1) Letting B_1 be the event the 1st ball is black, B_2 be the event the 2nd ball is black, W_1 be the event the 3rd ball is white, and W_2 be the event the 4th ball is white, the desired probability is

$$P(B_1 B_2 W_1 W_2),$$

which is equal to

$$P(W_2|B_1 B_2 W_1)P(W_1|B_1 B_2)P(B_2|B_1)P(B_1) = (6/16)(4/14)(8/12)(6/10) = 3/70 \approx 0.0429.$$

2) Letting F be the event the student is female and C be the event the student is majoring in computer science, the desired probability is

$$P(F|C) = \frac{P(F \cap C)}{P(C)} = 0.02/0.06 = 1/3 \approx 0.333.$$

3) Letting N_i be the event that exactly i of the first three balls drawn are new, and E be the event that the single ball drawn is new, the desired probability is

$$P(E) = \sum_{i=0}^{3} P(E|N_i)P(N_i)$$

$$= \sum_{i=0}^{3} \binom{9-i}{3} \binom{6}{3-i} \frac{1}{15} \frac{1}{15}$$

$$= 12/25$$

$$= 0.48.$$

4) Bayes’s formula can be used. Letting H be the event the coin results in heads, and W be the event the ball selected is white, the desired probability is

$$P(H^C|W) = \frac{P(W|H^C)P(H^C)}{P(W|H)P(H) + P(W|H^C)P(H^C)}$$

$$= \frac{(3/15)(1/2)}{(4/12)(1/2) + (3/15)(1/2)}$$

$$= \frac{(1/5)(1/2)}{(1/3)(1/2) + (1/5)(1/2)}$$

$$= \frac{(1/5)}{(1/3) + (1/5)}$$

$$= 3/8$$

$$= 0.375.$$