## FINAL EXAM: Problem 1

## STAT 472, Spring 2020

The following will read in the appropriate data and make it easy to work with (the attach (prob1.dat) will allow you to use the variables $\mathrm{x}, \mathrm{y}$, and m (where m contains the true values of $E(Y \mid x)$ that were used to produce the values of y by adding random amounts to them)):

```
prob1.dat = read.table("http://mason.gmu.edu/~ csutton/FEs20prob1.txt", header=TRUE)
dim(prob1.dat)
head(prob1.dat)
attach(prob1.dat)
plot(x,y)
```

The scatter plot suggests that it might be good to model $E(Y \mid x)$ with a linear spline model. Using the bottom portion of p. 7-8 of the class notes (which can be accessed from the Week 9 section of the Blackboard site), and the values $\xi_{1}=20$ and $\xi_{2}=29$, create vectors b 2 and b 3 from the values of x , so that b2 and b3 contain the values of $b_{2}(x)$ and $b_{3}(x)$ described in the class notes. (Note that x contains the values of the basis function $b_{1}(x)=x$.) Then use the $\operatorname{lm}()$ function to fit the linear spline model. (Note that the basis function $b_{0}(x)=1$ will be automatically included when $\operatorname{lm}()$ is used. (Using $b_{0}(x)=1$ as a basis function is equivalent to including a constant/intercept term in a regression model.))
(a) (1 point) What is the value of $R^{2}$ ?
(b) (2 points) Rounded to the nearest thousandth, what is the slope of the estimate of $E(Y \mid x)$ for $x$ between 20 and 29 ? (Provide justification for your answer.)
(c) (1 point) What p-value results from the $t$ test about the coefficient of $b_{3}(x)$ ? (The large p-value suggests that the second knot at $x=29$ is not needed.)

