
penalty on added variables is increased,
which will favor reusing variables already

In H’)e fY)Odej over addl'ﬂg new var/'ables.
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#orbido(mg Fransformations

For a variety of reasons, one may want
to prevent certain variables from beinj frans -
formed — this will have the variables
put into the model in a linear manner,
if they are used at all. It hransdormatrons
are forbidden on all variables MARs will
prooluce. a variation of a stepwise regression
— onlg You Can have cross-validatron be
used +o select the final model froma
seguence of different sized models, and

this should be beﬁer fhan wlﬁaf stepwise

routines usually do.
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Other Tidbits

using MARS to construct & classifier
If the response variable is specified to be
binary, and the threshold is set at 05,
then MARS can produce a decent classifier
provided that the traning data can be
viewed as a random sample from the
same distn that will produce cases o be
classified. (Lf this irn% the sifuation, thea
one m:’g/»f be able o 9@:‘ 9ood results bg
adjusting the threshold gpproperately.) The
predicted valuer can be roughly viewed as bemj

Qstim ated probabi//ﬁes for a "success” (a 1),
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obfammg predictions from a MARS model
In addition to building a model o gain
ins:’gN about a phenomenon, one might
want 10 we the model o get predicted
values of the response variable for new
cases of exp’anafvrg variable values.

Tl’!er‘e are 'Fairlg Simple instructions -For

doing +his on pp. T -T2 of the MaRS$
Upon Huide.





