## FINAL EXAM: Problem 3

STAT 472, Spring 2020
(4 points) Consider clustering the six points

$$
p_{1}=\left(x_{1}, y_{1}\right), p_{2}=\left(x_{2}, y_{2}\right), p_{3}=(2.5,0), p_{4}=(3.5,0), p_{5}=(0,3), \& p_{6}=(0,5)
$$

using agglomerative clustering with centroid linkage and Euclidean distance. Give values for $x_{1}, y_{1}, x_{2}$, and $y_{2}$ such that
first $p_{1}$ and $p_{2}$ are fused,
then $p_{3}$ and $p_{4}$ are fused,
then $p_{5}$ and $p_{6}$ are fused,
then the cluster $\left\{p_{3}, p_{4}\right\}$ and the cluster $\left\{p_{5}, p_{6}\right\}$ are fused,
and finally the cluster $\left\{p_{3}, p_{4} p_{5}, p_{6}\right\}$ and the cluster $\left\{p_{1}, p_{2}\right\}$ are fused with an inversion being created (meaning that the distance between $\left\{p_{3}, p_{4} p_{5}, p_{6}\right\}$ and $\left\{p_{1}, p_{2}\right\}$ is less than the distance between two clusters which were previously fused).
(Note: There is more than one correct set of values for $x_{1}, y_{1}, x_{2}$, and $y_{2}$. Make sure that the values you provide satisfy all of the conditions given above.)

